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• Optimal investment and asset pricing are often treated as
separate problems (Markovitz vs. Black–Scholes).

• In practice, valuations have been largely disconnected from
investment and risk management. This lead to large losses
during 2008 e.g. with credit derivatives.

• Building on convex stochastic optimization, we describe a
unified approach to optimal investment, valuation and risk
management.

• The resulting valuations

◦ are based on hedging costs,
◦ extend and unify financial and actuarial valuations,
◦ reduce to “risk neutral valuations” for perfectly liquid
securities.
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Let M be the linear space of adapted sequences of cash-flows
on a filtered probability space (Ω,F , (Ft)

T
t=0, P ).

• The financial market is described by a convex set C ⊂ M
of claims that can be superhedged without cost (i.e. each
c ∈ C is freely available in the financial market).

• In models with a perfectly liquid cash-account,

C = {c ∈ M|
T
∑

t=0

ct ∈ C}

where C ⊂ L0(Ω,FT , P ) are the claims at T that can be
hedged without cost [Delbaen and Schachermayer, 2006].

• Conical C: [Dermody and Rockafellar, 1991], [Jaschke and
Küchler, 2001], [Jouini and Napp, 2001], [Madan, 2014].
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Example 1 (The classical model) In the classical perfectly
liquid market model with a cash-account

C = {c ∈ M|∃x ∈ N :
T
∑

t=0

ct ≤
T−1
∑

t=0

xt ·∆st+1}

which is a convex cone. This set has been extensively studied
in the literature; see e.g. [Föllmer and Schied, 2004] or
[Delbaen and Schachermayer, 2006] and their references.
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The limit order book of TDC A/S in Copenhagen Stock
Exchange on January 12, 2005 at 13:58:19.43.
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• Consider an agent with liabilities c ∈ M, access to C and a
loss function V : M → R that measures disutility/regret/
risk/. . . of delivering c ∈ M. For example,

V(c) = E

T
∑

t=0

−ut(−ct).

• The agent’s ALM problem can be written as

ϕ(c) = inf
d∈C

V(c− d)

• We assume that V is convex and nondecreasing with
V(0) = 0.
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• EONIA (Euro Over Night Index Average) is the average
overnight interest rate on agreed interbank lending.

• We study indifference swap rates of EONIA swaps
(Overnight Index Swaps).

• The hedging instruments consist of EONIA and other
EONIA swaps.
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Figure 1: Historical and simulated rates
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Table 1: Swap data:

OIS Maturity OIS Rate
1W −0.2730E − 3
2W −0.0500E − 3
3W −0.0300E − 3
1M −0.0100E − 3
2M −0.0700E − 3
3M −0.1400E − 3
6M −0.1300E − 3
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We have

C = {c ∈ M|∃x ∈ N0, z ∈ R
K: xt+ct ≤ (1+rt)xt−1+

∑

k∈K

zkc
k
t }

where

• xt amount of overnight deposits,

• rt EONIA rate,

• ct agent’s cash-flows to be hedged,

• ck,t net cash-flows of the kth swap,

• zk position in the kth swap (to be optimized).
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• We describe risk preferences by

V(c) =

{

E exp[γcT ] if ct ≤ 0 for t < T ,

+∞ otherwise.

where γ > 0 describes the risk aversion of the agent.

• The ALM-problem can then be written as

minimize E exp(−γxT ) over z ∈ R
K ,

where xT is given by the recursion

xt = (1 + rt−1)xt−1 +
∑

k∈K

zkck,t − ct.
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Optimal terminal wealth distribution with γ = 1
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Optimal terminal wealth distribution with γ = 5
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Optimal terminal wealth distribution with γ = 10
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• In the second example, we study indifference prices of
S&P500 index options.

• The hedging instruments are cash, S&P500 index and puts
and calls all with the same maturity.

• We only consider static hedging but do account for
illiquidity by trading at observed bid/ask prices.
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• Static trading corresponds to the one period model

C = {(c0, c1) | ∃x ∈ R
J :

∑

j∈J

S
j
0(x

j)+c0 ≤ 0,
∑

j∈J

S
j
1(−xj)+c1 ≤ 0},

where S
j
t (x

j) denotes the cost of buying xj units of asset j at
time t = 0, 1.

