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New Zealand electricity prices last Friday
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New Zealand electricity prices last Friday.




Introduction

How does electricity market work?

e Every trading period (30 minutes), generators submit to
the I1SO piecewise constant supply functions with at most
5 steps. These are locked in at gate closure. Generators
also supply indicative offers for future periods.

e The ISO solves a single period economic dispatch model
to compute dispatch and prices (dual variables) for 250
nodes. The ISO also computes a sequence of provisional
dispatches and prices for future trading periods using
indicateive offers and forecast demand, and makes the
provisional prices and dispatches public.

e The generators plan the next set of offers to make based
on observed dispatch, price, and the observed provisional
outcomes.

e In theory, perfectly competitive generators will offer
supply functions that approximate their marginal cost of
production.
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What do supply functions look like

SOL Bidquery
History | Stack
Price and Volume offered
by MRPL at WKM2201 for period 16 between 27/05/2006 and 02/06/2006
200
178
150
Z 125 [m'27/0572000 |
% W 2810572006 |
2 o W 200572008 |
8 30/05/2008
B 3110612006 |
W 01/08/2008 |
0210812006 |
50 ==
25
) — - e . . - -
o 5 10 16 20 28 30 35 40 45 850 B85 60 o5 70 78 80 ©5 OO0 08 100 108
Volume (MW)
Gormatin kam COMITFREE i by BlOusey
Start Date 27/05/2006 End Date| 02/06/2006
Everyone | All Generators | Every Day | Every Week Day | Every Period
All generators | Alinodes + | Every pay, -1) |16

Energy offers from hydro generator at 8am on consecutive days in 2006.



Introduction

Reservoir storage (GWh)

m New Zealand Daily Storage

(Updated daily last on Thursday 26 May 2016)
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Source: Niwa

Total Storage: 3613.69 GWh Total Storage as Percentage of Average:  122%
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New Zealand electricity prices and reservoir levels
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Introduction

What is this talk about?

e Can stochastic programming tell us what prices will be in
the future?

e Can stochastic programming tell us what prices ought to
be?

o Are market designs efficient?
@ Are prices competitive?

e Should we (and if so how should we?) design markets to
account for stochasticity?

o | outline some of the models we have developed at EPOC
to help answer these questions.
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An aside: perfect competition and workable competition

e Perfectly competitive partial equilibrium optimizes a
social planning problem...

...s0 in principle we can find an equilibrium by solving a
suitable optimization model.

e Perfect competition in electricity markets does not exist,
so regulators aim for workable competition. Nevertheless,
perfectly competitive models are very useful

as benchmarks;
as indicators of market inefficiencies.
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Prices and stochastic optimization
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Single period pool market

DSP: min ZjeTﬁ'( ) — Yeec Cc(de)
s.t. Yien &i(ui) + Xjer vi = Leec de, [p]

u€elU, e V.

T
)
=
u  hydro water flow rate

generation
d. demand



Prices and stochastic optimization
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Social plan = risk neutral perfectly competitive equilibrium

To minimize Lagrangian for DSP with Lagrange multiplier p
we solve each agent problem separately.

HP(i):max  pgi(u;)
st. u €U,.

TP(j): max pv; — £;(v)
s.t. eV

CP(¢): max cc(d.) — pd..



Prices and stochastic optimization
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Social plan = perfectly competitive equilibrium

This defines a perfectly competitive equilibrium defined by the
individual optimality conditions and market clearing condition.

CE: u; € argmaxHP(i),
€ arg max TP(j),
d. € argmax CP(c¢),

0 < Yiengi(ui)+ YjeT Vi — Leecde L p=0.

Solutions to CE can be computed in GAMS/EMP as a
MOPEC (Ferris, Dirkse, Jagla, Meeraus, 2013) but easier to
solve DSP when they give the same answer.



Prices and stochastic optimization
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Uncertain inflows: consider a scenario tree

Each node n spans a period (week) and corresponds to a
realization w(n) of reservoir inflows in that period.



