Asset valuation via stochastic optimization

Teemu Pennanen Department of Mathematics King's College London

ALM Pre-cri

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

- Optimal investment and asset pricing are often treated as separate problems (Markovitz vs. Black–Scholes).
- In practice, valuations have been largely disconnected from investment and risk management. This lead to large losses during 2008 e.g. with credit derivatives.
- Building on convex stochastic optimization, we describe a unified approach to optimal investment, valuation and risk management.
- The resulting valuations
 - are based on hedging costs,
 - $\circ\,$ extend and unify financial and actuarial valuations,
 - reduce to "risk neutral valuations" for perfectly liquid securities.

ALM Pre-crisis valuations Valuations Existence of solutions Duality

- Pennanen, Optimal investment and contingent claim valuation in illiquid markets, Finance and Stochastics, 2014.
- Armstrong, Pennanen, Rakwongwan, Pricing and hedging of S&P500 options under illiquidity, manuscript.
- King, Koivu, Pennanen, Calibrated option bounds, Int. J. Theor. Appl. Finance, 2005.
- Nogueiras, Pennanen, Pricing and hedging EONIA swaps under illiquidity and credit risk, manuscript.
- Hilli, Koivu, Pennanen, Cash-flow based valuation of pension liabilities. European Actuarial Journal, 2011.
- Bonatto, Pennanen, Optimal hedging and valuation of oil refineries and supply contracts, manuscript.
- Pennanen, Perkkiö, Convex duality in optimal investment and contingent claim valuation in illiquid markets, manuscript.

ALM

Pre-crisis valuations Valuations Existence of solutions Duality Let \mathcal{M} be the linear space of adapted sequences of cash-flows on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t=0}^T, P)$.

- The financial market is described by a convex set C ⊂ M of claims that can be superhedged without cost (i.e. each c ∈ C is freely available in the financial market).
- In models with a perfectly liquid cash-account,

$$\mathcal{C} = \{ c \in \mathcal{M} \mid \sum_{t=0}^{T} c_t \in C \}$$

where $C \subset L^0(\Omega, \mathcal{F}_T, P)$ are the claims at T that can be hedged without cost [Delbaen and Schachermayer, 2006].

• Conical C: [Dermody and Rockafellar, 1991], [Jaschke and Küchler, 2001], [Jouini and Napp, 2001], [Madan, 2014].

ALM

Pre-crisis valuations Valuations Existence of solutions Duality **Example 1 (The classical model)** In the classical perfectly liquid market model with a cash-account

$$\mathcal{C} = \{ c \in \mathcal{M} \mid \exists x \in \mathcal{N} : \sum_{t=0}^{T} c_t \leq \sum_{t=0}^{T-1} x_t \cdot \Delta s_{t+1} \}$$

which is a convex cone. This set has been extensively studied in the literature; see e.g. [Föllmer and Schied, 2004] or [Delbaen and Schachermayer, 2006] and their references.

ALM

Pre-crisis valuations Valuations Existence of solutions Duality

The limit order book of TDC A/S in Copenhagen Stock Exchange on January 12, 2005 at 13:58:19.43.

ALM

Pre-crisis valuations Valuations Existence of solutions

Duality

• Consider an agent with liabilities $c \in \mathcal{M}$, access to \mathcal{C} and a loss function $\mathcal{V} : \mathcal{M} \to \overline{\mathbb{R}}$ that measures disutility/regret/risk/... of delivering $c \in \mathcal{M}$. For example,

$$\mathcal{V}(c) = E \sum_{t=0}^{T} -u_t(-c_t).$$

• The agent's ALM problem can be written as

$$\varphi(c) = \inf_{d \in \mathcal{C}} \mathcal{V}(c - d)$$

• We assume that \mathcal{V} is convex and nondecreasing with $\mathcal{V}(0) = 0$.

ALM

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

- EONIA (Euro Over Night Index Average) is the average overnight interest rate on agreed interbank lending.
- We study indifference swap rates of EONIA swaps (Overnight Index Swaps).
- The hedging instruments consist of EONIA and other EONIA swaps.

ALM

- Pre-crisis valuations
- Valuations
- Existence of solutions
- Duality

ALM

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

Table 1: Swap data:

OIS Maturity	OIS Rate
1W	-0.2730E - 3
2W	-0.0500E - 3
3W	-0.0300E - 3
1M	-0.0100E - 3
2M	-0.0700E - 3
3M	-0.1400E - 3
6M	-0.1300E - 3

ALM

Pre-crisis valuations Valuations Existence of solutions Duality

$$\mathcal{C} = \{ c \in \mathcal{M} \mid \exists x \in \mathcal{N}_0, z \in \mathbb{R}^K : x_t + c_t \le (1 + r_t) x_{t-1} + \sum_{k \in K} z_k c_t^k \}$$

where

We have

- x_t amount of overnight deposits,
- r_t EONIA rate,
- c_t agent's cash-flows to be hedged,
- $c_{k,t}$ net cash-flows of the kth swap,
- z_k position in the kth swap (to be optimized).

