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New Zealand electricity prices last Friday

New Zealand electricity prices last Friday.
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How does electricity market work?

Every trading period (30 minutes), generators submit to
the ISO piecewise constant supply functions with at most
5 steps. These are locked in at gate closure. Generators
also supply indicative offers for future periods.
The ISO solves a single period economic dispatch model
to compute dispatch and prices (dual variables) for 250
nodes. The ISO also computes a sequence of provisional
dispatches and prices for future trading periods using
indicateive offers and forecast demand, and makes the
provisional prices and dispatches public.
The generators plan the next set of offers to make based
on observed dispatch, price, and the observed provisional
outcomes.
In theory, perfectly competitive generators will offer
supply functions that approximate their marginal cost of
production.
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What do supply functions look like

Energy offers from hydro generator at 8am on consecutive days in 2006.
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Reservoir storage (GWh)
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New Zealand electricity prices and reservoir levels

New Zealand electricity prices and reservoir levels over last 15 years.
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What is this talk about?

Can stochastic programming tell us what prices will be in
the future?
Can stochastic programming tell us what prices ought to
be?
Are market designs effi cient?
Are prices competitive?
Should we (and if so how should we?) design markets to
account for stochasticity?
I outline some of the models we have developed at EPOC
to help answer these questions.
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An aside: perfect competition and workable competition

Perfectly competitive partial equilibrium optimizes a
social planning problem...

...so in principle we can find an equilibrium by solving a
suitable optimization model.

Perfect competition in electricity markets does not exist,
so regulators aim for workable competition. Nevertheless,
perfectly competitive models are very useful

as benchmarks;
as indicators of market ineffi ciencies.
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Single period pool market

DSP: min ∑j∈T fj (vj )−∑c∈C cc (dc )

s.t. ∑i∈H gi (ui ) +∑j∈T vj ≥ ∑c∈C dc , [p]

u ∈ U , v ∈ V .

u hydro water flow rate
v thermal generation
dc demand
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Social plan = risk neutral perfectly competitive equilibrium

To minimize Lagrangian for DSP with Lagrange multiplier p
we solve each agent problem separately.

HP(i):max pgi (ui )
s.t. ui ∈ Ui .

TP(j): max pvj − fj (vj )
s.t. vj ∈ Vj .

CP(c): max cc (dc )− pdc .
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Social plan = perfectly competitive equilibrium

This defines a perfectly competitive equilibrium defined by the
individual optimality conditions and market clearing condition.

CE: ui ∈ argmaxHP(i),

vj ∈ argmaxTP(j),

dc ∈ argmaxCP(c),

0 ≤ ∑i∈H gi (ui ) +∑j∈T vj −∑c∈C dc ⊥ p ≥ 0.

Solutions to CE can be computed in GAMS/EMP as a
MOPEC (Ferris, Dirkse, Jagla, Meeraus, 2013) but easier to
solve DSP when they give the same answer.
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Uncertain inflows: consider a scenario tree

Each node n spans a period (week) and corresponds to a
realization ω(n) of reservoir inflows in that period.
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Social plan minimizes total expected system disbenefit

SSP: min ∑n∈N φ(n)
(
∑j∈T fj (vj (n))−∑c∈C cc (dc (n))

)
+∑n∈L φ(n)∑i∈H Qi (xi (n))

s.t. ∑i∈H gi (ui (n)) +∑j∈T vj (n) ≥ ∑c∈C dc (n), n ∈ N ,

xi (n) = xi (n−)− ui (n)− si (n) +ωi (n), i ∈ H, n ∈N ,

u(n) ∈ U , v(n) ∈ V , x(n) ∈ X , s(n) ∈ S .
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Social plan = risk neutral perfectly competitive equilibrium

To minimize Lagrangian for social plan with Lagrange
multipliers φ(n)p(n) we solve each agent problem separately.

HP(i):max ∑n∈N φ(n)p(n)gi (ui (n))−∑n∈L φ(n)Qi (xi (n))
s.t. xi (n) = xi (n−)− ui (n)− si (n) +ωi (n), n ∈ N ,

ui (n) ∈ Ui , xi (n) ∈ Xi , si (n) ∈ Si .

