----- TUTORIAL ------RISK, OPTIMIZATION AND STATISTICS

R. T. Rockafellar University of Washington, Seattle University of Florida, Gainesville

> ENPC Paris-Tech 1 June 2016

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Optimization and Statistical Estimation

support for decision-making in a stochastic environment

Optimization:

minimize a "cost" expression under constraints on the decision the constraints could involve bounds on other "costs" the "costs" may have a background in statistical analysis

Statistical Estimation:

approximate some quantity from empirical/historical data minimize an error expression to get regression coefficients different interpretations of "error" yield different results

Interplay:

- optimization problems involving uncertainty depend on estimation methodology even in coming to a formulation
- estimation problems are optimization of a special sort
- new and deeper connections are now coming to light

The Risk Quadrangle — A New Paradigm

an array of "quantifications" be applied to random variables X"cost" orientation of X: high outcomes bad, low outcomes good

 $\begin{array}{ccc} \operatorname{risk} \mathcal{R} & \longleftrightarrow \mathcal{D} \text{ deviation} \\ \operatorname{optimization} & \uparrow \downarrow & \mathcal{S} & \downarrow \uparrow & \text{statistics} \\ \operatorname{regret} \mathcal{V} & \longleftrightarrow & \mathcal{E} \text{ error} \end{array}$

 $\mathcal{R}(X)$ elicits the "level of cost" in X to use in making comparisons $\mathcal{V}(X)$ quantifies the "anti-utility" in outcomes X > 0 versus $X \le 0$ $\mathcal{D}(X)$ measures the "nonconstancy" in X as its uncertainty $\mathcal{E}(X)$ measures the "nonzeroness" in X for use in estimates $\mathcal{S}(X)$ is a "statistic" associated with X through \mathcal{E} and through \mathcal{V} ightarrow for references, details and examples behind this tutorial

R.T. Rockafellar and S.P. Uryasev (2013),

"The fundamental risk quadrangle in risk management, optimization and statistical estimation,"

Surveys in Management Science and O.R. 18, 33-53.

downloads: www.math.washington.edu/~rtr/mypage.html (look for item #218)

Uncertain "Costs" / "Losses" / "Damages"

"Costs": quantities to be minimized or kept below given levels (this fits better with optimization conventions than "profits")

General "cost" expression in decision-making: c(x, v) with x = decision vector, v = data vector $x = (x_1, \dots, x_n), v = (v_1, \dots, v_m)$

Stochastic uncertainty:

v is replaced by a **random variable** vector $V = (V_1, ..., V_m)$ then "cost" becomes a **random variable**: $\underline{c}(x) = c(x, V)$

Portfolio example in finance:

 V_j = random return on asset j, x_j = amount of j in portfolio $\underline{c}(x) = c(x, V) = -[x_1V_1 + \dots + x_nV_n]$ (random loss incurred)

Design examples in engineering: "cost" \leftrightarrow "hazard"

Challenges in Optimization Modeling

"cost" $\underline{c}(x) =$ random variable depending on decision x outcomes < 0, if any, correspond to "rewards"

Key issue in problem formulation

- the distribution of $\underline{c}(x)$ can only be shaped by the choice of x
- but how then can constraints and minimization be understood?

A Broad Pattern for Handling Risk in Optimization

Risk measures: functionals \mathcal{R} that "**quantify the risk**" in a random variable X by a numerical value $\mathcal{R}(X)$ ("risk" \neq "uncertainty")

Systematic prescription

Faced with an uncertain "cost" $\underline{c}(x) = c(x, V)$ articulate it numerically as $\overline{c}(x) = \mathcal{R}(\underline{c}(x))$ for a choice of risk measure \mathcal{R}

Constraints: keeping $\underline{c}(x)$ "acceptably" $\leq b$ modeled as: constraint $\overline{c}(x) = \mathcal{R}(\underline{c}(x)) \leq b$ **Objectives:** keeping $\underline{c}(x)$ "as acceptably low as possible" modeled as: minimizing $\overline{c}(x) = \mathcal{R}(\underline{c}(x))$ i.e., minimizing the threshold level b such that xcan still be selected with $\underline{c}(x)$ "acceptably" $\leq b$ **Space of future states:** Ω with elements ω ("scenarios")