ALM

Pre-crisis valuations Valuations Existence of solutions Duality

• We describe risk preferences by

$$\mathcal{V}(c) = \begin{cases} E \exp[\gamma c_T] & \text{if } c_t \leq 0 \text{ for } t < T, \\ +\infty & \text{otherwise.} \end{cases}$$

where $\gamma>0$ describes the risk aversion of the agent.

• The ALM-problem can then be written as

minimize $E \exp(-\gamma x_T)$ over $z \in \mathbb{R}^K$,

where x_T is given by the recursion

$$x_t = (1 + r_{t-1})x_{t-1} + \sum_{k \in K} z_k c_{k,t} - c_t.$$

ALM

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

Optimal terminal wealth distribution with $\gamma=1$

ALM

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

Optimal terminal wealth distribution with $\gamma=5$

ALM

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

Optimal terminal wealth distribution with $\gamma=10$

ALM

- Pre-crisis valuations
- Valuations
- Existence of solutions
- Duality

- In the second example, we study indifference prices of S&P500 index options.
- The hedging instruments are cash, S&P500 index and puts and calls all with the same maturity.
- We only consider static hedging but do account for illiquidity by trading at observed bid/ask prices.

time t = 0, 1.

ALM

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

• Static trading corresponds to the one period model

$$\mathcal{C} = \{(c_0, c_1) \mid \exists x \in \mathbb{R}^J : \sum_{j \in J} S_0^j(x^j) + c_0 \leq 0, \sum_{j \in J} S_1^j(-x^j) + c_1 \leq 0\},$$

where $S_t^j(x^j)$ denotes the cost of buying x^j units of asset j at

- We have $S_0^j(x^j) = \max\{\underline{s}_0^j x, \overline{s}_0^j x\}$, where \underline{s}_0^j and \overline{s}_0^j are the observed bid and ask prices, respectively.
- We assume perfect liquidity at t = 1 so $S_1^j(x^j) = s_1^j x^j$, where

$$s_1^j = \begin{cases} 1 & \text{if } j \text{ is cash,} \\ P_1 & \text{if } j \text{ is the index,} \\ [P_1 - K^j]^+ & \text{if } j \text{ is a call with strike } K^j, \\ [K^j - P_1]^+ & \text{if } j \text{ is a put with strike } K^j. \end{cases}$$

ALM

Pre-crisis valuations Valuations Existence of solutions Duality

• We describe risk preferences by

$$\mathcal{V}(c) = \begin{cases} E \exp[\gamma c_1] & \text{if } c_0 \leq 0, \\ +\infty & \text{otherwise.} \end{cases}$$

where $\gamma>0$ describes the risk aversion of the agent.

• The ALM-problem can then be written as

minimize $E \exp \left[\gamma(c_1 - s_1 \cdot x)\right]$ over $x \in \left[-q_b, q_a\right]$ subject to $\sum_{j \in J} S_0^j(x^j) + c_0 \le 0,$

where $q_b, q_a \in \mathbb{R}^J$ are the quantities available at the best bid and best ask prices.

Optimal payout profile

ALM

Valuations

Duality

Pre-crisis valuations

Existence of solutions

ALM

- Pre-crisis valuations Valuations Existence of solutions
- Existence of solutions
- Duality

Optimal portfolio

ALM

- Pre-crisis valuations Valuations Existence of solutions
- Duality

Optimal payout profiles with increasing beliefs of volatility

ALM

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

- We study the ALM-problem of the Finnish private sector occupational pension system.
- The yearly claims c_t consist of aggregate old age, disability and unemployment pension benefits earned by the end of 2008 and become payable during year t.
- The claims depend on mortality and the price- and wage-inflation, etc.

ALM

- Pre-crisis valuations Valuations Existence of solutions
- Duality

Figure 2: Survival rates of Finnish males

ALM

Duality

Pre-crisis valuations Valuations Existence of solutions

- The traded assets consist of five equity indices and two bond indices.
- Yearly bond returns are modeled by

 $R_t = \exp(Y_t \Delta t - D\Delta Y_t),$

where Y is the yield to maturity and D the duration.

• Market risk factors are modeled together with the liability risk factors (mortality, price- and wage-inflation) by a stochastic difference equation of the form

$$\Delta x_t = A x_{t-1} + b + \varepsilon_t,$$

where x is the vector of (transformed) risk factors.

