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Mathematical Modelling, Simulation and Optimization in Gas Networks

Can a certain amount of gas be transported by a given network?

Clearly, for a single pipeline with one entry

and one exit on the ends, everything might

be easy. What about complex networks?

Topics of this talk

� Nomination validation in stationary

gas networks

� Maximization of booking capacities

under probabilistic set up

� Optimization problems with nonlinear

probabilistic constraints

Figure: German H-gas and L-gas network system
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Optimization under uncertainty

General optimization problem

min
{
f(x)

∣∣ g(x, ξ) ≥ 0, x ∈ X
}

Parameter ξ fixed =⇒ LP, NLP, MIP depending on data

What happens, if ξ is not known?

� Robust optimization min
{
f(x)

∣∣ g(x, ξ) ≥ 0, x ∈ X, ∀ξ ∈ Ξ
}

� Stochastic optimization

1. Recourse model min
{
f(x) + EPΦ(x, ξ)

∣∣x ∈ X} with

Φ(x, ξ) := inf
{
〈q, y〉

∣∣ y ∈ IRm, Wy + g(x, ξ) ≥ 0
}

2. Chance constraints min
{
f(x)

∣∣P(g(x, ξ) ≥ 0
)
≥ p, x ∈ X

}
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Chance constraints

Stochastic optimization problem with probabilistic constraints:

min {f(x) |ϕ(x) ≥ p, x ∈ X }

ϕ(x) := P
(
g(x, ξ) ≤ 0

)
probability function

ξ multivariate continuously distributed random vector

p ∈ (0, 1] probability level

=⇒ Robust solutions with respect to uncertain constraints

Challenges:

� Probabilistic constraints often nonsmooth and even nonconvex

� No analytical representation of the probability function ϕ(·)
� An efficient dissolving requires (sub-)gradients of ϕ(·)
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Spheric-radial decomposition

� Analytical representation of the probability function

ϕ(x) = P
(
g(x, ξ) ≤ 0

)
using the spheric-radial decomposition of Gaussian distributions:

Sn−1

Lv

v

rLv

M

r

Figure: Spheric-radial decomp.

for M := {ξ | g(x, ξ) ≤ 0}

Spheric-Radial Decomposition

Let ξ ∼ N (0,Σ) be n-dimensional Gaussian distributed with

zero mean and positive definite covariance matrix Σ = LL>.

Then we have:

ϕ(x) =

∫
Sn−1

µχ
{
r ≥ 0 | g(x, rLv) ≤ 0

}
dµη(v),

where Sn−1 is the unit sphere in IRn, µη denotes the law of

uniform distribution on it, µχ is the law of χ-distribution with n

degree of freedom.
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Gradient formula

One-dimensional and convex case

Let be g(x, ·) continuous and convex and x chosen such that g(x, 0) < 0. Then we have

ϕ(x) =

∫
v∈Sn−1

χcdf(ρ(x, v))dµη(v) ,

where ρ(x, v) := sup {r ≥ 0 | g(x, rLv) ≤ 0}.
(Notice: If ρ(x, v) <∞ we obtain that g(x, ρ(x, v)Lv) = 0)

0

Lv′Lv

ρ(x, v)

{z|g(x, z) = 0}

{z|g(x, z) ≤ 0}

Theorem (Henrion, van Ackooij 2015)

Let be g : IRs × IRn → IR continuous differentiable in both and convex in the second

argument, x chosen such that g(x, 0) < 0. If function g(x, ·) satisfies a certain growth

condition, then ϕ(·) is differentiable and for the gradient of ϕ we obtain:

∇ϕ(x) =

∫
v∈F (x)

− χpdf(ρ(x, v))

〈∇ξg(x, ρ(x, v)Lv), Lv〉∇xg(x, ρ(x, v)Lv)dµη(v)

(F (x) := {v ∈ Sn−1 | ρ(x, v) <∞})

A probabilistic approach to optimization in gas transport · H. Heitsch·June 1, 2017· Page 6 (18)



Gradient formula

One-dimensional and convex case

Let be g(x, ·) continuous and convex and x chosen such that g(x, 0) < 0. Then we have

ϕ(x) =

∫
v∈Sn−1

χcdf(ρ(x, v))dµη(v) ,

where ρ(x, v) := sup {r ≥ 0 | g(x, rLv) ≤ 0}.
(Notice: If ρ(x, v) <∞ we obtain that g(x, ρ(x, v)Lv) = 0)