 $\mathcal{A}_0 = \mathsf{field} \ \mathsf{of} \ \mathsf{subsets} \ \mathsf{of} \ \Omega, \quad \mathcal{P}_0 = \mathsf{probability} \ \mathsf{measure} \ \mathsf{on} \ \mathcal{A}_0$

Random variables: functions $X : \Omega \to R$ (A_0 -measurable) $EX = \mu(X) = \int_{\Omega} X(\omega) dP_0(\omega), \quad \sigma^2(X) = E[(X - EX)^2]$

Function space setting: $X \in \mathcal{L}^2 := \mathcal{L}^2(\Omega, \mathcal{A}_0, P_0)$ for simplicity Hilbert space of random variables with finite mean and variance $\langle X, Y \rangle = E[XY], \qquad ||X|| = \sqrt{E[X^2]}$

Treatment of probability alternatives

Measures P can be represented by densities $\frac{dP}{dP_0}$ with respect to P_0 $E_P(X) = \int_{\Omega} X(\omega) \frac{dP}{dP_0}(\omega) dP_0(\omega) = \langle X, Q \rangle$ for $Q = \frac{dP}{dP_0}$ [sets \mathcal{P} of alternatives P] \longleftrightarrow [sets \mathcal{Q} of $Q \in \mathcal{L}^2$: $Q \ge 0$, EQ = 1]

Axiomatization of Risk

Axioms for regular measures of risk: $\mathcal{R}: \mathcal{L}^2 \to (-\infty, \infty]$

- (R1) $\mathcal{R}(C) = C$ for all constants C
- (R2) convexity, (R3) closedness (lower semicontinuity)
- (R4) aversity: $\mathcal{R}(X) > EX$ for nonconstant X

Additional properties of major interest:

- (R5) positive homogeneity: $\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X)$ when $\lambda > 0$ (R6) monotonicity: $\mathcal{R}(X) \leq \mathcal{R}(X')$ when $X \leq X'$
- **Coherent measures of risk:** \mathcal{R} satisfying (R1), (R2), (R5), (R6) Artzner et al. (2000) introduced coherency without aversity

Note: (R1)+(R2) $\implies \mathcal{R}(X + C) = \mathcal{R}(X) + C$ for constants C

Preservation of convexity under (R1)+(R2)+(R5)

 $\underline{c}(x) = c(x, V)$ convex in $x \implies \overline{c}(x) = \mathcal{R}(\underline{c}(x))$ convex in x

Some Common Approaches From This Perspective

- Best guess of future state: $\mathcal{R}(X) = X(\bar{\omega}) \pmod{(\bar{\omega})} > 0$ then $\mathcal{R}(X) \leq b \iff X(\bar{\omega}) \leq b$ \longrightarrow coherent but not averse (and lacking any ability to hedge)
- Focusing on worst cases: $\mathcal{R}(X) = \sup X$ (ess. sup) then $\mathcal{R}(X) \le b \iff X \le b$ almost surely \longrightarrow coherent, averse (but perhaps overly conservative, infeasible)
- Passing to expectations: $\mathcal{R}(X) = \mu(X) = EX$ then $\mathcal{R}(X) \le b \iff X \le b$ "on average" \longrightarrow coherent but not averse (perhaps too feeble)

Adopting a safety margin: $\mathcal{R}(X) = \mu(X) + \lambda \sigma(X) \quad \lambda > 0$ then $\mathcal{R}(X) \le b$ unless in tail $> \lambda$ standard deviations \longrightarrow averse but not coherent (lacks monotonicity!)

Quantiles and "Superquantiles": $\ensuremath{\operatorname{VaR}}$ and $\ensuremath{\operatorname{CVaR}}$

 F_X = cumulative distribution function for random variable X

p-**Quantile:** "value-at-risk" in finance $q_p(X) = \operatorname{VaR}_p(X) = "F_X^{-1}(p)"$

p-**Superquantile:** "conditional value-at-risk" in finance $Q_p(X) = \operatorname{CVaR}_p(X) = "E[X | X \ge q_p(X)]" = \frac{1}{1-p} \int_p^1 q_t(X) dt$

mathematical behavior: quantiles bad, superquantiles good

Measures of Risk Based on Probability Thresholds

Looking at quantiles/VaR: $\mathcal{R}(X) = q_p(X)$

then $\mathcal{R}(X) \leq b \iff \operatorname{prob}\{X \leq b\} \geq p$

 \rightarrow not coherent, not averse (troublesome, subject to criticism)

Superquantiles/CVaR instead: $\mathcal{R}(X) = Q_p(X)$

then $\mathcal{R}(X) \leq b \iff \underline{c}(x) \leq b$ on average in upper *p*-tail

 \longrightarrow coherent, averse (easy to work with and more conservative!)