ALM

- Pre-crisis valuations Valuations
- Existence of solutions
- Duality

 $\mathcal{C} = \{ c \in \mathcal{M} \mid \exists h \in \mathcal{N}_D : \sum_{j \in J} h_t^j + c_t \leq \sum_{j \in J} R_t^j h_{t-1}^j \}.$

When

$$\mathcal{V}(c) := \begin{cases} V_T(c) & \text{if } c_t \leq 0 \text{ for } t < T, \\ +\infty & \text{otherwise} \end{cases}$$

the problem can be written as

The market models is

minimize
$$\mathcal{V}_T\left(-\sum_{j\in J}h_{T,j}\right)$$
 over $h\in\mathcal{N}_D$
subject to $\sum_{j\in J}h_{t,j}+c_t\leq\sum_{j\in J}r_{t,j}h_{t-1,j}.$

ALM

Pre-crisis valuations Valuations Existence of solutions Duality The Galerkin method optimizes over convex combinations of feasible trading strategies $(h^i)_{i \in I}$:

minimize
$$\mathcal{V}_T\left(-\sum_{i\in I} \alpha^i \sum_{j\in J} h^i_{T,j}\right)$$
 over $\alpha \in \mathbb{R}^I_+$
subject to $\sum_{i\in I} \alpha^i = 1.$

- When $\mathcal{V}(W) = Ev(W)$, the objective can be approximated by integration quadratures.
- The terminal wealth $\sum_{j \in J} h_{T,j}^i$ can be evaluated independently for each strategy i and each scenario.
- (Compare with the finite element method for elliptic PDEs with nonconstant coefficients.)

ALM

Pre-crisis valuations Valuations Existence of solutions Duality Results with 529 basis strategies (buy and hold, constant proportions, portfolio insurance, target date fund).

Weigh	nt Type	$CV@R_{97.5\%}$ (billion \in)
0.665	5 BH	1569
0.029	9 BH	6567
0.104	4 BH	5041
0.022	2 CP	3324
0.039	9 PI	1420
0.099	9 PI	1907
0.042	2 PI	2417
	Best basis	5 1020
	Galerkin	251

Pre-crisis valuations

ALM

Pre-crisis valuations

Valuations Existence of solutions

Duality

- Risk neutral valuation assumes that the payout of a claim can be replicated by trading and that the negative of the trading strategy replicates the negative claim (perfect liquidity).
- It follows that
 - $\circ\,$ there is only one sensible price for buying/selling the claim.
 - the price can be expressed as the expectation of the cash-flows under a "risk neutral measure".
 - the price does not depend on our market expectations, risk preferences or financial position.
- The independence is peculiar to redundant securities whose cash-flows can be replicated by trading other assets.

Pre-crisis valuations

ALM

Pre-crisis valuations

- Valuations Existence of solutions Duality
- Actuarial valuations come from the opposite direction where everything is invested on the "bank account" and nothing but fixed-income instruments can be replicated.
- Actuarial valuations can be divided roughly into
 - premium principles reminiscent of indifference valuations discussed below.
 - "best estimate" which is defined as the discounted expectation of future cash-flows.
- Such valuations are not market consistent: the "best estimate" of e.g. a European call tends to be too high.
- The "best estimate" is inherently procyclical: it increases when discount rates decrease during financial crises.
- A trick question: "What discount rate should be used?"

Pre-crisis valuations

ALM

- Pre-crisis valuations
- Valuations Existence of solutions Duality
- The flaws of pre-crisis valuations are well-known so it is common to adjust the incorrect valuations:
 - Credit valuation adjustment (CVA) tries to correct for credit risk that was ignored by a pricing model.
 - Funding valuation adjustment (FVA) tries to correct for incorrect lending/borrowing rates.
 - Risk margin in Solvency II tries to correct for the the risk that is filtered out by the expectation in the "best estimate".
 - 0...
- Instead of adjusting incorrect valuations, we will adjust the underlying model and derive values from hedging arguments à la Black–Scholes.

Valuation of contingent claims

ALM Pre-crisis valuations

Valuations

Existence of solutions Duality

- In incomplete markets, the hedging argument for valuation of contingent claims has two natural generalizations:
 - accounting value: How much cash do we need to cover our liabilities at an acceptable level of risk?
 - indifference price: What is the least price we can sell a financial product for without increasing our risk?
- The former is important in accounting, financial reporting and supervision (SII, IFRS) and in the BS-model.
- The latter is more relevant in trading.
- Classical math finance makes no distinction between the two.