TP(j): max ∑n∈N φ(n)(p(n)vj (n)− fj (vj (n))
s.t. vj (n) ∈ Vj .

CP(c): max ∑n∈N φ(n) (cc (dc (n))− p(n)dc (n)) .



Introduction Prices and stochastic optimization Social planning optimization models Dealing with risk aversion

Social plan = perfectly competitive equilibrium

This defines a perfectly competitive equilibrium defined by the
individual optimality conditions and market clearing condition.

CE: ui , xi , si ∈ argmaxHP(i),

vj (n) ∈ argmaxTP(j),

dc (n) ∈ argmaxCP(c),

0 ≤ ∑i∈H gi (ui (n)) +∑j∈T vj (n)−∑c∈C dc (n) ⊥ p(n) ≥ 0.
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Potential incompleteness of the hydro model

Our model above was derived assuming a single hydro agent.
It assumes

all hydro generating stations operated by a single agent;
a single future value function Qi (x) for this agent/social
planner.

With competing hydro agents, for separability we will require

a future value function for the social planner that is the
sum of individual hydro agent’s values (more about this
later) or a decision horizon long enough to discount the
dependence at n ∈ L away;
prices to enable effi cient transfer of water between
competing agents on a river chain (Lino et al, 2003)
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EPOC optimization models

vSPD 250 node DC-Load flow model of the New Zealand
wholesale electricity market. This is a GAMS version
of SPD, the dispatch system used by the ISO. Given
the same inputs, it yields identical dispatch and prices.

Clairvoyant 48-period dynamic model of a single day’s operations
of the New Zealand wholesale electricity market
including river chains. Energy dispatch can anticipate
later decisions.

DOASA SDDP model of the New Zealand electricity system,
using an aggregated transmission network.
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The main hydro catchments in New Zealand

Approximate network representation of New Zealand electricity network
showing main hydro-electricity generators.
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Models for studying daily ineffi ciency

Historical What actually happened.
Clairvoyant Solve 48-period dynamic model of a single day’s operations

operations assuming perfect foresight of what demand
actually happened.

StackvSPD Agents update next period offers by solving their own
river-chain optimization with forecast prices, submit to
SPD, and roll forward one trading period.

Rolling Central Rolling horizon version of clairvoyant model using
forecast demand to dispatch all plant in current period.
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Results of simulations in 2009

Breakdown of costs (NZ $) for Historical, Clairvoyant, Stack
vSPD, and Rolling Central models. Cost displayed is average daily
cost for the months of February 2009 and June 2009. [Source:

N.Porter, 2014]
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The DOASA model

New Zealand model has seven state variables corresponding to
seven storage reservoirs.
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Shortage Costs

Energy deficit in any stage is met by load shedding at an increasing
shortage cost in three tranches. This is equivalent to having three
dummy thermal plant at each location with capacities equal to 5%
of load, 5% of load and 90% of load, for each load sector, and
costs as follows

Up to 5% Up to 10% VOLL North Is South Is
Industrial $1,000 $2,000 $10,000 0.34 0.58
Commercial  $2,000 $4,000 $10,000 0.27 0.15
Residential $2,000 $4,000 $10,000 0.39 0.27

Load reduction costs (NZD/MWh) and proportions of load that is
industrial, commercial, and residential in each island.
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Rolling horizon simulation

Solve DOASA to compute a least-cost policy for a social planner,
and simulate this policy in Clairvoyant using end conditions for
each day that come from DOASA cutting planes. In our model, we
simulate the policy obtained for 4 weeks and then re-solve DOASA
to compute an updated policy. We call this policy the
counterfactual.
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Modelling assumptions and caveats

No spinning reserve;

No extra costs for SRMC apart from fuel, and no fuel
take-or-pay contracts or supply constraints;

No snowmelt model or coal stockpiles;

No contracting;

Outages modelled using POCP database;

300 cuts per solve.
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South Island storage

Figure: Simulated and actual South Island storage trajectories in market
(pink) and counterfactual (green) 2005-2008.
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South Island prices

South Island weekly average prices in market (pink) and counterfactual
(green)
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Dual representation of coherent risk measures
(Artzner et al, 1999, Shapiro & Ruszczynski, 2006)