• We have S
j
0(x

j) = max{sj0x, s
j
0x}, where s

j
0 and s

j
0 are the

observed bid and ask prices, respectively.

• We assume perfect liquidity at t = 1 so S
j
1(x

j) = s
j
1x

j , where

s
j
1 =























1 if j is cash,

P1 if j is the index,

[P1 −Kj ]+ if j is a call with strike Kj ,

[Kj − P1]
+ if j is a put with strike Kj .
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• We describe risk preferences by

V(c) =

{

E exp[γc1] if c0 ≤ 0,

+∞ otherwise.

where γ > 0 describes the risk aversion of the agent.

• The ALM-problem can then be written as

minimize E exp [γ(c1 − s1 · x)] over x ∈ [−qb, qa]

subject to
∑

j∈J

Sj
0(x

j) + c0 ≤ 0,

where qb, qa ∈ R
J are the quantities available at the best

bid and best ask prices.
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Optimal payout profile
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Optimal portfolio
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Optimal payout profiles with increasing beliefs of volatility
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• We study the ALM-problem of the Finnish private sector
occupational pension system.

• The yearly claims ct consist of aggregate old age, disability
and unemployment pension benefits earned by the end of
2008 and become payable during year t.

• The claims depend on mortality and the price- and
wage-inflation, etc.
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Figure 2: Survival rates of Finnish males
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Figure 3: Yearly claims
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• The traded assets consist of five equity indices and two
bond indices.

• Yearly bond returns are modeled by

Rt = exp(Yt∆t−D∆Yt),

where Y is the yield to maturity and D the duration.

• Market risk factors are modeled together with the liability
risk factors (mortality, price- and wage-inflation) by a
stochastic difference equation of the form

∆xt = Axt−1 + b+ εt,

where x is the vector of (transformed) risk factors.
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The market models is

C = {c ∈ M|∃h ∈ ND :
∑

j∈J

h
j
t + ct ≤

∑

j∈J

R
j
th

j
t−1}.

When

V(c) :=

{

VT (c) if ct ≤ 0 for t < T ,

+∞ otherwise

the problem can be written as

minimize VT



−
∑

j∈J

hT,j



 over h ∈ ND

subject to
∑

j∈J

ht,j + ct ≤
∑

j∈J

rt,jht−1,j .
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The Galerkin method optimizes over convex combinations of
feasible trading strategies (hi)i∈I :

minimize VT

(

−
∑

i∈I

αi
∑

j∈J

hiT,j

)

over α ∈ R
I
+

subject to
∑

i∈I

αi = 1.

• When V(W ) = Ev(W ), the objective can be approximated
by integration quadratures.

• The terminal wealth
∑

j∈J h
i
T,j can be evaluated

independently for each strategy i and each scenario.

• (Compare with the finite element method for elliptic PDEs
with nonconstant coefficients.)
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Results with 529 basis strategies (buy and hold, constant
proportions, portfolio insurance, target date fund).

Weight Type CV@R97.5% (billion AC)
0.665 BH 1569
0.029 BH 6567
0.104 BH 5041
0.022 CP 3324
0.039 PI 1420
0.099 PI 1907
0.042 PI 2417

Best basis 1020
Galerkin 251
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• Risk neutral valuation assumes that the payout of a claim
can be replicated by trading and that the negative of the
trading strategy replicates the negative claim (perfect
liquidity).

• It follows that

◦ there is only one sensible price for buying/selling the
claim.

◦ the price can be expressed as the expectation of the
cash-flows under a “risk neutral measure”.

◦ the price does not depend on our market expectations,
risk preferences or financial position.

• The independence is peculiar to redundant securities whose
cash-flows can be replicated by trading other assets.
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• Actuarial valuations come from the opposite direction
where everything is invested on the “bank account” and
nothing but fixed-income instruments can be replicated.

• Actuarial valuations can be divided roughly into

◦ premium principles reminiscent of indifference valuations
discussed below.

◦ “best estimate” which is defined as the discounted
expectation of future cash-flows.

• Such valuations are not market consistent: the “best
estimate” of e.g. a European call tends to be too high.

• The “best estimate” is inherently procyclical: it increases
when discount rates decrease during financial crises.