Corresponding concepts of "failure"

 $\underline{c}(x) = c(x, V)$ captures "hazard," failure \longleftrightarrow outcomes > 0 $q_p(\underline{c}(x)) \le 0$ means **ordinary** probability of failure is $\le 1 - p$ $Q_p(\underline{c}(x)) \le 0$ means **buffered** probability of failure is $\le 1 - p$

Example: case of p = 0.9, focusing on the worst 10% of events

 \longrightarrow buffered probability of failure ≤ 0.1 means: even in that tail range, the hazard variable comes out "safe on average"

$$\begin{aligned} \operatorname{CVaR}_{p}(X) &= \min_{C \in \mathcal{R}} \left\{ C + \frac{1}{1-p} E[\max\{0, X - C\}] \right\} \text{ for } p \in (0, 1) \\ \operatorname{VaR}_{p}(X) &= \operatorname{argmin} \quad (\text{if unique, otherwise the lowest}) \end{aligned}$$

Application to CVaR models: convert a problem in x like minimize $\operatorname{CVaR}_{p_0}(\underline{c}_0(x))$ subject to [basic constraints and] $\operatorname{CVaR}_{p_i}(\underline{c}_i(x)) \leq b_i$ for $i = 1, \dots, m$

into a problem in x and auxiliary variables C_0, C_1, \ldots, C_m ,

minimize
$$C_0 + \frac{1}{1-\rho_0} E[\max\{0, \underline{c}_0(x) - C_0\}]$$
 while requiring $C_i + \frac{1}{1-\rho_i} E[\max\{0, \underline{c}_i(x) - C_i\}] \le b_i, i = 1, \dots, m$

Important case: this converts to **linear programming** when (1) each $\underline{c}_i(x) = c_i(x, V)$ depends **linearly** on x, (2) the future state space Ω is modeled as **finite**

Some CVaR/Superquantile References

 R.T. Rockafellar and S.P. Uryasev (2000), "Optimization of Conditional Value-at-Risk," Journal of Risk 2, 21–42.

[2] R.T. Rockafellar and S.P. Uryasev (2002),
 "Conditional Value-at-Risk for General Loss Distributions,"
 Journal of Banking and Finance 26, 1443–1471.

 [3] R. T. Rockafellar, J. O. Royset (2010),
 "On Buffered Failure Prob. in Design and Optim. of Structures," Journal of Reliability Engineering and System Safety 95, 499–510.

downloads: www.math.washington.edu/~rtr/mypage.html look for items #179, #187, #211

Stochastic Ambiguity, Admitting Alternative Probabilities

Probability density functions: $Q \in \mathcal{L}^2$ with $Q \ge 0$, EQ = 1 $\implies Q = \frac{dP}{dP_0}$ for some probability measure P $E_P(X) = \langle X, Q \rangle = E[XQ] = \int_{\Omega} X(\omega) \frac{dP}{dP_0}(\omega) dP_0(\omega)$ the underlying probability measure P_0 corresponds to $Q \equiv 1$ Stochastic ambiguity: not trusting just P_0 , looking at other Pinterested in $\sup_{P \in \mathcal{P}} E_P(X)$ instead of just $EX = E_{P_0}(X)$ Risk envelopes: sets $Q \subset \mathcal{L}^2$ consisting of probability densities Qinterested in $\mathcal{R}(X) = \sup_{Q \in Q} E[XQ]$ as a measure of risk

note: \mathcal{R} is unaffected if \mathcal{Q} replaced by its closed convex hull

Regularity of a risk envelope:

 \mathcal{Q} is closed convex $\neq \emptyset$ and $1 \in \mathcal{Q}$, but 1 isn't a "support point" (i.e., $\not\exists$ hyperplane touching \mathcal{Q} at $\mathcal{Q} \equiv 1$ without $\supset \mathcal{Q}$)