Prices and stochastic optimization
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Social plan minimizes total expected system disbenefit

@

THERMAL

SSP:min ) cn ‘P(”) (ZjeT f/( ) —Yecec CC(dC(”)))
+ Lner $(n) Lien Qi(xi(n))

s.t. Yicn &(ui(n)) + ZjeT > Ycec de(n), neN,

xi(n) = x;i(n—) — u;(n) — s;(n) + w;(n), i€ H,neN,

u(n) €U, eV, x(n)eXx, s(n)esS.



Prices and stochastic optimization
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Social plan = risk neutral perfectly competitive equilibrium

To minimize Lagrangian for social plan with Lagrange
multipliers ¢(n)p(n) we solve each agent problem separately.

HP(i):max  L,en ¢(n)p(n)gi(ui(n)) — Lner ¢(n) Qi(xi(n))
st. xi(n) =x(n—)—uj(n) —si(n) + w;i(n), neN,
ui(n) €eU;, xi(n) € X, si(n) €S;.

TPG): max Lnen ¢(n)(p(n)v; (1) = (v (1))
s.t. eV

CP(c): max Ynen ¢(n) (cc(de(n)) = p(n)de(n)).



Prices and stochastic optimization
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Social plan = perfectly competitive equilibrium

This defines a perfectly competitive equilibrium defined by the
individual optimality conditions and market clearing condition.

CE: wuj, x;,s; € argmaxHP(i),
€ argmax TP(j),
dc(n) € argmax CP(c),

0<Ycnai(ui(n)+ YjeT —Ycec de(n) L p(n) > 0.



Prices and stochastic optimization
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Potential incompleteness of the hydro model

Our model above was derived assuming a single hydro agent.
It assumes

e all hydro generating stations operated by a single agent;
e a single future value function Q;(x) for this agent/social
planner.

With competing hydro agents, for separability we will require

e a future value function for the social planner that is the
sum of individual hydro agent’s values (more about this
later) or a decision horizon long enough to discount the
dependence at n € L away;

@ prices to enable efficient transfer of water between
competing agents on a river chain (Lino et al, 2003)



Social planning optimization models

Summary

© Social planning optimization models
o EPOC models
@ Some experiments



Social planning optimization models
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EPOC optimization models

vSPD

Clairvoyant

DOASA

250 node DC-Load flow model of the New Zealand
wholesale electricity market. This is a GAMS version
of SPD, the dispatch system used by the ISO. Given
the same inputs, it yields identical dispatch and prices.

48-period dynamic model of a single day's operations
of the New Zealand wholesale electricity market
including river chains. Energy dispatch can anticipate
later decisions.

SDDP model of the New Zealand electricity system,
using an aggregated transmission network.



Social planning optimization models
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The main hydro catchments in New Zealand

WAITAKI

Approximate network representation of New Zealand electricity network
showing main hydro-electricity generators.



Social planning optimization models
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Models for studying daily inefficiency

Historical What actually happened.

Clairvoyant Solve 48-period dynamic model of a single day's operations
operations assuming perfect foresight of what demand
actually happened.

StackvSPD  Agents update next period offers by solving their own
river-chain optimization with forecast prices, submit to
SPD, and roll forward one trading period.

Rolling Central Rolling horizon version of clairvoyant model using
forecast demand to dispatch all plant in current period.



Social planning optimization models
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Results of simulations in 2009

Historical ~ Clairvoyant ~ Stack vSPD  Rolling Central
Fuel Cost $1,837,724.005 §1,631,020.74 $1.818,094.29 § 1,636,496.61
Infeasibility Cost $9,586.61 $ 15134 $151.34 $ 15134
Total Cost $ 184731070 §1,631,181.07 § 181824563 § 1,636,647.94

Breakdown of costs (NZ $) for Historical, Clairvoyant, Stack
vSPD, and Rolling Central models. Cost displayed is average daily
cost for the months of February 2009 and June 2009. [Source:
N.Porter, 2014]



Social planning optimization models
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The DOASA model

New Zealand model has seven state variables corresponding to
seven storage reservoirs.



