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Mathematical Modelling, Simulation and Optimization in Gas Networks 154

Can a certain amount of gas be transported by a given network?

Clearly, for a single pipeline with one entry
and one exit on the ends, everything might
be easy. What about complex networks?

Topics of this talk

B Nomination validation in stationary
gas networks

B Maximization of booking capacities
under probabilistic set up

B Optimization problems with nonlinear
probabilistic constraints

Figure: German H-gas and L-gas network system
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Optimization under uncertainty 154

General optimization problem

‘min{f(a:)‘g(x,f) ZO,xGX}‘

Parameter £ fixed = LP NLP, MIP depending on data
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General optimization problem

‘min{f(m)‘g(m,f)ZO,xGX}‘

Parameter £ fixed = LP NLP, MIP depending on data

What happens, if £ is not known?

B Robust optimization min {f(z) | g(z,£) >0,z € X, V¢ € £}
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Optimization under uncertainty 154

General optimization problem

‘min{f(x)‘g(x,{)ZO,xGX}‘

Parameter £ fixed = LP NLP, MIP depending on data

What happens, if £ is not known?
B Robust optimization  min {f(z) | g(z,£) > 0, z € X, V¢ € E}
B Stochastic optimization

1. Recourse model min { f(z) + Ep®(2,£) |z € X} with
®(x,&) :=inf {{q,v) |y € R™, Wy + g(z,&) > 0}
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Optimization under uncertainty <154

General optimization problem

‘min{f(x)‘g(x,f)ZO,xGX}‘

Parameter £ fixed = LP NLP, MIP depending on data

What happens, if £ is not known?
B Robust optimization min {f(z) | g(z,£) >0,z € X, V¢ € £}
B Stochastic optimization

1. Recourse model min { f(z) + Ep®(2,£) |z € X} with
D(z, &) == inf{(q, y) |y eR™, Wy+g(z,8) > 0}

2. Chance constraints ~ min { f(z) | P(g(z,£) > 0) > p, z € X}
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Stochastic optimization problem with probabilistic constraints:

min {f(z) [¢(z) = p, z € X}

@(x) :=P(g(z,£) <0) probability function
& multivariate continuously distributed random vector

p € (0,1] probability level

— Robust solutions with respect to uncertain constraints
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. ~TRR
Chance constraints <154

Stochastic optimization problem with probabilistic constraints:

min {f(z) [¢(z) = p, z € X}

@(x) :=P(g(z,£) <0) probability function
& multivariate continuously distributed random vector

p € (0,1] probability level
= Robust solutions with respect to uncertain constraints
Challenges:

B Probabilistic constraints often nonsmooth and even nonconvex
B No analytical representation of the probability function ¢ (-)

B An efficient dissolving requires (sub-)gradients of o (+)
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B Analytical representation of the probability function
p(x) = P(g(z,£) <0)

using the spheric-radial decomposition of Gaussian distributions:

Spheric-Radial Decomposition

Let £ ~ N (0, X) be n-dimensional Gaussian distributed with
zero mean and positive definite covariance matrix © = LL .
Then we have:

o@ = [ i{r=0lg@rLv) < 0}y (o),

Figure: Spheric-radial decomp. where S™ ™! is the unit sphere in IR"™, 1, denotes the law of
for M := {¢]| g(z, &) < 0} uniform distribution on it, 14 is the law of x-distribution with
degree of freedom.

A probabilistic approach to optimization in gas transport - H. Heitsch - June 1, 2017 - Page 5 (18)



. >~ TRR
Gradient formula <154

One-dimensional and convex case

Let be g(x, -) continuous and convex and x chosen such that g(x, 0) < 0. Then we have
{zlg(z,2) = 0}

o
v Ly

olz) = / Near (p(, 0))dpin (v)
vegn—1 plz,v)

where p(z,v) :=sup {r > 0| g(z,rLv) < 0}. s =0

(Notice: If p(z, v) < oo we obtain that g(x, p(z, v)Lv) = 0)

A probabilistic approach to optimization in gas transport - H. Heitsch - June 1, 2017 - Page 6 (18)