Dualization of Monotonic Measures of Risk

Risk envelope characterization, positively homogeneous case

 $\mathcal{R}(X) = \sup_{Q \in \mathcal{Q}} E[XQ], \qquad \mathcal{Q} = \left\{ Q \mid E[XQ] \leq \mathcal{R}(X), \forall X \right\}$

furnishes a one-to-one correspondence between

(a) regular risk measures \mathcal{R} that are monotonic + pos. homog. (b) regular risk envelopes \mathcal{Q}

Risk envelope characterization, general case

 $\begin{aligned} \mathcal{R}(X) &= \sup_{Q \in \mathcal{Q}} \left\{ E[XQ] - \mathcal{J}(Q) \right\}, \\ \mathcal{J}(Q) &= \sup_{X \in \mathcal{L}^2} \left\{ E[XQ] - \mathcal{R}(Q) \right\}, \quad \mathcal{Q} = \operatorname{cl}(\operatorname{dom} \mathcal{J}) \end{aligned}$

furnishes a one-to-one correspondence between

- (a) regular risk measures \mathcal{R} that are monotonic
- (b) regular risk envelopes \mathcal{Q} as $\operatorname{cl}(\operatorname{dom} \mathcal{J})$ for a closed convex functional $\mathcal{J}: \mathcal{L}^2 \to [0, \infty]$ such that $\mathcal{J}(1) = 0 = \min \mathcal{J}$

 $\mathcal{J}(Q)$ assesses the "**divergence**" of $Q = \frac{dP}{dP_0}$ from 1

Some Key Examples of Risk Dualization

- for $\mathcal{R}(X) = Q_p(X) = \text{CVaR}_p(X)$ the risk envelope is: $\mathcal{Q} = \{ Q \mid Q \ge 0, EQ = 1, Q \le \frac{1}{1-p} \}$
- for $\mathcal{R}(X) = \sup X$ the risk envelope is: $\mathcal{Q} = \{ Q \mid Q \ge 0, EQ = 1 \}$ (the full "probability simplex")

Extension of "robust optimization" tied to using $\mathcal{R}(X) = \sup X$

Let Ω be **partitioned** into $\Omega_1, \ldots, \Omega_N$ with $p_k = \operatorname{prob}[\Omega_k]$, and let $\mathcal{R}(X) = \sum_{k=1}^{N} p_k \sup_{\omega \in \Omega_k} X(\omega)$. Then \mathcal{R} is regular, monotonic, pos. homog., with envelope $\mathcal{Q} = \{ Q \mid Q \ge 0, \operatorname{prob}_Q[\Omega_k] = p_k \}$

 \longrightarrow the partition generates an information field $\, {\cal A} \,$

Entropic risk and Kullback-Leibler distance

 $\mathcal{R}(X) = \log E[\exp X]$ is a regular measure of risk that is also monotonic but **not** positively homogeneous. Its risk envelope is Q = probability simplex supplied with $\mathcal{J}(Q) = -E[Q \log Q]$

 $\mathcal{R}(X)$ elicits the "level of cost" in X to use in making comparisons $\mathcal{V}(X)$ quantifies the "anti-utility" in outcomes X > 0 versus $X \le 0$ $\mathcal{D}(X)$ measures the "nonconstancy" in X as its uncertainty $\mathcal{E}(X)$ measures the "nonzeroness" in X for use in estimates $\mathcal{S}(X)$ is a "statistic" associated with X through \mathcal{E} and through \mathcal{V}

Regret Versus Utility

Regret: the "compensation" $\mathcal{V}(X)$ for facing a future cost/loss X in contrast to the "utility" $\mathcal{U}(Y)$ perceived in a future gain Y

 $\mathcal{V}(X) = -\mathcal{U}(-X) \quad \longleftrightarrow \quad \mathcal{U}(Y) = -\mathcal{V}(-Y)$

Axioms for regular measures of regret: $\mathcal{V} : \mathcal{L}^2 \to (-\infty, \infty]$ (V1) $\mathcal{V}(0) = 0$, (V2) convexity, (V3) closedness (V4) aversity: $\mathcal{V}(X) > EX$ for nonconstant X