Valuation of contingent claims

ALM Pre-crisis valuations

Valuations

Existence of solutions Duality

- In incomplete markets, the hedging argument for valuation of contingent claims has two natural generalizations:
 - accounting value: How much cash do we need to cover our liabilities at an acceptable level of risk?
 - indifference price: What is the least price we can sell a financial product for without increasing our risk?
- In general, such values depend on our views, risk preferences and financial position.
- Subjectivity is the driving force behind trading.
- Trying to avoid the subjectivity leads to inconsistencies and confusion ("What discount rate should be used?")
- In complete markets, the two notions coincide and they are independent of the subjective factors

Accounting values

ALM Pre-crisis valuations

Valuations

Existence of solutions Duality

- We define the accounting value for a liability c ∈ M by π_s⁰(c) = inf{α ∈ ℝ | φ(c − αp⁰) ≤ 0} where p⁰ = (1, 0, ..., 0).
 Similarly, π_b⁰(c) = sup{α ∈ ℝ | φ(αp⁰ − c) ≤ 0} gives the accounting value of an asset c ∈ M.
- Clearly, $\pi^0_b(c) = -\pi^0_s(-c)$.
- π_s^0 can be interpreted like a risk measure in [Artzner, Delbaen, Eber and Heath, 1999]. However, we have not assumed the existence of a cash-account so π_s^0 is defined on sequences of cash-flows.

Accounting values

ALM Pre-crisis valuations Valuations Existence of solutions

Existence of solutions Duality

Define the super- and subhedging costs

 $\pi^0_{\sup}(c) := \inf\{\alpha \mid c - \alpha p^0 \in \mathcal{C}\}, \ \pi^0_{\inf}(c) := \inf\{\alpha \mid \alpha p^0 - c \in \mathcal{C}\}$

Theorem 2 The accounting value π_s^0 is convex and nondecreasing with respect to C^{∞} . We have $\pi_s^0 \leq \pi_{\sup}^0$ and if $\pi_s^0(0) \geq 0$, then

 $\pi_{\inf}^{0}(c) \le \pi_{b}^{0}(c) \le \pi_{s}^{0}(c) \le \pi_{\sup}^{0}(c)$

with equalities throughout if $c - \alpha p^0 \in \mathcal{C} \cap (-\mathcal{C})$ for $\alpha \in \mathbb{R}$.

• π_s^0 is "translation invariant": if $c' - \alpha p^0 \in \mathcal{C}^{\infty} \cap (-\mathcal{C}^{\infty})$ (i.e. $c' \in \mathcal{M}$ is replicable with initial cash α), then

$$\pi^0(c+c') = \pi^0(c) + \alpha.$$

• In complete markets, $c - \alpha p^0 \in \mathcal{C}^{\infty} \cap (-\mathcal{C}^{\infty})$ always for some $\alpha \in \mathbb{R}$, so $\pi_s^0(c)$ is independent of preferences and views.

ALM

Pre-crisis valuations

Valuations

Existence of solutions Duality

• In a swap contract, an agent receives a sequence $p \in \mathcal{M}$ of premiums and delivers a sequence $c \in \mathcal{M}$ of claims.

• Examples:

- \circ Swaps with a "fixed leg": $p=(1,\ldots,1),$ random c.
- \circ In credit derivatives (CDS, CDO, ...) and other insurance contracts, both p and c are random.
- Traditionally in mathematical finance,

 $p = (1, 0, \dots, 0)$ and $c = (0, \dots, 0, c_T).$

• Claims and premiums live in the same space

 $\mathcal{M} = \{ (c_t)_{t=0}^T \mid c_t \in L^0(\Omega, \mathcal{F}_t, P; \mathbb{R}) \}.$

ALM Pre-crisis valuations

Valuations

Existence of solutions Duality • If we already have liabilities $\bar{c} \in \mathcal{M}$, then

$$\pi(\bar{c}, p; c) := \inf\{\alpha \in \mathbb{R} \mid \varphi(\bar{c} + c - \alpha p) \le \varphi(\bar{c})\}$$

gives the least swap rate that would allow us to enter a swap contract without worsening our financial position.Similarly,

 $\pi^{b}(\bar{c}, p; c) := \sup\{\alpha \in \mathbb{R} \mid \varphi(\bar{c} - c + \alpha p) \le \varphi(\bar{c})\} = -\pi(\bar{c}, p; -c)$

gives the greatest swap rate we would need on the opposite side of the trade.

• When p = (1, 0, ..., 0) and $c = (0, ..., 0, c_T)$, we get an extension of the indifference price of [Hodges and Neuberger, 1989] to nonproportional transactions costs.

ALM Pre-crisis valuations Valuations

Existence of solutions Duality

Define the super- and subhedging swap rates, $\pi_{\sup}(p;c) = \inf\{\alpha \mid c - \alpha p \in C^{\infty}\}, \ \pi_{\inf}(p;c) = \sup\{\alpha \mid \alpha p - c \in C^{\infty}\}.$ If C is a cone and $p = (1, 0, \dots, 0)$, we recover the super- and subhedging costs π_{\sup}^{0} and π_{\inf}^{0} .