Social planning optimization models
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Shortage Costs

Energy deficit in any stage is met by load shedding at an increasing
shortage cost in three tranches. This is equivalent to having three
dummy thermal plant at each location with capacities equal to 5%
of load, 5% of load and 90% of load, for each load sector, and
costs as follows

Upib[E% |UpdbOd0%| VOLL NorthIs Southk
Industrial $1,000 $2,000 $10,000 0.34 0.58
Commerciall] $2,000 $4,000 $10,000 0.27 0.15
Residential $2,000 $4,000 $10,000 0.39 0.27

Load reduction costs (NZD/MWh) and proportions of load that is
industrial, commercial, and residential in each island.



Social planning optimization models
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Rolling horizon simulation

Solve DOASA to compute a least-cost policy for a social planner,
and simulate this policy in Clairvoyant using end conditions for
each day that come from DOASA cutting planes. In our model, we
simulate the policy obtained for 4 weeks and then re-solve DOASA
to compute an updated policy. We call this policy the
counterfactual.



Social planning optimization models
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Modelling assumptions and caveats

@ No spinning reserve;

@ No extra costs for SRMC apart from fuel, and no fuel
take-or-pay contracts or supply constraints;

@ No snowmelt model or coal stockpiles;

@ No contracting;

@ Outages modelled using POCP database;

@ 300 cuts per solve.
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South Island storage
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Figure: Simulated and actual South Island storage trajectories in market
(pink) and counterfactual (green) 2005-2008.
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South Island prices
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Summary
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Dealing with risk aversion
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Dual representation of coherent risk measures
(Artzner et al, 1999, Shapiro & Ruszczynski, 2006)

A coherent risk measure of a random disbenefit Z can be
expressed as
p(Z) = sup E,[Z]
ueD
where D is a convex set of probability measures called the
risk set.



Example: three outcomes

Dealing with risk aversion
[e] Yelolelelele]

Consider possible disbenefit outcomes
Z((Ul) < Z((Ug) < Z((Ug;)

Let the risk set

Deconil (3 ) (a2 o)




Dealing with risk aversion
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Scenario trees and risk measures

Each node m corresponds to a realization w(m) of reservoir
inflows and disbenefit Z(m) in that period.



Dealing with risk aversion
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Dynamic risk measures
(Epstein &Schneider, 2003, Artzner et al 2007, Ruszczynski, 2010)

Consider a random sequence of disbenefits Z(n) corresponding
to the nodes of the scenario tree. Each node n € N\ L in the
scenario tree is endowed with a risk set D(n). The

dynamic risk measure we will use is constructed recursively as
follows. For every leaf node we set the risk-adjusted disbenefit

and for every other node we set

p(n) =Z(n)+ max Y p(m

HED(n) men+



Dealing with risk aversion
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Dynamic optimization under risk

Suppose each node n € N'\ L in the scenario tree has risk set

D(n). We seek a policy (actions wu;(n), x;(n),s;(n), ,dc(n))
giving disbenefits Z(n) that minimize risk-adjusted disbenefit
p(1), where

p(n)=2Z(n), necL,

and for every other node we set

p(n) = 2Z(n)+ max m;f(m)f)(m)-



Risk-averse storage trajectories

South Island storage trajectories for varying levels of risk aversion.



Risk-averse average prices

Dealing with risk aversion
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Weekly average South Island prices from risk averse model with
A = 0.5 (green) compared with historical Benmore prices (pink).



The change in fuel

cost

Dealing with risk aversion
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Annual thermal fuel cost {3M)

MARKET h=0 h=0.5
2005 451.79 349.27 377.99
2006 490,99 444,62 432.03
2007 492.51 441.56 447.70
2008 50E.49 435.27 424.19

Annual fuel cost for different levels of risk aversion. The risk
neutral solution (A = 0) incurs load shedding cost of $95M in
2008. The risk-averse solution (A = 0.5) incurs no load shedding.