Additional properties of major interest:

- (V5) positive homogeneity: $\mathcal{V}(\lambda X) = \lambda \mathcal{V}(X)$ when $\lambda > 0$
- (V6) monotonicity: $\mathcal{V}(X) \leq \mathcal{V}(X')$ when $X \leq X'$

⇒ axioms for **regular measures of utility** $\mathcal{U} : \mathcal{L}^2 \to [-\infty, \infty)$ (more explanation of utility connections will come later) regret is oriented to minimizing, utility is oriented to maximizing

Risk From Regret

Goal: generalize to other risk measures the superquantile formula $Q_p(X) = \min_{C \in R} \left\{ C + \frac{1}{1-p} E[\max\{0, X - C\}] \right\}, \quad q_p(X) = \operatorname{argmin}$

Trade-off Theorem

For any regular measure of regret \mathcal{V} , the formula $\mathcal{R}(X) = \min_{C \in \mathbb{R}} \{C + \mathcal{V}(X - C)\}$ defines a regular measure of risk \mathcal{R} such that \mathcal{V} monotonic $\implies \mathcal{R}$ monotonic \mathcal{V} pos. homog. $\implies \mathcal{R}$ pos. homog.

Trade-off interpretation:

C = "designated loss" (to be written off here and now) X - C = "residual loss" (still to be faced in the future) **Application to insurance:** the argmin leads to the "premium" **Optimization role:** simplifying \mathcal{R} to \mathcal{V} in objective/constraints **Finance question:** for random variables *Y* representing monetary gains, how to think of one as being preferable to another?

Traditional approach through expected utility

- there is a utility function *u* to apply to money amounts *y*
- the functional $\mathcal{U}: Y \to \mathcal{U}(Y) = E[u(Y)]$ is then the key: Y_1 is preferred (strictly) to $Y_2 \iff \mathcal{U}(Y_1) > \mathcal{U}(Y_2)$

Background: von Neumann/Morgenstern theory for "lotteries" the utility function u is **concave** and **nondecreasing**, and can be **normalized** to have u(0) = 0 and $u(y) \le y$

⇒ a benchmark focus with utility scaled to money, in which U is concave, nondecreasing, with U(0) = 0 and $U(Y) \le E[Y]$

Regular measures of utility: such U(Y) more generally

Utility and Regret in the Monotonic Expectational Case

Expected utility: U(Y) = E[u(Y)] (normalized u) u(y) concave, nondecreasing with u(0) = 0, $u(y) \le y$ **Expected regret:** V(X) = E[v(X)]v(x) convex, nondecreasing with v(0) = 0, $v(x) \ge x$

$$v(x) = -u(-x) \quad \longleftrightarrow \quad u(y) = -v(-y)$$

Superquantile formula example: $\mathcal{V}(X) = \frac{1}{1-p} E[\max\{0, X\}]$ $v(x) = \frac{1}{1-p} \max\{0, x\}, \quad u(y) = \frac{1}{1-p} \min\{0, y\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Measures of Utility Beyond Simple Expected Utility

Utility reflecting stochastic ambiguity

- Let u be a nondecreasing concave utility function, normalized
- For a risk envelope Q_0 and an associated divergence \mathcal{J}_0 , let $\mathcal{U}(Y) = \inf_{Q \in Q_0} \{ E[u(Y)Q] + \mathcal{J}_0(Q) \}$

Then $\mathcal U$ is a regular measure of utility that is monotonic:

 \mathcal{U} is concave, nondecreasing, with $\mathcal{U}(0) = 0$ and $\mathcal{U}(Y) \leq E[Y]$

Corresponding ambiguity version of regret

- Let v be a nondecreasing convex regret function
- For a risk envelope Q_0 and an associated divergence \mathcal{J}_0 , let $\mathcal{V}(X) = \sup_{Q \in Q_0} \{ E[v(X)Q] - \mathcal{J}_0(Q) \}$

Then $\ensuremath{\mathcal{V}}$ is a regular measure of regret that is monotonic

Relation to risk: for the risk measure \mathcal{R}_0 dual to \mathcal{Q}_0 , \mathcal{J}_0 , $\mathcal{U}(Y) = -\mathcal{R}_0(-u(Y)), \quad \mathcal{V}(X) = \mathcal{R}_0(v(X))$