• A trick question: “What discount rate should be used?”
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• The flaws of pre-crisis valuations are well-known so it is
common to adjust the incorrect valuations:

◦ Credit valuation adjustment (CVA) tries to correct for
credit risk that was ignored by a pricing model.

◦ Funding valuation adjustment (FVA) tries to correct for
incorrect lending/borrowing rates.

◦ Risk margin in Solvency II tries to correct for the the risk
that is filtered out by the expectation in the “best
estimate”.

◦ . . .

• Instead of adjusting incorrect valuations, we will adjust the
underlying model and derive values from hedging
arguments à la Black–Scholes.
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• In incomplete markets, the hedging argument for valuation
of contingent claims has two natural generalizations:

◦ accounting value: How much cash do we need to cover
our liabilities at an acceptable level of risk?

◦ indifference price: What is the least price we can sell a
financial product for without increasing our risk?

• The former is important in accounting, financial reporting
and supervision (SII, IFRS) and in the BS-model.

• The latter is more relevant in trading.

• Classical math finance makes no distinction between the
two.
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• In incomplete markets, the hedging argument for valuation
of contingent claims has two natural generalizations:

◦ accounting value: How much cash do we need to cover
our liabilities at an acceptable level of risk?

◦ indifference price: What is the least price we can sell a
financial product for without increasing our risk?

• In general, such values depend on our views, risk
preferences and financial position.

• Subjectivity is the driving force behind trading.

• Trying to avoid the subjectivity leads to inconsistencies and
confusion (“What discount rate should be used?”)

• In complete markets, the two notions coincide and they are
independent of the subjective factors
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• We define the accounting value for a liability c ∈ M by

π0
s(c) = inf{α ∈ R |ϕ(c− αp0) ≤ 0}

where p0 = (1, 0, . . . , 0).

• Similarly,

π0
b (c) = sup{α ∈ R |ϕ(αp0 − c) ≤ 0}

gives the accounting value of an asset c ∈ M.

• Clearly, π0
b (c) = −π0

s(−c).

• π0
s can be interpreted like a risk measure in [Artzner,

Delbaen, Eber and Heath, 1999]. However, we have not
assumed the existence of a cash-account so π0

s is defined
on sequences of cash-flows.
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Define the super- and subhedging costs

π0
sup(c) := inf{α | c−αp0 ∈ C}, π0

inf(c) := inf{α |αp0− c ∈ C}

Theorem 2 The accounting value π0
s is convex and nondecreasing

with respect to C∞. We have π0
s ≤ π0

sup and if π0
s(0) ≥ 0, then

π0
inf(c) ≤ π0

b (c) ≤ π0
s(c) ≤ π0

sup(c)

with equalities throughout if c− αp0 ∈ C ∩ (−C) for α ∈ R.

• π0
s is “translation invariant”: if c′ − αp0 ∈ C∞ ∩ (−C∞) (i.e.

c′ ∈ M is replicable with initial cash α), then

π0(c+ c′) = π0(c) + α.

• In complete markets, c− αp0 ∈ C∞ ∩ (−C∞) always for some
α ∈ R, so π0

s(c) is independent of preferences and views.
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• In a swap contract, an agent receives a sequence p ∈ M of
premiums and delivers a sequence c ∈ M of claims.

• Examples:

◦ Swaps with a “fixed leg”: p = (1, . . . , 1), random c.
◦ In credit derivatives (CDS, CDO, . . . ) and other
insurance contracts, both p and c are random.

◦ Traditionally in mathematical finance,

p = (1, 0, . . . , 0) and c = (0, . . . , 0, cT ).

• Claims and premiums live in the same space

M = {(ct)
T
t=0 | ct ∈ L0(Ω,Ft, P ;R)}.
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• If we already have liabilities c̄ ∈ M, then

π(c̄, p; c) := inf{α ∈ R |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}

gives the least swap rate that would allow us to enter a
swap contract without worsening our financial position.

• Similarly,

πb(c̄, p; c) := sup{α ∈ R |ϕ(c̄−c+αp) ≤ ϕ(c̄)} = −π(c̄, p;−c)

gives the greatest swap rate we would need on the opposite
side of the trade.