A coherent risk measure of a random disbenefit Z can be
expressed as

ρ(Z ) = sup
µ∈D

Eµ[Z ]

where D is a convex set of probability measures called the
risk set.
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Example: three outcomes

Consider possible disbenefit outcomes

Z (ω1) < Z (ω2) < Z (ω3)

Let the risk set

D=conv{(1
2
,
1
4
,
1
4
), (
1
4
,
1
2
,
1
4
), (
1
4
,
1
4
,
1
2
)}

ρ(Z ) = max
µ∈D

Eµ[Z ] =
1
4
Z (ω1) +

1
4
Z (ω2) +

1
2
Z (ω3)
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Scenario trees and risk measures

Each node m corresponds to a realization ω(m) of reservoir
inflows and disbenefit Z (m) in that period.



Introduction Prices and stochastic optimization Social planning optimization models Dealing with risk aversion

Dynamic risk measures
(Epstein &Schneider, 2003, Artzner et al 2007, Ruszczynski, 2010)

Consider a random sequence of disbenefits Z (n) corresponding
to the nodes of the scenario tree. Each node n ∈ N \ L in the
scenario tree is endowed with a risk set D(n). The
dynamic risk measure we will use is constructed recursively as
follows. For every leaf node we set the risk-adjusted disbenefit

ρ(n) = Z (n)

and for every other node we set

ρ(n) = Z (n) + max
µ∈D(n) ∑

m∈n+
µ(m)ρ(m).
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Dynamic optimization under risk

Suppose each node n ∈ N \ L in the scenario tree has risk set
D(n). We seek a policy (actions ui (n), xi (n), si (n),vj (n),dc (n))
giving disbenefits Z (n) that minimize risk-adjusted disbenefit
ρ(1), where

ρ(n) = Z (n), n ∈ L,
and for every other node we set

ρ(n) = Z (n) + max
µ∈D(n) ∑

m∈n+
µ(m)ρ(m).
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Risk-averse storage trajectories
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South Island storage trajectories for varying levels of risk aversion.
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Risk-averse average prices
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Weekly average South Island prices from risk averse model with
λ = 0.5 (green) compared with historical Benmore prices (pink).
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The change in fuel cost

Annual fuel cost for different levels of risk aversion. The risk
neutral solution (λ = 0) incurs load shedding cost of $95M in

2008. The risk-averse solution (λ = 0.5) incurs no load shedding.
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Recall dynamic risk measure

For agent a ∈ H ∪ T ∪ C consider a random sequence of
disbenefits Za(n) defined for each node of the scenario tree.
Each agent a at each node n ∈ N \ L in the scenario tree is
endowed with her own risk set Da(n). The dynamic risk
measure we will use for agent a is constructed recursively as
follows. For every leaf node we set

ρa(n) = Za(n)

and for every other node we set

ρa(n) = Za(n) + max
µ∈Da(n)

∑
m∈n+

µ(m)ρa(m).
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Dynamic risked competitive equilibrium
(Philpott, Ferris, Wets, 2016)

Consider a set of agents a ∈ H ∪ T ∪ C and stochastic process
of inflows for each a ∈ H defined by a scenario tree with nodes
n ∈ N and leaves L. A dynamic risked equilibrium is a
stochastic process of energy prices {p(n) | n ∈ N } in the
scenario tree, and for each agent a, a stochastic process of
production/consumption decisions {xa(n) | n ∈ N }, with the
property that

0 ≤ ∑
a∈H∪T ∪C

xa(n) ⊥ p(n) ≥ 0, n ∈ N

and xa(·) is a solution to the risk-averse optimization problem
where agent a minimizes ρa(1) evaluated using prices
{pn | n ∈ N } and their individual risk sets Da(n), n ∈ N \ L.
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Example: three agents, two periods, 5 inflow scenarios

f (v ) = v 2,

g (u) = 1.5u − 0.015u2,
Q (x ) = −10 log(0.05x + 0.005), x (0) = 10,

c (d ) = 40d − 2d 2,
ω(1) = 2, ω(m) = 0, 2, 4, 6, 8 with equal probability,

Da = conv{(0.36, 0.16, 0.16, 0.16, 0.16), (0.16, 0.36, 0.16, 0.16, 0.16),
(0.16, 0.16, 0.36, 0.16, 0.16), (0.16, 0.16, 0.16, 0.36, 0.16),