 $\mathcal{R}(X)$ elicits the "level of cost" in X to use in making comparisons $\mathcal{V}(X)$ quantifies the "anti-utility" in outcomes X > 0 versus $X \le 0$ $\mathcal{D}(X)$ measures the "nonconstancy" in X as its uncertainty $\mathcal{E}(X)$ measures the "nonzeroness" in X for use in estimates $\mathcal{S}(X)$ is a "statistic" associated with X through \mathcal{E} and through \mathcal{V}

Deviation as a Quantification of Uncertainty

 $\mathcal{D}(X)$ generalizes standard deviation $\sigma(X)$

Axioms for regular measures of deviation: $\mathcal{D}: \mathcal{L}^2 \to [0,\infty]$

- (D1) $\mathcal{D}(C) = 0$ for constant random variables C
- (D2) convexity, (D3) closedness
- (D4) robustness: $\mathcal{D}(X) > 0$ for nonconstant X
- Additional properties of major interest:
 - (D5) upper range boundedness: $\mathcal{D}(X) \leq \sup X EX$ (D6) positive homogeneity: $\mathcal{D}(\lambda X) = \lambda \mathcal{D}(X)$ when $\lambda > 0$
- **Note:** (D1)+(D2) $\implies \mathcal{D}(X + C) = \mathcal{D}(X)$ for constants *C* symmetry not assumed, perhaps $\mathcal{D}(-X) \neq \mathcal{D}(X)$

Example: $\mathcal{D}(X) = \sigma(X) = ||X - EX||$ fails to satisfy (D5), but $\mathcal{D}(X) = \sigma_+(X) = ||\max\{0, X - EX\}||$ satisfies all

Extended CAPM: obtained with $\mathcal{D}(X)$ replacing $\sigma(X)$ (finance)

quantification of "cost/loss" versus quantification of uncertainty

Mean+deviation representation of risk measures

A **one-to-one** correspondence $\mathcal{D} \longleftrightarrow \mathcal{R}$ between regular risk measures \mathcal{R} and regular deviation measures \mathcal{D} is given by $\mathcal{R}(X) = EX + \mathcal{D}(X), \qquad \mathcal{D}(X) = \mathcal{R}(X - EX),$ where moreover **monotonicity** (R6) of risk is characterized by $\mathcal{R}(X)$ satisfies (R6) $\iff \mathcal{D}(X)$ satisfies (D6)

Example 1: the risk measure $\mathcal{R}(X) = EX + \lambda \sigma(X)$, $\lambda > 0$, is regular but not monotonic because $\mathcal{D}(X) = \lambda \sigma(X)$ fails (D5)

Example 2: the deviation measure $\mathcal{D}(X) = \text{CVaR}_p(X - EX)$ is not only regular and but also, in addition, satisfies (D5)

Deviation From Error

looking now at a concept of "error" that can be asymmetric Axioms for regular measures of error: $\mathcal{E} : \mathcal{L}^2 \to [0, \infty]$

(E1) $\mathcal{E}(0) = 0$, (E2) convexity, (E3) closedness (E4) robustness: $\mathcal{E}(X) > 0$ for nonzero X

Additional properties of major interest:

(E5) positive homogeneity: $\mathcal{E}(\lambda X) = \lambda \mathcal{E}(X)$ when $\lambda > 0$ (E6) $\mathcal{E}(X) \le |EX|$ when $X \le 0$

Error projection (with respect to constants C)

For a regular error measure \mathcal{E} , let

 $\mathcal{D}(X) = \min_{C} \mathcal{E}(X - C), \quad \mathcal{S}(X) = \operatorname{argmin}_{C} \mathcal{E}(X - C).$

Then \mathcal{D} is a regular deviation measure, \mathcal{S} the associated "statistic" $\mathcal{E}(X)$ satisfies (E6) $\implies \mathcal{D}(X)$ satisfies (D6)

 $\longrightarrow \mathcal{S}(X)$ is the constant *C* "nearest" to *X* with respect to \mathcal{E}

Some Error/Statistic Examples

Example 1: $\mathcal{E}(X) = \sqrt{E[X^2]}$ yields $\mathcal{S}(X) = EX$ this regular measure of error fails to satisfy (E6)