Dealing with risk aversion
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Recall dynamic risk measure

For agent a € HU 7 UC consider a random sequence of
disbenefits Z,(n) defined for each node of the scenario tree.
Each agent a at each node n € '\ £ in the scenario tree is
endowed with her own risk set D,(n). The dynamic risk
measure we will use for agent a is constructed recursively as
follows. For every leaf node we set

pa(n) = Za(n)

and for every other node we set

p,(n) = Zi(n) + max Zy

HEDL(n) pmicn4



Dealing with risk aversion
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Dynamic risked competitive equilibrium
(Philpott, Ferris, Wets, 2016)

Consider a set of agents a € H U7 UC and stochastic process
of inflows for each a € H defined by a scenario tree with nodes
n€ N and leaves £. A dynamic risked equilibrium is a
stochastic process of energy prices {p(n) | n € N'} in the
scenario tree, and for each agent a, a stochastic process of
production/consumption decisions {x,(n) | n € N'}, with the
property that

0< Z xa(n) L p(n) >0, neN
acHUTUC

and x,(-) is a solution to the risk-averse optimization problem
where agent a minimizes p,(1) evaluated using prices
{pn | n € N'} and their individual risk sets D,(n), n€ N'\ L.



Dealing with risk aversion
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Example: three agents, two periods, 5 inflow scenarios

W e

o e
flv) = V2
g(u) = 1.5u—0.01502,
Q(x) = —10log(0.05x+0.005),  x(0) = 10,
c(d) = 40d —2d2,
w(l) = 2, w(m)=0,24,6,8 with equal probability,
D, = conv{(0.36,0.16,0.16,0.16,0.16), (0.16,0.36,0.16,0.16,0.16),

(0.16,0.16,0.36,0.16, 0.16), (0.16, 0.16,0.16, 0.36, 0.16),
(0.16,0.16,0.16,0.16,0.36) }.



Example: risk neutral equilibrium

Dealing with risk aversion

O®@O0000000

stage wWp price  release  thermal  profit profit  welfare  welfare
(M) (H) (C)  (total)
0 2 2.316 5.851 1.158
1 0 4516 4.622 2.258 6.439 23.906 14.902 45.248
1 2 2.806 5.575 1.403 3.309 21.167 30.441 54.916
1 4 1.840 6.121 0.920 2.187 19.218 39.534 60.939
1 6 1.313 6.423 0.656 1.771 18.637 44.601 65.009
1 8 1.004 6.600 0.502 1.593 18.807 47.599  67.999

Table: Risk neutral equilibrium.



Example: risk averse equilibrium

Dealing with risk aversion
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stage wp price  release  thermal  profit profit  welfare  welfare
(M) (H) (€)  (total)

2.646 18.988 32.323  56.038

0 2 2.156 5.942 1.078 - - - -

1 0 4614 4.568 2.307 6.485 22930 15.539  44.954

1 2 2.865 5.541 1.432  3.214 20.232 31.396 54.842

1 4 1.872 6.103 0.936  2.039 18.214 40.733  60.985

1 6 1.331 6.412 0.665 1.605 17.584 45931 65.120

1 8 1.015 6.594 0.508 1.420 17.732 48.995 68.147

Table: Risk averse equilibrium. Red cells show the worst-case welfare
values for each agent and system. Blue cells are risk adjusted welfare for

each agent and system.



Dealing with risk aversion
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Example: risk averse social plan

stage wp price  release  thermal  profit profit  welfare  welfare

(T) (H) (C)  (total)
3.070 22.029 29.168 56.166

2.652 5.661 1.326 - - - -
4.316 4.733 2.158 6.415 25818 13.529  45.762
2.687 5.642 1.343 3,562 23.024 28.398 54.985
1.776 6.158 0.888 2.547 21.222 36.996 60.764
1.277 6.444 0.638 2.165 20.739 41.800 64.704
0.982 6.613 0.491 1.999 20.955 44.665 67.618

o= O
OB NODN

Table: Risk averse social plan using common risk set. Red cells show the
worst-case welfare values for each agent and system. Blue cells are risk
adjusted welfare for each agent and system.
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Example in practice