(0.16, 0.16, 0.16, 0.16, 0.36)}.
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Example: risk neutral equilibrium

stage ωm price release thermal profit profit welfare welfare
(T) (H) (C) (total)

0 2 2.316 5.851 1.158
1 0 4.516 4.622 2.258 6.439 23.906 14.902 45.248
1 2 2.806 5.575 1.403 3.309 21.167 30.441 54.916
1 4 1.840 6.121 0.920 2.187 19.218 39.534 60.939
1 6 1.313 6.423 0.656 1.771 18.637 44.601 65.009
1 8 1.004 6.600 0.502 1.593 18.807 47.599 67.999

Table: Risk neutral equilibrium.
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Example: risk averse equilibrium

stage ωm price release thermal profit profit welfare welfare
(T) (H) (C) (total)

2.646 18.988 32.323 56.038
0 2 2.156 5.942 1.078 - - - -
1 0 4.614 4.568 2.307 6.485 22.930 15.539 44.954
1 2 2.865 5.541 1.432 3.214 20.232 31.396 54.842
1 4 1.872 6.103 0.936 2.039 18.214 40.733 60.985
1 6 1.331 6.412 0.665 1.605 17.584 45.931 65.120
1 8 1.015 6.594 0.508 1.420 17.732 48.995 68.147

Table: Risk averse equilibrium. Red cells show the worst-case welfare
values for each agent and system. Blue cells are risk adjusted welfare for
each agent and system.
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Example: risk averse social plan

stage ωm price release thermal profit profit welfare welfare
(T) (H) (C) (total)

3.070 22.029 29.168 56.166
0 2 2.652 5.661 1.326 - - - -
1 0 4.316 4.733 2.158 6.415 25.818 13.529 45.762
1 2 2.687 5.642 1.343 3.562 23.024 28.398 54.985
1 4 1.776 6.158 0.888 2.547 21.222 36.996 60.764
1 6 1.277 6.444 0.638 2.165 20.739 41.800 64.704
1 8 0.982 6.613 0.491 1.999 20.955 44.665 67.618

Table: Risk averse social plan using common risk set. Red cells show the
worst-case welfare values for each agent and system. Blue cells are risk
adjusted welfare for each agent and system.
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Example in practice

Stuff.co.nz , August 6, 2015
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Example in practice

NZ Herald, April 28, 2016
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Contracts enable risk to be traded

Suppose we introduce contracts for differences. A single
contract for differences written at strike price f pays the holder
p(m)− f in scenario m. Agent a settles qa (typically positive
for consumers and negative for generators) of these contracts
at time 0 which pays her (p(m)− f )qa in scenario m at time 1.
The market for contracts must clear, so

∑
a
qa = 0.
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Example: risk averse equilibrium with contracts

stage ωm price release thermal profit profit welfare welfare
(T) (H) (C) (total)

3.953 23.045 29.168 56.166
0 2 2.652 5.661 1.326 - - - -
1 0 4.316 4.733 2.158 3.133 22.713 19.916 45.762
1 2 2.687 5.642 1.343 3.451 22.919 28.615 54.985
1 4 1.776 6.158 0.888 4.206 22.792 33.766 60.764
1 6 1.277 6.444 0.638 4.797 23.228 36.679 64.704
1 8 0.982 6.613 0.491 5.204 23.986 38.428 67.618

Table: Risk-averse competitive equilibrium with contracts. Red cells show
the worst-case welfare values for each agent and system. Blue cells are
risk adjusted welfare for each agent and system.