Example 2: $\mathcal{E}(X) = E|X|$ yields $\mathcal{S}(X) =$ median of X this regular measure of error satisfies all

Example 3: $\mathcal{E}(X) = \sup |X|$ yields $\mathcal{S}(X) = \frac{1}{2}[\sup X + \inf X]$ this regular measure of error fails to satisfy (E6)

Example 4: $\mathcal{E}(X) = \frac{1}{1-p} E[\max\{0, X\}] - EX$ yields the *p*-quantile statistic $\mathcal{S}(X) = q_p(X)$ this **asymmetric** regular measure of error satisfies all

Example 5: $\mathcal{E}(X) = E[\exp X - X - 1]$ yields $\mathcal{S}(X) = \log E[\exp X]$ this **asymmetric** regular measure of error satisfies all

Databases — the Need for Estimation

Available information: e.g. a large collection of pairs (x_k, y_k) Perspective: empirical distribution in x, y space of r.v.'s X, YApproximation: $Y \approx aX + b$, error gap Z(a, b) = Y - [aX + b]

Regression From a Broader Point of View

Y = random variable (scalar) to be understood in terms of $X_1, \ldots, X_n = \text{some "more basic" variables (e.g., "factors")}$ **Approximation scheme:** $Y \approx f(X_1, \ldots, X_n)$ for $f \in \mathcal{F}$ $\mathcal{F} = \text{some specified class of functions } f : \mathbb{R}^n \to \mathbb{R}$ e.g. linear, $f(x_1, \ldots, x_n) = c_0 + c_1 x_1 + \cdots + c_n x_n$ error gap variable: $Z_f = Y - f(X_1, \ldots, X_n)$ for $f \in \mathcal{F}$

Regression problem, in general

minimize $\mathcal{E}(Z_f)$ over all $f \in \mathcal{F}$ for some error measure \mathcal{E}

Standard regression: $\mathcal{E}(Z_f) = (E[Z_f^2])^{1/2}$ "least squares" **Quantile regression:** using $Z^+ = \max\{0, Z\}, Z^- = \max\{0, -Z\}$ $\mathcal{E}(Z_f) = E[\frac{p}{1-p}Z_f^+ + Z_f^-]$ at probability level $p \in (0, 1)$ Koenker-Basset error, normalized

Effect of the Choice of Error Measure

error gap variable to be "made small": $Z_f = Y - f(X_1, ..., X_n)$

Regression problem "decomposition" (when $f \in \mathcal{F} \Rightarrow f + C \in \mathcal{F}$)

minimizing $\mathcal{E}(Z_f)$ over all $f \in \mathcal{F}$ corresponds to minimizing $\mathcal{D}(Z_f)$ under the constraint $\mathcal{S}(Z_f) = 0$

Important issue for connecting with optimization:

parameterized "costs" $\underline{c}(x) = c(x, V)$ for $x = (x_1, \dots, x_n)$ can be viewed as Y = c(X, V) with $X = (X_1, \dots, X_n)$ X = "randomized decision" tied to empirical sample at hand

- regression can serve then to get a "formula" for $\underline{c}(x) \approx f(x)$
- for using $\bar{c}(x) = \mathcal{R}(\underline{c}(x))$, shouldn't this be "tuned" to \mathcal{R} ?
- c(X, V) may only be supported by some (X, V) database!

Example: an Application to Composition of Alloys

Alloy model: a mixture of various metals amounts of chief ingredients: $x = (x_1, ..., x_n)$ "design" amounts of other ingredients: $v = (v_1, ..., v_m)$ "contaminants" a "characteristic" to be controlled: y ideally kept ≤ 0 , say due to uncertainty, a quantile constraint may be envisioned Background information: y = c(x, v)? no available formula! there is only a database in (x, v, y)-space, $\{(x^k, v^k, y^k)\}_{k=1}^N$

- view the database as an empirical distribution for random variables $X = (X_1, \dots, X_n), V = (V_1, \dots, V_m), Y$
- use regression of Y on X_1, \ldots, X_N to get a function $y = \bar{c}(x)$
- then impose the constraint $\overline{c}(x) \leq 0$ on the design x

shouldn't the regression adapt then to the intended constraint?

