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Introduction

Standard Optimization

Let U ⊂ U and de�ne a single criterion: j : U→ R.

Standard Optimization Problem

max j(u),

s.t. u ∈ U.
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Introduction

Game Theory to model interactions between agents

Game: abstract model of a scenario in which self-interested rational

agents interact.

Agents and decision space

A �nite space of agents

a ∈ A → decision ua ∈ Ua

Ua set of decisions for agent a equipped with σ-�eld Ua

decision space UA :=
∏

a∈AUa equipped with the product

decision �eld UA :=
⊗

a∈AUa
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Introduction

Strategic Form Game Representation

G :=
(
A, (Ua)a∈A, (ja)a∈A

)
,

where ja :
∏

b∈AUb → R .

Strategies for agent a

pure strategies space Ua

randomized strategies space ∆(Ua): set of probability
distributions γa ∈ ∆(Ua)

agents choose their strategies simultaneously and

independently

Expected utility of agent a

Ja(γ−a, γ
′
a) =

∑
u∈U

( ∏
b∈A\{a}

γb(ub)
)
γ′a(ua) ja(u) .
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Introduction

Solutions

Nash equilibrium

Strategy γ is a Nash equilibrium (NE) of G if

Ja(γ) ≥ Ja(γ−a, γ
′
a) ∀a ∈ A ∀γ′a ∈ ∆(Ua) .

NE obtained at the intersection of Best Responses

uBRa

(
(ub)b∈A\{a}

)
,∀a ∈ A .

Sequential decision making: Stackelberg game equilibrium

i) agent a (leader) → u?a ∈ Ua = argmaxua∈Ua ja(ua, u−a),

ii) observing the leader's action u?a , follower b ∈ A \ {a} →
u?b ∈ Ub=argmaxub∈Ub

jb

(
u?a , ub, (uc)c∈A\{a,b}

)
→ Stackelberg game equilibrium

(
u?a , (u

?
b)b∈A\{a}

)
.
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Introduction

Algebraic Information Representation

Ω measurable set equipped with σ-�eld F

ω ∈ Ω state of Nature

History space H := UA × Ω =
∏

b∈AUb × Ω equipped with

product history �eld H := UA ⊗ F =
⊗

b∈AUb ⊗ F

Let C ⊂ A we introduce the sub�eld

UC :=
⊗

b∈C Ub ⊗
⊗

b 6∈C{∅,Ub} ⊗ F ⊂ UA

information provided by the decisions of the agents in C
DC := UC ⊗ {∅,Ω} =

⊗
b∈C Ub ⊗

⊗
b 6∈C{∅,Ub} ⊗ {∅,Ω}

⊂ UA ⊗ F ⊂ H

Information �eld of agent a ∈ A: Ia ⊂ H

Stochastic system de�nition

Stochastic system {Ua,Ua, Ia}a∈A.
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Introduction

Witsenhausen's intrinsic model

Agents make decisions in an order which is not �xed in advance.

Solvability and Causality

Solvability: for each state of Nature, agents' decisions are uniquely
determined by their strategies.

Causality: agents are ordered, one playing after the other with
available information depending only on agents acting earlier but
the order may depend upon history.

Binary relations between agents

1) precedence
2) subsystem
3) information-memory relation
4) decision-memory relation

→ Typology of systems.
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Competition and Coalition for Smart Energy Supply
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Agents

Agents

conventional retailer

aggregator

consumers organized in coalition

De�nition 1

A coalition is a set of end users who agree on a joint demand

pro�le to be contracted in the wholesale electricity market with the

mediation of an aggregator.
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Agents

Problem: pricing the aggregator's services

Aggregator's tasks are nested:

forward positioning in the day-ahead electricity market to

compensate the uncertainty associated with load estimation,

supply service pricing.

Questions:

How should the aggregator price his services so as to reach a

targeted expected pro�t?

How should the targeted expected pro�t be de�ned to prevent

consumers from switching to conventional retailera?

aStability criterion relevant for cooperative of local renewable producers (ex.
Enercoop).
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A Bilevel Game

A Bilevel Game

n days, T time periods per day,

Πagg ≥ 0 targeted expected pro�t,

p?(t) aggregator's price at time period t,

p? =
(
p?(t)

)nT−1
t=0

aggregator's price pro�le.