Introduction Prices and stochastic optimization Social planning optimization models Dealing with risk aversion

Example: contracts settled in equilibrium

stage ωm price contract contract contract
(T) (H) (C)

0 2 2.629 -1.946 -1.840 3.786
1 0 4.316 -3.283 -3.104 6.387
1 2 2.687 -0.112 -0.106 0.218
1 4 1.776 1.660 1.570 -3.230
1 6 1.277 2.632 2.489 -5.121
1 8 0.982 3.206 3.031 -6.237

Table: Traded contracts (red) and net contract receipts of the three
agents in equilibrium.
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Example: risk-averse social plan

stage ωm price release thermal profit profit welfare welfare
(T) (H) (C) (total)

3.070 22.029 29.168 56.166
0 2 2.652 5.661 1.326 - - - -
1 0 4.316 4.733 2.158 6.415 25.818 13.529 45.762
1 2 2.687 5.642 1.343 3.562 23.024 28.398 54.985
1 4 1.776 6.158 0.888 2.547 21.222 36.996 60.764
1 6 1.277 6.444 0.638 2.165 20.739 41.800 64.704
1 8 0.982 6.613 0.491 1.999 20.955 44.665 67.618

Table: Risk-averse social planning solution using a common risk set. Red
cells show the worst-case welfare values for each agent and system. Blue
cells are risk adjusted welfare for each agent and system. Adding receipts
from contracts gives risked equilibrium with contracts.
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Example: risk averse equilibrium with contracts

stage ωm price release thermal profit profit welfare welfare
(T) (H) (C) (total)

3.953 23.045 29.168 56.166
0 2 2.652 5.661 1.326 - - - -
1 0 4.316 4.733 2.158 3.133 22.713 19.916 45.762
1 2 2.687 5.642 1.343 3.451 22.919 28.615 54.985
1 4 1.776 6.158 0.888 4.206 22.792 33.766 60.764
1 6 1.277 6.444 0.638 4.797 23.228 36.679 64.704
1 8 0.982 6.613 0.491 5.204 23.986 38.428 67.618

Table: Risk-averse competitive equilibrium with contracts. Red cells show
the worst-case welfare values for each agent and system. Blue cells are
risk adjusted welfare for each agent and system.
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A more general result for dynamic risked equilibrium
(Philpott, Ferris, Wets, 2016)

Suppose the risk set in node n ∈ N \ L of each agent a is
different, i.e. Da(n), a ∈ H ∪ T ∪ C. What risk set D0(n)
should the system use to make an optimal risk-averse social
plan correspond to the competitive equilibrium? (They all
used the same risk set in the above example).

Theorem

(Heath and Ku 2004, Ralph and Smeers, 2011) If there is a rich
enough set of contracts and

∩a∈H∪T ∪CDa(n) 6= ∅, n ∈ N \ L,

then in equilibrium all agents and the system use risk sets

D0(n) = ∩a∈H∪T ∪CDa(n), n ∈ N \ L.



Introduction Prices and stochastic optimization Social planning optimization models Dealing with risk aversion

Arrow-Debreu securities complete the risk market

Arrow-Debreu securities are contracts that charge a price µ(m)
in node n ∈ N , to receive a payment of 1 in node m ∈ n+.
These form a complete market for risk in each n ∈ N \ L (i.e.
contracts traded in node n span the |n+| payoff outcomes).

Let {xa(n) | n ∈ N , a ∈ H ∪ T ∪ C} be a solution to the
risk-averse social planning problem with risk sets D0(n) 6= ∅.
Suppose this gives prices {p(n) | n ∈ N }. These prices and
quantities form a dynamic risked equilibrium in which agents
trade risk i.e. agent a minimizes ρa(1) with a policy defined by
xa(·) together with a policy of trading Arrow-Debreu securities
at each node n.
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Conclusions

Competitive equilibria need not be welfare maximizing.
Suboptimality in many of our examples is not shown to be
an artifact of imperfect competition, but of
incompleteness in the market design.
Including trade in specific instruments in the equilibrium
model completes the market, and recovers the social
optimum.
The extent to which we complete the market will depend
on transaction costs.
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Short-run effi ciency comparisons

Annual productive effi ciency losses and generator rents (in 2008 NZD) for
market compared with counterfactual.
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Are counterfactual prices really that low in 2008?

The counterfactual water values are lower than the market yet
the South Island storage in market is higher.

Market South Island weekly average price is $282 in Week 20
of 2008.

Counterfactual South Island weekly average price is $56 in
Week 20 of 2008.

Test water values at Pukaki by solving more accurately
starting from historical market reservoir levels in Week 1 of
2008.
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Storage for policy with fuel costs
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Prices for policy with fuel costs
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Storage for policy with marked-up thermal costs
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Prices for policy with marked-up thermal costs
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