Theorem 3 If $\pi(\bar{c}, p; 0) \ge 0$, then

 $\pi_{\inf}(p;c) \le \pi_b(\bar{c},p;c) \le \pi(\bar{c},p;c) \le \pi_{\sup}(p;c)$

with equalities if $c - \alpha p \in \mathcal{C}^{\infty} \cap (-\mathcal{C}^{\infty})$ for some $\alpha \in \mathbb{R}$.

- Agents with identical views, preferences and financial position have no reason to trade with each other.
- Prices are independent of such subjective factors when
 c − αp ∈ C[∞] ∩ (−C[∞]) for some α ∈ ℝ. If in addition, p = p⁰,
 then swap rates coincide with accounting values.

ALM

Pre-crisis valuations

Valuations

Existence of solutions Duality

Example 4 (The classical model) Consider the classical perfectly liquid market model where

$$\mathcal{C} = \{ c \in \mathcal{M} \mid \exists x \in \mathcal{N} : \sum_{t=0}^{T} c_t \leq \sum_{t=0}^{T-1} x_t \cdot \Delta s_{t+1} \}$$

and $C^{\infty} = C$. The condition $c - \alpha p \in C^{\infty} \cap (-C^{\infty})$ holds if there exist $x \in \mathcal{N}$ such that

$$\sum_{t=0}^{T} c_t = \alpha \sum_{t=0}^{T} p_t + \sum_{t=0}^{T-1} x_t \cdot \Delta s_{t+1}.$$

The converse holds under the no-arbitrage condition.

ALM

Pre-crisis valuations

Valuations

Existence of solutions Duality The ALM-problem again:

minimize $E \exp(-\gamma x_T)$ over $z \in \mathbb{R}^K$,

where $x_t = (1 + r_{t-1})x_{t-1} + \sum_{k \in K} z_k c_{k,t} - c_t$.

- Consider a swap where the agent delivers a the floating leg c of an EONIA swap and receives a multiple $p \equiv 1$.
- The indifference swap rate

 $\pi(\bar{c}, p; c) = \inf\{\alpha \in \mathbb{R} \, | \, \varphi(\bar{c} + c - \alpha p) \le \varphi(\bar{c})\}$

can be found by a simple line search with respect to α by computing the optimum value $\varphi(\bar{c}+c-\alpha p)$ at each iteration.

ALM Pre-crisis valuations

Valuations

Existence of solutions Duality

Reality check: The indifference rate of a quoted 6M swap equals the quoted rate -1.300×10^{-4} . This is independent of views and risk preferences just like the Black–Scholes formula. Table 2: Optimal portfolios before and after the trade

OIS Maturity	before	after
1W	9.3882	9.3882
2W	-9.7979	-9.7979
3W	4.9331	4.9331
1M	-1.3731	-1.3731
2M	0.0129	0.0129
3M	0.1242	0.1242
6M	-0.0345	0.9655

ALM

Pre-crisis valuations

Valuations

Existence of solutions Duality

Indifference rate of an unquoted 100 day swap: -1.4184×10^{-4}

Table 3: Optimal portfolios before and after the trade

OIS Maturity	before	after
1W	9.3882	9.6984
2W	-9.7979	-9.9508
3W	4.9331	4.8288
1M	-1.3731	-1.2648
2M	0.0129	-0.1825
3M	0.1242	1.0623
6M	-0.0345	0.1849

ALM

Pre-crisis valuations

Valuations

Existence of solutions Duality

Table 4: Dependence of indifference rate on the initial cash position

units of cash	ID rate
-5	4.2938×10^{-5}
0	-1.4184×10^{-4}
5	-3.1705×10^{-4}

ALM Pre-crisis valuations

Valuations

Existence of solutions Duality

The problem again

minimize $E \exp \left[\gamma(c_1 - s_1 \cdot x)\right]$ over $x \in \left[-q_b, q_a\right]$ subject to $\sum_{j \in J} S_0^j(x^j) + c_0 \le 0,$

- The sales of a European option is a swap where the floating leg is $(0, c_T)$ and the premium is a multiple of p = (1, 0).
- The indifference price

 $\pi(\bar{c}, p; c) = \inf\{\alpha \in \mathbb{R} \mid \varphi(\bar{c} + c - \alpha p) \le \varphi(\bar{c})\}\$

can be found by line search and numerical evaluation of $\varphi(\bar{c} + c - \alpha p)$ at each iteration.

For high risk aversion, indifference prices approach super/subhedging costs.