Bilevel game between aggregator and consumers:

1 aggregator → price pro�le p? =
(
p?(t)

)nT−1
t=0

so as to reach

his targeted expected pro�t,

2 each consumer i ∈ G → load pro�le

xi ,l =
(
xi ,l(t)

)nT−1
t=0

, ∀l ∈ Li to minimize his energy bill under

reservation price constraints.

Remark: Πagg can be optimized to prevent consumers from switching to
conventional retailer.
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Consumer Problem Solving

Consumer i Load Classi�cation

consumer i loads can be classi�ed

shiftable loads Li = Bi ∪ Ii
interruptible loads l ∈ Ii
block loads l ∈ Bi

 (shiftable) load pro�le xi ,l =
(
xi ,l(t)

)nT−1
t=0

, l ∈ Li
base load di (t) = d̂i (t)− εi (t) where εi (t) ∼ fi (0;σ2i )

[Vasirani et al.]
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Consumer Problem Solving

Load Characteristics

For each consumer i and load l , we de�ne:

earliest time period for the load to start ti ,l ∈ J0; nT − 1K,
latest time period for the load to �nish ti ,l ∈ J0; nT − 1K with

ti ,l ≤ ti ,l ,

duration of the load µi ,l ∈ J0; nT K, with 0 ≤ µi ,l ≤ ti ,l − ti ,l ,

load power rate (kW) wi ,l ∈ R+
∗ (constant over each time slot

over which the load is activated),

load priority level ki ,l ∈ J1;KK.

Reservation price

Consumer i 's reservation price for load l of priority ki ,l ∈ J1;KK:
maximum price consumer i is willing to pay per unit of load

pmax,i (ki ,l) ≥ 0.

Priority rule:

ki ,l ≺ ki ,l ′ ⇒ pmax ,i

(
ki ,l
)
> pmax ,i

(
ki ,l ′
)
,∀l , l ′ ∈ Li , l 6= l ′.



Dealing with Information in New Energy Systems

Consumer Problem Solving

Consumer i Load Scheduling

A linear optimization program under load constraints

min(
xi,l

)
l∈Li

∑
l∈Li

p?T
xi,l,

s.t. xi ,l(t) ∈ {0;wi ,l},∀t ∈ J0; nT − 1K, ∀l ∈ Li ,∑
{t<ti,l}∪{t>ti,l}

xi ,l(t) = 0,∀l ∈ Li ,

t i,l∑
t=t i,l

xi ,l(t) = µi ,lwi ,l ,∀l ∈ Li ,

xi ,l(t) + xi ,l(t + 2) < 2wi ,l + xi ,l(t + 1),∀t ∈ Jti ,l ; ti ,l − 2K,
∀l ∈ Bi .
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Consumer Problem Solving

Reservation Price Constraint and Instance Description

The load pro�les xi ,l that do not check

p?T
xi,l ≤ pmax,i (ki ,l)µi ,lwi ,l ,

are cancelled.

Example 2
T = 144 (10 min time slots [ts]), n = 1, K = 3

Block loads

l='dishwasher', ki,l = 1, µi,l = 12 ts, ti,l = 126 ts, ti,l = 36 ts, wi,l = 0.35 kW

l='washing machine', ki,l = 2 ts, µi,l = 6 ts, ti,l = 108 ts, ti,l = 132 ts, wi,l = 0.26 kW

l='dryer', ki,l = 3, µi,l = 3 ts, ti,l = 132 ts, ti,l = 144 ts, wi,l = 0.4 kW

Interruptible loads

l='EV', ki,l = 1, µi,l = 42 ts, ti,l = 42 ts, ti,l = 108 ts, wi,l = 4 kW

l='AC', ki,l = 3, µi,l = 36 ts, ti,l = 0 ts, ti,l = 144 ts, wi,l = 1.3 kW

l='heater', ki,l = 2, µi,l = 48 ts, ti,l = 0 ts, ti,l = 144 ts, wi,l = 3.2 kW

4
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Consumer Problem Solving

First instance - High reservation prices

pmax,i (1) = 103, pmax,i (2) = 20, pmax,i (3) = 15
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Consumer Problem Solving