• When p = (1, 0, . . . , 0) and c = (0, . . . , 0, cT ), we get an
extension of the indifference price of [Hodges and
Neuberger, 1989] to nonproportional transactions costs.
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Define the super- and subhedging swap rates,

πsup(p; c) = inf{α | c−αp ∈ C∞}, πinf(p; c) = sup{α |αp−c ∈ C∞}.

If C is a cone and p = (1, 0, . . . , 0), we recover the super- and
subhedging costs π0

sup and π0
inf .

Theorem 3 If π(c̄, p; 0) ≥ 0, then

πinf(p; c) ≤ πb(c̄, p; c) ≤ π(c̄, p; c) ≤ πsup(p; c)

with equalities if c− αp ∈ C∞ ∩ (−C∞) for some α ∈ R.

• Agents with identical views, preferences and financial position
have no reason to trade with each other.

• Prices are independent of such subjective factors when
c− αp ∈ C∞ ∩ (−C∞) for some α ∈ R. If in addition, p = p0,
then swap rates coincide with accounting values.
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Example 4 (The classical model) Consider the classical
perfectly liquid market model where

C = {c ∈ M|∃x ∈ N :
T
∑

t=0

ct ≤
T−1
∑

t=0

xt ·∆st+1}

and C∞ = C. The condition c− αp ∈ C∞ ∩ (−C∞) holds if
there exist x ∈ N such that

T
∑

t=0

ct = α

T
∑

t=0

pt +
T−1
∑

t=0

xt ·∆st+1.

The converse holds under the no-arbitrage condition.
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The ALM-problem again:

minimize E exp(−γxT ) over z ∈ R
K ,

where xt = (1 + rt−1)xt−1 +
∑

k∈K zkck,t − ct.

• Consider a swap where the agent delivers a the floating leg
c of an EONIA swap and receives a multiple p ≡ 1.

• The indifference swap rate

π(c̄, p; c) = inf{α ∈ R |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}

can be found by a simple line search with respect to α by
computing the optimum value ϕ(c̄+ c− αp) at each
iteration.
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Reality check: The indifference rate of a quoted 6M swap
equals the quoted rate −1.300× 10−4. This is independent of
views and risk preferences just like the Black–Scholes formula.

Table 2: Optimal portfolios before and after the trade

OIS Maturity before after
1W 9.3882 9.3882
2W −9.7979 −9.7979
3W 4.9331 4.9331
1M −1.3731 −1.3731
2M 0.0129 0.0129
3M 0.1242 0.1242
6M −0.0345 0.9655
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Indifference rate of an unquoted 100 day swap:
−1.4184× 10−4

Table 3: Optimal portfolios before and after the trade

OIS Maturity before after
1W 9.3882 9.6984
2W −9.7979 −9.9508
3W 4.9331 4.8288
1M −1.3731 −1.2648
2M 0.0129 −0.1825
3M 0.1242 1.0623
6M −0.0345 0.1849
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Table 4: Dependence of indifference rate on the initial cash
position

units of cash ID rate
-5 4.2938× 10−5

0 −1.4184× 10−4

5 −3.1705× 10−4
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The problem again

minimize E exp [γ(c1 − s1 · x)] over x ∈ [−qb, qa]

subject to
∑

j∈J

Sj
0(x

j) + c0 ≤ 0,

• The sales of a European option is a swap where the floating
leg is (0, cT ) and the premium is a multiple of p = (1, 0).

• The indifference price

π(c̄, p; c) = inf{α ∈ R |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}

can be found by line search and numerical evaluation of
ϕ(c̄+ c− αp) at each iteration.
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For high risk aversion, indifference prices approach

super/subhedging costs.
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As the assumed volatility increases, the indifference prices again

approach super/subhedging costs.
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0.0 digital calls held
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• Our initial position is λ units of a digital call with strike 2000.

• Lower the λ, more we value the call as a hedge for our position
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The problem again

minimize VT

(

−
∑

j∈J

hT,j

)

over h ∈ ND

subject to
∑

j∈J

ht,j + ct ≤
∑

j∈J

rt,jht−1,j.

• We will compute the minimal accounting value for the
Finnish private sector pension liabilities effective in 2010.