As the assumed volatility increases, the indifference prices again approach super/subhedging costs.

- Our initial position is λ units of a digital call with strike 2000.
- Lower the λ , more we value the call as a hedge for our position

The problem again

ALM

Valuations

Duality

Pre-crisis valuations

Existence of solutions

minimize
$$\mathcal{V}_T\left(-\sum_{j\in J} h_{T,j}\right)$$
 over $h\in\mathcal{N}_D$
subject to $\sum_{j\in J} h_{t,j} + c_t \leq \sum_{j\in J} r_{t,j} h_{t-1,j}.$

- We will compute the minimal accounting value for the Finnish private sector pension liabilities effective in 2010.
- We find the minimum reserve

$$\pi^0(c) = \inf\{\alpha \,|\, \varphi(c - \alpha p^0) \le 0\}$$

by numerical optimization and line search.

ALM Pre-crisis valuations Valuations

Existence of solutions Duality

Confidence level					
	95%	90%	85%	80%	66%
Best basis	296	284	273	261	239
Optimized	288	271	254	236	202

Table 5: Liability values with varying risk tolerances

Confidence level					
	95%	90%	85%	80%	66%
Best basis	24.3	25.4	26.4	27.6	30.1
Optimized	25.0	26.6	28.3	30.5	35.6

Table 6: Corresponding funding ratios

ALM

Pre-crisis valuations

Valuations

Existence of solutions Duality

Figure 4: The development of 34%, 50%- and 66%-quantiles of net wealth when $\pi_0(c)$ is defined with $\mathcal{V} = V@R_{66\%}$.

From now on we assume that

Existence of solutions

Pre-crisis valuations

Duality

ALM

 $\mathcal{C} = \{ c \in \mathcal{M} \mid \exists x \in \mathcal{N}_D : S_t(\Delta x_t) + c_t \leq 0 \quad \forall t \},\$

where $\mathcal{N}_D = \{x \in \mathcal{N} \mid x_t \in D_t, x_T = 0\}$ and for each (t, ω)

- $S_t(x,\omega)$ is the cost (in cash) of buying a portfolio $x \in \mathbb{R}^J$,
- $D_t(\omega)$ is the portfolio constraint.

We assume that S_t and D_t are \mathcal{F}_t -measurable, closed and convex so, in particular, \mathcal{C} is a convex set with $\mathcal{M}_- \subset \mathcal{C}$.

• If $S_t(\cdot, \omega)$ are sublinear and $D_t(\omega)$ are conical, then \mathcal{C} is a cone.

ALM Pre-crisis valuations Valuations Existence of solutions Duality Given a market model (S, D), let

$$S_t^{\infty}(x,\omega) = \sup_{\alpha>0} \frac{S_t(\alpha x,\omega)}{\alpha}$$
 and $D_t^{\infty}(\omega) = \bigcap_{\alpha>0} \alpha D_t(\omega).$

If S is sublinear and D is conical, then $S^{\infty} = S$ and $D^{\infty} = D$ **Theorem 5** Assume that $\mathcal{V}(c) = E \sum_{t=0}^{T} V_t(c_t)$, where V_t are bounded from below. If the cone

 $\mathcal{L} := \{ x \in \mathcal{N}_{D^{\infty}} \mid S_t^{\infty}(\Delta x_t) \le 0 \}$

is a linear space, then φ is lower semicontinuous in L^0 (in particular, C is closed).

The lower bound can be replaced by RAE; [Perkkiö, 2014].

ALM Pre-crisis valuations Valuations Existence of solutions Duality

Example 6 In the classical perfectly liquid market model

$$\mathcal{L} = \{ x \in \mathcal{N} \, | \, s_t \cdot \Delta x_t \le 0, \, x_T = 0 \},$$

so the linearity condition becomes the no-arbitrage condition and we recover the key lemma from [Schachermayer, 1992].

Example 7 When $D \equiv \mathbb{R}^J$, the linearity condition becomes the robust no-arbitrage condition: there exists a positively homogeneous arbitrage-free cost process \tilde{S} with

 $\tilde{S}_{t}(x,\omega) \leq S_{t}^{\infty}(x,\omega) \quad \forall x \in \mathbb{R}^{J},$ $\tilde{S}_{t}(x,\omega) < S_{t}^{\infty}(x,\omega) \quad \forall x \notin \lim S_{t}(\cdot,\omega);$ see [Schachermayer, 2004].