 [1] R.T. Rockafellar, S. Uryasev, M. Zabarankin (2008),
 "Risk Tuning in Generalized Linear Regression," Mathematics of Operations Research 33, 712–729.

 [2] R. T. Rockafellar, J. O. Royset (2015), "Measures of Residual Risk with Connections to Regression, Risk Tracking, Surrogate Models and Ambiguity," SIAM Journal of Optimization 25, 1179–1208.

Error versus regret

The one-to-one correspondence

$$\mathcal{E}(X) = \mathcal{V}(X) - EX, \qquad \mathcal{V}(X) = EX + \mathcal{E}(X)$$

coordinates error and regret with the same "statistic"

$$\mathcal{S}(X) = \operatorname*{argmin}_{C} \mathcal{E}(X - C) \iff \mathcal{S}(X) = \operatorname*{argmin}_{C} \{C + \mathcal{V}(X - C)\}$$

Final links: nonunique but "natural" inversions $\mathcal{D} \to \mathcal{E}, \ \mathcal{R} \to \mathcal{V}$

articulated with a scaling parameter $\lambda > 0$

 $\mathcal{S}(X) = EX$ = mean $\mathcal{E}(X) = \lambda (E[X^2])^{1/2}$ $= L^2$ -error. scaled $\mathcal{D}(X) = \lambda \, \sigma(X)$ = standard deviation, scaled $\mathcal{R}(X) = EX + \lambda \sigma(X)$ = safety margin risk $\mathcal{V}(X) = EX + \lambda (E[X^2])^{1/2}$ $= L^2$ -regret

properties: aversity with convexity, but NOT coherency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

at any probability level $p \in (0,1)$

 $S(X) = q_p(X) = \operatorname{VaR}_p(X)$ = quantile

 $\mathcal{R}(X) = Q_p(X) = \mathrm{CVaR}_p(X)$

= superquantile

 $\mathcal{D}(X) = Q_p(X - EX) = \text{CVaR}_p(X - EX)$ = superquantile deviation

 $\mathcal{E}(X) = E[\frac{p}{1-p}X_{+} + X_{-}]$ = Koenker-Basset error, normalized

 $\mathcal{V}(X) = \frac{1}{1-\rho} E[X_+]$ = expected absolute loss, scaled

the quantile case at probability level p = 1/2

 $S(X) = \operatorname{VaR}_{1/2}(X) = q_{1/2}(X)$ = median

 $\mathcal{R}(X) = \operatorname{CVaR}_{1/2}(X) = Q_{1/2}(X)$

= "supermedian" (average in tail above median)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\mathcal{D}(X) = \text{CVaR}_{1/2}(X - EX) = Q_{1/2}(X - EX)$ = supermedian deviation

$$\mathcal{E}(X) = E|X| \\ = \mathcal{L}^{1}\text{-error}$$

 $\mathcal{V}(X) = 2E[X_+]$ = \mathcal{L}^1 -regret

corresponding to the limit of the quantile case as p
ightarrow 1

 $\mathcal{S}(X) = \frac{1}{2}[\sup X + \inf X]$ = center of the (essential) range of X $\mathcal{R}(X) = \sup X$ = top of the (essential) range of X $\mathcal{D}(X) = \frac{1}{2}[\sup X - \inf X]$ = radius of the (essential) range of X $\mathcal{E}(X) = \sup |X|$ $= \mathcal{L}^{\infty}$ -error $\mathcal{V}(X) = \sup[X - EX]$ $= \mathcal{L}^{\infty}$ -regret (max excess of "cost" over average)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Log-Exponential-Based Quadrangle

 $\mathcal{S}(X) = \log E[e^X]$ = **dual** expression for Boltzmann-Shannon entropy $\mathcal{R}(X) = \log E[e^X]$ = yes, the same as $\mathcal{S}(X)$! $\mathcal{D}(X) = \log E[e^{X - EX}]$ = log-exponential deviation $\mathcal{E}(X) = E[\varepsilon(X)]$ with $\varepsilon(x) = e^x - x - 1 > 0$ when $x \neq 0$ = exponential error $\mathcal{V}(X) = E[v(X)] \text{ with } v(x) = e^{x} - 1 \begin{cases} > 0 \text{ when } x > 0 \\ < 0 \text{ when } x < 0 \end{cases}$ = exponential regret