• We find the minimum reserve

π0(c) = inf{α |ϕ(c− αp0) ≤ 0}

by numerical optimization and line search.
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Confidence level
95% 90% 85% 80% 66%

Best basis 296 284 273 261 239
Optimized 288 271 254 236 202

Table 5: Liability values with varying risk tolerances

Confidence level
95% 90% 85% 80% 66%

Best basis 24.3 25.4 26.4 27.6 30.1
Optimized 25.0 26.6 28.3 30.5 35.6

Table 6: Corresponding funding ratios
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Figure 4: The development of 34%, 50%- and 66%-quantiles
of net wealth when π0(c) is defined with V = V@R66%.
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From now on we assume that

C = {c ∈ M|∃x ∈ ND : St(∆xt) + ct ≤ 0 ∀t},

where ND = {x ∈ N | xt ∈ Dt, xT = 0} and for each (t, ω)

• St(x, ω) is the cost (in cash) of buying a portfolio x ∈ R
J ,

• Dt(ω) is the portfolio constraint.

We assume that St and Dt are Ft-measurable, closed and
convex so, in particular, C is a convex set with M− ⊂ C.

• If St(·, ω) are sublinear and Dt(ω) are conical, then C is a
cone.
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Given a market model (S,D), let

S∞
t (x, ω) = sup

α>0

St(αx, ω)

α
and D∞

t (ω) =
⋂

α>0

αDt(ω).

If S is sublinear and D is conical, then S∞ = S and D∞ = D

Theorem 5 Assume that V(c) = E
∑T

t=0 Vt(ct), where Vt
are bounded from below. If the cone

L := {x ∈ ND∞ |S∞
t (∆xt) ≤ 0}

is a linear space, then ϕ is lower semicontinuous in L0 (in
particular, C is closed).

The lower bound can be replaced by RAE; [Perkkiö, 2014].
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Example 6 In the classical perfectly liquid market model

L = {x ∈ N | st ·∆xt ≤ 0, xT = 0},

so the linearity condition becomes the no-arbitrage condition
and we recover the key lemma from [Schachermayer, 1992].

Example 7 When D ≡ R
J , the linearity condition becomes

the robust no-arbitrage condition: there exists a positively
homogeneous arbitrage-free cost process S̃ with

S̃t(x, ω) ≤ S∞
t (x, ω) ∀x ∈ R

J ,

S̃t(x, ω) < S∞
t (x, ω) ∀x /∈ linSt(·, ω);

see [Schachermayer, 2004].
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The linearity condition can hold even under arbitrage.

Example 8 If S∞
t (x, ω) > 0 for x /∈ R

J
−, then L = {0}.

Example 9 In [Çetin and Rogers, 2007],

St(x, ω) = x0 + st(ω)ψ(x
1)

so S∞
t (x, ω) = x0 + st(ω)ψ

∞(x1). If inf ψ′ = 0 and
supψ′ = ∞ we have ψ∞ = δR−

, so the condition in
Example 8 holds.

Example 10 If St(·, ω) = st(ω) · x for a componentwise
strictly positive price process s and D∞

t (ω) ⊆ R
J
+ (infinite

short selling is prohibited), then L = {0}.
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Proposition 11 Under the linearity condition, the conditions

• p0 /∈ C∞,

• π0(0) > −∞,

• π0(c) > −∞ for all c ∈ M,

are equivalent and imply that π0 is proper and lower
semicontinuous on M and that the infimum

π0(c) = inf{α |ϕ(c− αp0) ≤ 0}

is attained for every c ∈ M.
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Proposition 12 Assume the linearity condition. Then, for
every c̄ ∈ domϕ and p ∈ M, the conditions

• p /∈ C∞,

• π(c̄, p; 0) > −∞,

• π(c̄, p; c) > −∞ for all c ∈ M,

are equivalent and imply that π(c̄, p; ·) is proper and lower
semicontinuous on M and that the infimum

π(c̄, p; c) = inf{α |ϕ(c̄+ c− αp) ≤ ϕ(c̄)}

is attained for every c ∈ M.
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• Let Mp = {c ∈ M| ct ∈ Lp(Ω,Ft, P ;R)}.

• The bilinear form

〈c, y〉 := E

T
∑

t=0

ctyt

puts M1 and M∞ in separating duality.