Second instance - Low reservation prices

pmax,i (1) = 103, pmax,i (2) = 10, pmax,i (3) = 5
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Consumer Problem Solving

Aggregator's Pro�t and Interaction with the Market

Πagg =
nT−1∑
t=0

{
p?(t)

(
xG(t) + d̂G(t)

)
+
∑
i∈G

E
[
IBi (t)

]
︸ ︷︷ ︸∑

i∈G yi total cost paid by coalition G

−E
[
c
(
G, t
)]}

,

where:

Πagg targeted expected pro�t,

p+(t) excess power price on balancing, p−(t) missing power price on balancing, pf (t) day-ahead

price s.t. p+(t) < pf (t) < p−(t)

xG(t) =
∑

i∈G
∑

l∈Li
xi,l (t),

d̂G(t) =
∑

i∈G d̂i (t),

imbalance penalty IBi (t) = p−(t)
(
d̂i (t)− di (t)

)
−

+
(
pf (t)− p+(t)

)(
d̂i (t)− di (t)

)
+
,

aggregator's cost

c
(
G, t
)

= pf (t)
(
xG(t) + d̂G(t)

)
+ p−(t)

(∑
i∈G(d̂i (t)− di (t))

)
−
− p+(t)

(∑
i∈G(d̂i (t)− di (t))

)
+
.
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Consumer Problem Solving

Base Load and Market Prices
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Consumer Problem Solving

Impact of Greediness

Low Πagg High Πagg
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Consumer Problem Solving

Balancing Greediness and Stability

Low Πagg High Πagg
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Coalition Cost Sharing Mechanisms

Coalition Stability

γ-model characteristic function game:

v
(
G
)

= Πagg +
∑nT−1

t=0 E
[
c
(
G, t
)]

if card(G) ≥ 2,

v(i) =
∑nT−1

t=0 E
[
cretailer (i , t)

]
, ∀i ∈ N where

cretailer (i , t) = pretailer (t)
(
di (t) +

∑
l∈Li xi ,l(t)

)
.

Coalition stability condition:

∑
i∈G

yi = Πagg +
nT−1∑
t=0

E
[
c
(
G, t
)]
,

yi ≤
nT−1∑
t=0

E
[
cretailer (i , t)

]
,∀i ∈ G.
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Coalition Cost Sharing Mechanisms

Sharing the coalition cost

Stand alone cost: yi = κi

{
Πagg +

∑nT−1
t=0

E
[
c
(
G, t
)]}

with

κi =
∑nT−1

t=0 E
[
cretailer (i,t)

]
∑

j∈G
∑nT−1

t=0 E
[
cretailer (j,t)

] .
Shapley value: ϕi (v) = v(G)

card(G) =
Πagg+

∑nT−1
t=0 E[c(G,t)]
card(G) .

Banzhaf index: Bi (v) = 1

2

[
v(G) + v(i)−

∑
j∈G\{i} v(j)

]
.

Separable and non-separable costs: yi = mi + κi∑
j∈G κj

Ψ
(
G
)
,∀i ∈ G

with Ψ
(
G
)

=
(
Πagg +

∑nT−1
t=0

E
[
c(G, t)

])
−
∑

j∈G mj with

Equal Charge Method (ECM): κi = 1

card
(
G
) ,∀i ∈ G,

Alternative Cost Avoided Method (ACAM):

κi =
∑nT−1

t=0
E
[
cretailer (i , t)

]
−mi ,∀i ∈ G.
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Coalition Cost Sharing Mechanisms

Πagg upper-bound

Solutions Πagg upper-bound

Equitable card(G)mini∈G v(i)−
∑nT−1

t=0
E[c(G, t)]

Stand-alone
∑

i∈G v(i)−
∑nT−1

t=0
E[c(G, t)]

Shapley card(G)mini∈G v(i)−
∑nT−1

t=0
E[c(G, t)]

Banzhaf
∑

i∈G v(i)−
∑nT−1

t=0
E[c(G, t)]

Separable and non-separable mini∈G

{∑
j∈G κj

κi

(
v(i)−

(
1 + κi∑

j∈G κj

−card(G)
)
v(G)−

∑
j∈G\{i} v(G \ {j})

)}
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Algorithmic Price Computation and Learning

Mapping Cost Sharing to Price Pro�le

Choose a cost sharing mechanism.