Genesis to close last two coal-fired power
units at Huntly

s ©000 -
Last updated 17:18, August 6 2015

RORY OSULLIVANASIT oo n2
Frime Winister John Key s unsurprised by the news that Genesis Energy are ta close the twa remaining coakfired
units at Huntly power station

Stuff.co.nz , August 6, 2015
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Example in practice

a I. oo FCMITRAVEL .l

¢ DNational Insights Business Tech Word Sport Entertaimment Lifestyle Travel Rural Motoring Property Classifieds

Business SmallBusiness AroundNZ Economy Indushies Property PersonalFinance WorkLife OurExperts Deloitte200 Toolbox

Genesis extends life of Huntly station to 2022 Top st

The Big Read: The man whoseduced the 7th
fleet

Hansen: Re-establishing,not re-building
Coal  Electricity | Genesis Energy Limited — ¥ o Bachelorbreas hissilence
Zookills gorilla tosave bay in enclosure
Mystery surrounds missing Kiwi
230 homes without power in Auckiand
Waniors break Thunder hearts
Child's body pulled from river
NZH Focus: ABs squad - what we leamed
Wild weather floods Karangahake Gorge:

+Expand

Reg Soepnel, Thermal Energy Manager Genesis Energy, amongst the huge units at Huntly Power
Station in the Waikato. Phata / Alan Gibson

NZ Herald, April 28, 2016
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Contracts enable risk to be traded

Suppose we introduce contracts for differences. A single
contract for differences written at strike price f pays the holder
p(m) — f in scenario m. Agent a settles g, (typically positive
for consumers and negative for generators) of these contracts
at time 0 which pays her (p(m) — f)g, in scenario m at time 1.
The market for contracts must clear, so

an =0.
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Example: risk averse equilibrium with contracts

stage wp price  release  thermal  profit profit  welfare  welfare

(T) (H) (C)  (total)
3.953 23.045 29.168 56.166

2.652 5.661 1.326 - - - -
4.316 4.733 2.158 3.133 22,713 19.916  45.762
2.687 5.642 1.343 3.451 22919 28.615 54.985
1.776 6.158 0.888 4.206 22.792 33.766 60.764
1.277 6.444 0.638 4.797 23.228 36.679 64.704
0.982 6.613 0.491 5204 23986 38.428 67.618

o= O
OB NODN

Table: Risk-averse competitive equilibrium with contracts. Red cells show
the worst-case welfare values for each agent and system. Blue cells are
risk adjusted welfare for each agent and system.
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Example: contracts settled in equilibrium

stage Wm price contract contract contract

(M) (H) (©)

0 2 2.629 -1.946 -1.840 3.786
1 0 4.316 -3.283 -3.104 6.387
1 2 2.687 -0.112 -0.106 0.218
1 4 1.776 1.660 1.570 -3.230
1 6 1.277 2.632 2.489 -5.121
1 8 0.982 3.206 3.031 -6.237

Table: Traded contracts (red) and net contract receipts of the three
agents in equilibrium.
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Example: risk-averse social plan

stage wp price  release  thermal  profit profit  welfare  welfare
(M) (H) (C)  (total)

3.070 22.029 29.168 56.166

2.652 5.661 1.326 - - - -
4.316 4.733 2.158 6.415 25.818 13.529  45.762
2.687 5.642 1.343 3562 23.024 28.398 54.985
1.776 6.158 0.888 2.547 21.222 36.996 60.764
1.277 6.444 0.638 2.165 20.739 41.800 64.704
0.982 6.613 0.491 1.999 20.955 44.665 67.618