0

Lv′Lv

ρ(x, v)

{z|g(x, z) = 0}

{z|g(x, z) ≤ 0}

Theorem (Henrion, van Ackooij 2015)

Let be g : IRs × IRn → IR continuous differentiable in both and convex in the second

argument, x chosen such that g(x, 0) < 0. If function g(x, ·) satisfies a certain growth

condition, then ϕ(·) is differentiable and for the gradient of ϕ we obtain:

∇ϕ(x) =

∫
v∈F (x)

− χpdf(ρ(x, v))

〈∇ξg(x, ρ(x, v)Lv), Lv〉∇xg(x, ρ(x, v)Lv)dµη(v)

(F (x) := {v ∈ Sn−1 | ρ(x, v) <∞})

A probabilistic approach to optimization in gas transport · H. Heitsch·June 1, 2017· Page 6 (18)



Subgradient formula - the general case

Nonsmoothness of the probability function

� Nice input data (e.g., smooth g, smooth distribution of ξ) do not imply nice properties

(e.g., smoothness) of probability functions:

Example

ϕ(x) := P(Mx+ Lξ ≥ b), ξ ∼ N (0, 1),

(M |L|b) =

(
2 1 −1 0
−1 1 0 −0.5

)

� General case: g : IRs × IRn → IRm continuously differentiable in both arguments

=⇒ Derivatives in terms of Clarke subdifferential:

∂cϕ (x) ⊆
∫

v∈F (x)

Co

{
− χpdf (ρ (x, v))〈
∇ξgi (x, ρ (x, v)Lv) , Lv

〉∇xgi (x, ρ (x, v)Lv) : i ∈ I(v)

}
dµη(v)
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Application: Optimization in gas transport networks

SFB Transregio 154

Mathematical Modelling, Simulation and Optimization in Gas Networks

Relevant problems for gas transport system operator

� Reliable satisfaction of random demands at exit points of the gas network

� Maximization and verification of booking capacities

� Optimal network design and optimal operation cost

Key: Analytical characterization of feasibility of nominations in stationary gas networks
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Algebraic model of passive network (ISO-ALG4)

� Given directed graph G = (V,E) with |V | = n+ 1 and |E| = m ≥ n

pressure p

demand ξ

exit

entry

flow q

roughness Φ

nodal flow balance:
pressure bounds:

pressure drop:

∑
(j,i)∈E

qji −
∑

(i,j)∈E
qij = ξipmin ≤ p ≤ pmax

(pi)
2 − (pj)

2 = Φijqij |qij |

Network topology given by

node-arc incidence matrix A:

Kirchhoff 1: Aq = ξ (1)

Kirchhoff 2: A>p2 = −Φ|q|q (2)

Limits: p ∈
[
pmin, pmax

]
(3)

Stationary gas nets: A demand vector ξ admissible ⇐⇒ ∃p, q : p, q satisfy (1)-(3)
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Explicit characterization of feasibility

� Elimination of all pressure and flow variables

A =

(
a>B a>N
AB AN

)
∈ IRn+1×m basis/non-basis decomposition of incidence matrix

Theorem

A balanced nomination vector ξ is feasible, iff there is a z such that

A>Nh(ξ, z) = ΦN |z|z (1)

min
i=1,...,|V |

[
(pmaxi )2 + hi(ξ, z)

]
≥ max

i=1,...,|V |

[
(pmini )2 + hi(ξ, z)

]
(pmin0 )2 ≤ min

i=1,...,|V |

[
(pmaxi )2 + hi(ξ, z)

]
(pmax0 )2 ≥ max

i=1,...,|V |

[
(pmini )2 + hi(ξ, z)

]
Definition: h(u, v) :=

(
A>B
)−1

ΦB
∣∣A−1

B (u−ANv)
∣∣(A−1

B (u−ANv)
)

=⇒ The complexity rises with the number of cycles = number of non-basis variables
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Parametric solution of the algebraic condition

Theorem requires → ∃z : A>Nh(b, z) = ΦN |z|z

With definition of h(·, ·) this is equivalent to solving the algebraic equation:

F(b, z) := A>N
(
A>B
)−1

ΦB
∣∣A−1

B (b−ANz)
∣∣∗ − ΦN |z|∗ = 0

Notation: |a|∗ := |a|a Variables: z Parameters: b

Analytical properties of F(b, ·)

� F(b, ·) : IR|N| → IR|N| is continuous and (strongly) coercive

� For every b ∈ IR|V |−1 there exists a (unique) solution z(b) with F(b, z(b)) = 0