• The conjugate of a function f on M1 is defined by

f ∗(y) = sup
c∈M1

{〈c, y〉 − f(c)}.

• If f is proper, convex and lower semicontinuous, then

f(y) = sup
y∈M∞

{〈c, y〉 − f ∗(y)}.
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We assume from now on that

V(c) = E

T
∑

t=0

Vt(ct)

for convex random functions Vt : R×Ω → R with Vt(0) = 0.

Theorem 13 If St(x, ·) ∈ L1 for all x ∈ R
J , then

ϕ∗(y) = V∗(y) + σC(y)

where V∗(y) = E
∑T

t=0 V
∗
t (yt) and σC(y) = supc∈C〈c, y〉.

Moreover,

σC(y) = inf
v∈N 1

E

T
∑

t=0

[(ytSt)
∗(vt) + σDt

(E[∆vt+1|Ft])]

where the infimum is attained for all y ∈ M∞.
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Example 14 If St(ω, x) = st(ω) · x and Dt(ω) is a cone,

C∗ = {y ∈ M∞ |E[∆(yt+1st+1) |Ft] ∈ D∗
t }.

Example 15 If St(ω, x) = sup{s · x | s ∈ [sbt(ω), s
a
t (ω)]} and

Dt(ω) = R
J , then

C∗ = {y ∈ M∞ | ys is a martingale for some s ∈ [sb, sa]}.

Example 16 In the classical model, C∗ consists of positive
multiples of martingale densities.
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Theorem 17 Assume the linearity condition, the Inada
condition V ∞

t = δR−
and that p0 /∈ C∞ and inf ϕ < 0. Then

π0(c) = sup
y∈M∞

{〈c, y〉 − σC(y)− σB(y) | y0 = 1} ,

where B = {c ∈ M1 | V(c) ≤ 0}. In particular, when C is
conical and V is positively homogeneous,

π0(c) = sup
y∈M∞

{〈c, y〉 | y ∈ C∗ ∩ B∗, y0 = 1} .

• Extends good deal bounds to sequences of cash-flows.
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Theorem 18 Assume the linearity condition, the Inada
condition and that p /∈ C∞ and inf ϕ < ϕ(c̄). Then

π(c̄, p; c) = sup
y∈M∞

{

〈c, y〉 − σC(y)− σB(c̄)(y)
∣

∣ 〈p, y〉 = 1
}

,

where B(c̄) = {c ∈ M1 | V(c̄+ c) ≤ ϕ(c̄)}. In particular, if C
is conical,

π(c̄, p; c) = sup
y∈M∞

{

〈c, y〉 − σB(c̄)(y)
∣

∣ u ∈ C∗, 〈p, y〉 = 1
}

.
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Example 19 In the classical model, with p = (1, 0, . . . , 0)
and Vt = δR−

for t < T , we get

π(c̄, p; c) = sup
Q∈Q

sup
α>0

EQ

{

T
∑

t=0

(c̄t + ct)− α

[

V ∗
T (
dQ

dP
/α)− ϕ(c̄)

]

}

where Q is the set of absolutely continuous martingale
measures; see [Biagini, Frittelli, Grasselli, 2011] for a
continuous-time version.
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Theorem 20 (FTAP) Assume that S∞ is finite-valued and
that D ≡ R

J . Then the following are equivalent

1. S satisfies the robust no-arbitrage condition.

2. There is a strictly consistent price system: adapted
processes y and s such that y > 0, st ∈ ri domS∗

t and ys
is a martingale.

• In the classical linear market model, ri domS∗
t = {1, s̃t} so

we recover the Dalang–Morton–Willinger theorem.

• The robust no-arbitrage condition means that there exists a
sublinear arbitrage-free cost process S̃ with
dom S̃∗

t ⊆ ri domS∗
t .
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• Post-crisis FM is subjective: optimal investment and
valuations depend on views, risk preferences, financial
position and trading expertise.

• ALM brings pricing, accounting and risk management
under a single consistent framework.

• Not a quick solution but a coherent and universal approach
based on risk management.

• Requires techniques from statistics, optimization, and
computer science.

• With some convex analysis, classical “fundamental
theorems” can be extended to illiquid market models.
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