[l i i )
oo B NODN

Table: Risk-averse social planning solution using a common risk set. Red
cells show the worst-case welfare values for each agent and system. Blue
cells are risk adjusted welfare for each agent and system. Adding receipts
from contracts gives risked equilibrium with contracts.
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Example: risk averse equilibrium with contracts

stage wp price  release  thermal  profit profit  welfare  welfare

(T) (H) (C)  (total)
3.953 23.045 29.168 56.166

2.652 5.661 1.326 - - - -
4.316 4.733 2.158 3.133 22,713 19.916  45.762
2.687 5.642 1.343 3.451 22919 28.615 54.985
1.776 6.158 0.888 4.206 22.792 33.766 60.764
1.277 6.444 0.638 4.797 23.228 36.679 64.704
0.982 6.613 0.491 5204 23986 38.428 67.618

o= O
OB NODN

Table: Risk-averse competitive equilibrium with contracts. Red cells show
the worst-case welfare values for each agent and system. Blue cells are
risk adjusted welfare for each agent and system.



Dealing with risk aversion
000000000

A more general result for dynamic risked equilibrium
(Philpott, Ferris, Wets, 2016)

Suppose the risk set in node n € N\ L of each agent a is
different, i.e. D,(n), a€ HUT UC. What risk set Dy(n)
should the system use to make an optimal risk-averse social
plan correspond to the competitive equilibrium? (They all
used the same risk set in the above example).

Theorem

(Heath and Ku 2004, Ralph and Smeers, 2011) If there is a rich
enough set of contracts and

NacruTucDa(n) #D, ne N\ L,

then in equilibrium all agents and the system use risk sets

Dy (n) = NacwurucDa(n), ne N\ L.
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Arrow-Debreu securities complete the risk market

Arrow-Debreu securities are contracts that charge a price p(m)
in node n € N, to receive a payment of 1 in node m € n+.
These form a complete market for risk in each n € N'\ L (i.e.
contracts traded in node n span the |n+| payoff outcomes).

Let {x;(n) | n€ N,a€ HUT UC} be a solution to the
rlsk—averse social planning problem with risk sets Dy (n) # @.
Suppose this gives prices {p(n) | n € N'}. These prices and
quantities form a dynamic risked equilibrium in which agents
trade risk i.e. agent a minimizes p,(1) with a policy defined by
xa(+) together with a policy of trading Arrow-Debreu securities
at each node n.
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Conclusions

e Competitive equilibria need not be welfare maximizing.
Suboptimality in many of our examples is not shown to be
an artifact of imperfect competition, but of
incompleteness in the market design.

e Including trade in specific instruments in the equilibrium
model completes the market, and recovers the social
optimum.

@ The extent to which we complete the market will depend
on transaction costs.



-run efficiency comparisons

Annual generator spot market revenue ($M)

Dealing with risk aversion

MARKET COUNTERFACTUAL | DIFFERENCE
2005 2918.60 1413.58 1414.76
2006 2881.05 1450.79 1453.52
2007 1883.51 1443.49 1448.82
2008 4065.19 1859.97 1373.22
Annual thermal fuel cost (5M)
MARKET COUNTERFACTUAL | DIFFERENCE
2005 451.79 382.33 69.46
2006 490.99 442.94 48.05
2007 492.51 433.89 58.62
2008 508.49 435.29 73.20
Annual generator short-term rents ($M)
MARKET COUNTERFACTUAL | DIFFERENCE
2005 2466.81 1031.25 1435.55
2006 2390.06 1007.84 1382.22
2007 1391.01 1009.60 381.41
2008 3556.71 1424.69 2132.02

000000000

Annual productive efficiency losses and generator rents (in 2008 NZD) for

market compared with counterfactual.
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Are counterfactual prices really that low in 20087

@ The counterfactual water values are lower than the market yet
the South Island storage in market is higher.

@ Market South Island weekly average price is $282 in Week 20
of 2008.

o Counterfactual South Island weekly average price is $56 in
Week 20 of 2008.

@ Test water values at Pukaki by solving more accurately
starting from historical market reservoir levels in Week 1 of
2008.
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Storage for policy with fuel costs
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Prices for policy with fuel costs
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Storage for policy with marked-up thermal costs
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Prices for policy with marked-up thermal costs
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