ALM Pre-crisis valuations Valuations Existence of solutions Duality

The linearity condition can hold even under arbitrage. **Example 8** If $S_t^{\infty}(x, \omega) > 0$ for $x \notin \mathbb{R}^J_-$, then $\mathcal{L} = \{0\}$. Example 9 In [Cetin and Rogers, 2007], $S_t(x,\omega) = x^0 + s_t(\omega)\psi(x^1)$ so $S_{t}^{\infty}(x,\omega) = x^{0} + s_{t}(\omega)\psi^{\infty}(x^{1})$. If $\inf \psi' = 0$ and $\sup \psi' = \infty$ we have $\psi^{\infty} = \delta_{\mathbb{R}_{-}}$, so the condition in Example 8 holds.

Example 10 If $S_t(\cdot, \omega) = s_t(\omega) \cdot x$ for a componentwise strictly positive price process s and $D_t^{\infty}(\omega) \subseteq \mathbb{R}^J_+$ (infinite short selling is prohibited), then $\mathcal{L} = \{0\}$.

ALM Pre-crisis valuations Valuations Existence of solutions Duality **Proposition 11** Under the linearity condition, the conditions • $p^0 \notin C^{\infty}$,

- $\pi^0(0) > -\infty$,
- $\pi^0(c) > -\infty$ for all $c \in \mathcal{M}$,

are equivalent and imply that π^0 is proper and lower semicontinuous on ${\cal M}$ and that the infimum

$$\pi^0(c) = \inf\{\alpha \,|\, \varphi(c - \alpha p^0) \le 0\}$$

is attained for every $c \in \mathcal{M}$.

ALM Pre-crisis valuations Valuations Existence of solutions

Duality

Proposition 12 Assume the linearity condition. Then, for every $\bar{c} \in \operatorname{dom} \varphi$ and $p \in \mathcal{M}$, the conditions

- $p \notin \mathcal{C}^{\infty}$,
- $\pi(\bar{c}, p; 0) > -\infty$,
- $\pi(\bar{c}, p; c) > -\infty$ for all $c \in \mathcal{M}$,

are equivalent and imply that $\pi(\bar{c}, p; \cdot)$ is proper and lower semicontinuous on \mathcal{M} and that the infimum

 $\pi(\bar{c}, p; c) = \inf\{\alpha \mid \varphi(\bar{c} + c - \alpha p) \le \varphi(\bar{c})\}$

is attained for every $c \in \mathcal{M}$.

ALM

- Pre-crisis valuations
- Valuations
- Existence of solutions

Duality

• Let $\mathcal{M}^p = \{ c \in \mathcal{M} \mid c_t \in L^p(\Omega, \mathcal{F}_t, P; \mathbb{R}) \}.$

• The bilinear form

$$\langle c, y \rangle := E \sum_{t=0}^{T} c_t y_t$$

puts \mathcal{M}^1 and \mathcal{M}^∞ in separating duality.

• The conjugate of a function f on \mathcal{M}^1 is defined by

$$f^*(y) = \sup_{c \in \mathcal{M}^1} \{ \langle c, y \rangle - f(c) \}.$$

 $\bullet~$ If f is proper, convex and lower semicontinuous, then

$$f(y) = \sup_{y \in \mathcal{M}^{\infty}} \{ \langle c, y \rangle - f^*(y) \}.$$

ALM Pre-crisis valuations Valuations

Existence of solutions

Duality

We assume from now on that

$$\mathcal{V}(c) = E \sum_{t=0}^{T} V_t(c_t)$$

for convex random functions $V_t : \mathbb{R} \times \Omega \to \overline{\mathbb{R}}$ with $V_t(0) = 0$. **Theorem 13** If $S_t(x, \cdot) \in L^1$ for all $x \in \mathbb{R}^J$, then $\varphi^*(y) = \mathcal{V}^*(y) + \sigma_{\mathcal{C}}(y)$

where $\mathcal{V}^*(y) = E \sum_{t=0}^T V_t^*(y_t)$ and $\sigma_{\mathcal{C}}(y) = \sup_{c \in \mathcal{C}} \langle c, y \rangle$. Moreover,

$$\sigma_{\mathcal{C}}(y) = \inf_{v \in \mathcal{N}^1} E \sum_{t=0}^T \left[(y_t S_t)^* (v_t) + \sigma_{D_t} (E[\Delta v_{t+1} | \mathcal{F}_t]) \right]$$

where the infimum is attained for all $y \in \mathcal{M}^{\infty}$.

ALM Pre-crisis valuations Valuations Existence of solutions

Duality

Example 14 If $S_t(\omega, x) = s_t(\omega) \cdot x$ and $D_t(\omega)$ is a cone, $\mathcal{C}^* = \{ y \in \mathcal{M}^{\infty} \mid E[\Delta(y_{t+1}s_{t+1}) \mid \mathcal{F}_t] \in D_t^* \}.$

Example 15 If $S_t(\omega, x) = \sup\{s \cdot x \mid s \in [s_t^b(\omega), s_t^a(\omega)]\}$ and $D_t(\omega) = \mathbb{R}^J$, then $\mathcal{C}^* = \{y \in \mathcal{M}^\infty \mid ys \text{ is a martingale for some } s \in [s^b, s^a]\}.$

Example 16 In the classical model, C^* consists of positive multiples of martingale densities.