Πagg equals the upper-bound.

Find algorithmically the mapping:(
yi
)
i∈G︸ ︷︷ ︸

cost sharing

→ p?︸︷︷︸
price pro�le

.
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Algorithmic Price Computation and Learning

Aggregator's Price Pro�le Computation

yi −
nT−1∑
t=0

E[IBi (t)] =
nT−1∑
t=0

p?(t)
(∑
l∈Li

xi ,l(t) + d̂i (t)
)
, ∀i ∈ G.

Matricially: Ap? = b. Let A+ be the Penrose-Moore pseudo inverse

of A.

1 If card(G) = nT then A+ = A−1 if A is full rank  unicity of

the solution
2 If card(G) > nT A+ minimizes ‖p? − A+b‖  no exact

solution
3 If card(G) < nT A+ is the solution which minimizes ‖p?‖  

no unicity of the solution

Problem

p? may have negative coe�cients.
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Algorithmic Price Computation and Learning

Spanning the Kernel

Any p in RnT can be split in p = pIm + pKer

where

pKer ∈ Ker(A) = {p|Ap = 0} and pIm ∈ Im(A)

pIm orthogonal to pKer

Any p such that Ap = b must check

‖p‖2 = ‖pIm + pKer‖2 = ‖pIm‖2 + ‖pKer‖2.
 Moore-Penrose solution is the one such that pKer = 0.

min
∑

k∈Ker(A)

α2k

s.t. A+b +
∑

k∈Ker(A)

αkp
Ker ,k ≥ 0,

has a unique solution if, and only if, the square matrix having as
coe�cient (i , j) ∈ J0; nT − 1K2

∑
k∈Ker(A) p

Ker ,k
i pKer ,kj , is invertible.

 Idea: span Ker(A) of dimension max{0; nT − rank(A)}.
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Algorithmic Price Computation and Learning

Algorithmic Price Computation

Goal: estimate p?

(1) start with an estimate x̂ i for each consumer i ∈ G,

(2) calculate A
(
x̂ i ,
(
d̂i (t)

)nT−1
t=0

)
and y

(
x̂ i ,
(
d̂i (t)

)nT−1
t=0

)
,

(3) Thanks to the Moore-Penrose pseudo-inverse algorithm applied

to Ap? = b, �nd p?
(
x̂ i ,
(
d̂i (t)

)T−1
t=0

)
.

(4) Then we can deduce xi

(
p?
(
x̂ i ,
(
d̂i (t)

)T−1
t=0

))
.

(5) If xi

(
p?
(
x̂ i ,
(
d̂i (t)

)T−1
t=0

))
is not equal to x̂i we start again at

(1) by replacing x̂i by xi

(
p?
(
x̂ i ,
(
d̂i (t)

)T−1
t=0

))
until the algorithm

converges.
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Algorithmic Price Computation and Learning

Learning the Base Load

E set of experts

expert e forecasts fe(d̂i (t))nT−1t=0

For each month m (nT slots) and each expert e

(1) Calculate p̂e and xG(p̂e) by running previous algorithm with
d̂i (t) = fe(d̂i (t)),∀t ∈ J0; nT − 1K.

(2) Calculate l(e, d̂G) = Πagg |p̂e ,d̂G − Πagg |p∗,d̂G
.

(3) Update the weight γe,. of expert e thanks to the exponentially
weighted forecaster rule:

γe,m =
exp(−η

∑m
s=1

l(e, d̂G,s))∑
e′∈E exp(−η

∑m
s=1

l(e′, d̂G,s))
,

where d̂G,s coincides with coalition G load pro�le evaluated over
month m and η a learning parameter to be calibrated.
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Algorithmic Price Computation and Learning

Main results:

algorthmic optimization of the aggregator's price pro�le under

demand uncertainty

balance of aggregator's greediness (Πagg de�nition) and

coalition stability

To be done:

determination of the coalition optimal size depending on the

sharing mechanism through simulation

introduction of capacity constraints at the consumer level

learning algorithm performance evaluation
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