� System of |N | multivariate polynomial equations of degree 2 with |N | indeterminates

� Cycle Network: As long as cycles are disjoint, for fixed b, F(b, z) = 0 separates into

"highschool quadratic equations"

=⇒ Parametric Solution: z(·) : IR|V |−1 → IR|N|
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Uncertainty quantification: Single cycle network example

� Computing the probability of feasible nominations under Gaussian distribution

2

3

0

1

4

A =


−1 0 0 0 −1

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 1


Figure: Network graph and incidence matrix of the network
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Figure: Average of probability vs. sample size for both crude sampling and spheric-radial decomposition.
Monte Carlo (MC) and Quasi-Monte Carlo (QMC) number generators have been used.
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Application: Optimization in gas transport networks

� Formulation of gas specific optimization problems in terms of:

- uncertain parameters (e.g. exit demand, roughness, free booked capacities)

- constraints representing technical feasibility (depending on net parameters)

Parametric constraints: gi(x, z) ≥ 0 (i = 1, . . . , k)

Probabilistic approach

Pz
(
gi(x, z) ≥ 0

)
≥ p

Robust approach

gi(x, z) ≥ 0 ∀z ∈ U

New class of problems

Joint robust/probabilistic model

min
{
f(x)

∣∣∣Pξ(g(x, y, ξ) ≥ 0 ∀y ∈ U
)
≥ p
}

Challenge: Problem involves an infinite system of random constrains!
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Maximization of free booked capacities (entry/exit model)

Problem: Maximizing booking capacities in a robust/probabilistic setting

Demand (exit load) ξ is of stochastic nature (due to historical data). A network operator aims to

enlarge capacities while guaranteeing a reliable network operation with high probability level p:

P
(
gkl(ξ + y) ≥ 0; k, l = 0, . . . , |V |

)
≥ p

The additional nomination y is considered to be uncertain as well. In particular, we assume

y ∈ [0, x],

where x is the maximal available free booked capacity. This motivates to consider a joint

robust/probabilistic model for maximizing available booking capacities in the network:

max c>x s.t.

P
(
gkl(ξ + y) ≥ 0; k, l = 0, . . . , |V |; ∀y ∈ [0, x]

)
≥ p (x ≥ 0)
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Constraint qualifications for the booked capacity problem

Constraints: Single entry tree network

A demand vector z admissible, if and only if it holds

gkl(z) := (pmax
k )2 + αk(z)− (pmin

l )2 − αl(z) ≥ 0 (k, l = 0, . . . , |V |) ,

where αk(·) is defined as

αk(z) :=
∑

e∈Π(k)

Φe

( ∑
t∈V :t≥h(e)

zt

)2

(k = 0, . . . , |V |) .

Theorem (passive network, tree, single entry)

For the feasibility setM(x) := {z | gkl(z+x) ≥ 0} we have:

M(x) ⊆ A ∪B, where

(i) A satisfies the Rank-2-Constraint-Qualification (R2CQ)

(ii) For B it holds codim(B) = 2

=⇒
Gradients of the

probability function

exist
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Numerical results for maximizing booking capacities

Computation: Free capacities for a network with 27 nodes and random exit demand ξ:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Probability level

p = 0.97
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Numerical results for maximizing booking capacities

Computation: Free capacities for a network with 27 nodes and random exit demand ξ:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Probability level

p = 0.95
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Numerical results for maximizing booking capacities

Computation: Free capacities for a network with 27 nodes and random exit demand ξ:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Probability level

p = 0.90
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Numerical results for maximizing booking capacities

Computation: Free capacities for a network with 27 nodes and random exit demand ξ:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Probability level

p = 0.85
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Numerical results for maximizing booking capacities

Computation: Free capacities for a network with 27 nodes and random exit demand ξ:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Probability level

p = 0.80

A probabilistic approach to optimization in gas transport · H. Heitsch·June 1, 2017· Page 16 (18)



Numerical results for maximizing booking capacities

Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Optimal solution
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Numerical results for maximizing booking capacities

Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Sample[1] – feasible
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Numerical results for maximizing booking capacities

Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Sample[2] – feasible
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Numerical results for maximizing booking capacities

Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Sample[3] – infeasible
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Numerical results for maximizing booking capacities

Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Sample[4] – feasible
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Numerical results for maximizing booking capacities

Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption

ξ ∈ T N (µ,Σ, [0, L])

Sample[5] – feasible
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