ALM

- Pre-crisis valuations
- Valuations
- Existence of solutions

Duality

Theorem 17 Assume the linearity condition, the Inada condition $V_t^{\infty} = \delta_{\mathbb{R}_-}$ and that $p^0 \notin \mathcal{C}^{\infty}$ and $\inf \varphi < 0$. Then

$$\pi^{0}(c) = \sup_{y \in \mathcal{M}^{\infty}} \left\{ \langle c, y \rangle - \sigma_{\mathcal{C}}(y) - \sigma_{\mathcal{B}}(y) \mid y_{0} = 1 \right\},$$

where $\mathcal{B} = \{c \in \mathcal{M}^1 | \mathcal{V}(c) \leq 0\}$. In particular, when \mathcal{C} is conical and \mathcal{V} is positively homogeneous,

$$\pi^{0}(c) = \sup_{y \in \mathcal{M}^{\infty}} \left\{ \left\langle c, y \right\rangle \mid y \in \mathcal{C}^{*} \cap \mathcal{B}^{*}, y_{0} = 1 \right\}.$$

• Extends good deal bounds to sequences of cash-flows.

ALM

- Pre-crisis valuations
- Valuations
- Existence of solutions

Duality

Theorem 18 Assume the linearity condition, the Inada condition and that $p \notin C^{\infty}$ and $\inf \varphi < \varphi(\overline{c})$. Then

$$\pi(\bar{c}, p; c) = \sup_{y \in \mathcal{M}^{\infty}} \left\{ \langle c, y \rangle - \sigma_{\mathcal{C}}(y) - \sigma_{\mathcal{B}(\bar{c})}(y) \mid \langle p, y \rangle = 1 \right\},$$

where $\mathcal{B}(\bar{c}) = \{ c \in \mathcal{M}^1 \mid \mathcal{V}(\bar{c} + c) < \varphi(\bar{c}) \}.$ In particular, if \mathcal{C}

where $\mathcal{B}(\bar{c}) = \{c \in \mathcal{M}^1 \mid \mathcal{V}(\bar{c} + c) \leq \varphi(\bar{c})\}$. In particular, if \mathcal{C} is conical,

$$\pi(\bar{c}, p; c) = \sup_{y \in \mathcal{M}^{\infty}} \left\{ \langle c, y \rangle - \sigma_{\mathcal{B}(\bar{c})}(y) \mid u \in \mathcal{C}^*, \ \langle p, y \rangle = 1 \right\}.$$

ALM

Pre-crisis valuations

Valuations

Existence of solutions

Duality

Example 19 In the classical model, with p = (1, 0, ..., 0)and $V_t = \delta_{\mathbb{R}_-}$ for t < T, we get

$$\pi(\bar{c}, p; c) = \sup_{Q \in \mathcal{Q}} \sup_{\alpha > 0} E^Q \left\{ \sum_{t=0}^T (\bar{c}_t + c_t) - \alpha \left[V_T^*(\frac{dQ}{dP}/\alpha) - \varphi(\bar{c}) \right] \right\}$$

where Q is the set of absolutely continuous martingale measures; see [Biagini, Frittelli, Grasselli, 2011] for a continuous-time version.

ALM Pre-crisis valuations Valuations Existence of solutions

Duality

Theorem 20 (FTAP) Assume that S^{∞} is finite-valued and that $D \equiv \mathbb{R}^{J}$. Then the following are equivalent

- 1. S satisfies the robust no-arbitrage condition.
- 2. There is a strictly consistent price system: adapted processes y and s such that y > 0, $s_t \in \operatorname{ridom} S_t^*$ and ysis a martingale.
- In the classical linear market model, $\operatorname{ridom} S_t^* = \{1, \tilde{s}_t\}$ so we recover the Dalang–Morton–Willinger theorem.
- The robust no-arbitrage condition means that there exists a sublinear arbitrage-free cost process S̃ with dom S̃^{*}_t ⊆ ri dom S^{*}_t.

Summary

ALM Pre-crisis valuations Valuations

- Existence of solutions
- Duality

- Post-crisis FM is subjective: optimal investment and valuations depend on views, risk preferences, financial position and trading expertise.
- ALM brings pricing, accounting and risk management under a single consistent framework.
- Not a quick solution but a coherent and universal approach based on risk management.
- Requires techniques from statistics, optimization, and computer science.
- With some convex analysis, classical "fundamental theorems" can be extended to illiquid market models.