. TRR
Gradient formula 154

One-dimensional and convex case

Let be g(x, -) continuous and convex and x chosen such that g(x, 0) < 0. Then we have
{2lg(z,2) = 0}

oL

(p(l) = / Xcdf(/)(l‘,v))d,u,n (U) s
pvesgn—1 plz,v)

where p(x,v) := sup {r > 0| g(z,rLv) < 0}. e =00

(Notice: If p(z, v) < oo we obtain that g(x, p(z, v)Lv) = 0)

Theorem (Henrion, van Ackooij 2015)

Letbe g : IR® x IR"™ — IR continuous differentiable in both and convex in the second
argument, « chosen such that g(x, 0) < 0. If function g(z, -) satisfies a certain growth
condition, then (+) is differentiable and for the gradient of ¢ we obtain:

o) — . Xpdt (p(,v)) o o(z. ) Lo v
VSD( )_ eva/() <V5g(x,p(x,v)Lv),Lv>vzg( 7/)( ’ )L )d/'l”’l( )

(F(x) := {v e S" 1| p(x,v) < co})
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Subgradient formula - the general case 154

Nonsmoothness of the probability function
B Nice input data (e.g., smooth g, smooth distribution of £) do not imply nice properties

(e.g., smoothness) of probability functions:

Example

p(z) == P(Ma + LE > b), € ~N(0,1),

2 1] -1 0
(M|L‘b)_(—1 1‘ 0‘—0.5)
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TRR
Subgradient formula - the general case 154

Nonsmoothness of the probability function

B Nice input data (e.g., smooth g, smooth distribution of £) do not imply nice properties
(e.g., smoothness) of probability functions:

Example

p(z) == P(Ma + LE > b), € ~N(0,1),

2 1] -1 0
(M‘L‘b)_(—1 1‘ 0‘—0.5)

B Generalcase: g : IR° x IR" — IR™ continuously differentiable in both arguments

— Derivatives in terms of Clarke subdifferential:

— Xpdf (p (.Z’,’U))
(Vegi (z, p(z,v) Lv), Lv)

0%p (z) C / Co{

Vaegi (x,p(x,v) Lv) :i € I(v)} dpn (v)
veF (x)
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Application: Optimization in gas transport networks =154
SFB Transregio 154 TRR
Mathematical Modelling, Simulation and Optimization in Gas Networks X154

Relevant problems for gas transport system operator

B Reliable satisfaction of random demands at exit points of the gas network
B Maximization and verification of booking capacities

B Optimal network design and optimal operation cost

Key: Analytical characterization of feasibility of nominations in stationary gas networks
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Algebraic model of passive network (ISO-ALG4)

TRR
154

B Given directed graph G = (V, E) with |[V| =n+1land |[E|=m >n

@
pressure bounds: nodal flow balance:
Pt < p < (]%Cﬁ 4i = (l%wq;] =&
o
pressure p flow ¢
(@ e U e )
entry demand &
O
D exit
roughness &
O
pressure drop:
®)* = (0)° = Piisl 5]
O O

Stationary gas nets:

A demand vector £ admissible

Network topology given by
node-arc incidence matrix A:

Kirchhoff 1: Aq = & (1)
Kirchhoff2: ATp? = —®|qlq  (2)
Limits: pe [P p™™] ©)

<= dp,q: p,q satisfy (1)-(3)
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Explicit characterization of feasibility 154

B Elimination of all pressure and flow variables

a a
A= ( AB AN ) e Rntixm basis/non-basis decomposition of incidence matrix
B N
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TRR
Explicit characterization of feasibility 154

B Elimination of all pressure and flow variables

T T

a a

A= < AB AN > € RMHLIxm basis/non-basis decomposition of incidence matrix
B N

A balanced nomination vector & is feasible, iff there is a z such that

ANR(E,2) = ®n|z)z (1)
i:lrni,|V| (@) + el )] > ,|V|[ ) +hi(§’z)]

(pe™)? < min_ [(#"**) )+ hi(€, 2)]

W) = maﬁv[ Py 4 hi(6, )]

Definition: ~ h(u,v) = (Ag)~ 'op |A w— AN/U)| (A" (u — Anv))

— The complexity rises with the number of cycles = number of non-basis variables

A probabilistic approach to optimization in gas transport - H. Heitsch - June 1, 2017 - Page 10 (18)



. . TRR
Parametric solution of the algebraic condition 154

Theorem requires — 3z : ALh(b,2) = ®n|z|2

With definition of h(-, -) this is equivalent to solving the algebraic equation:

F(b,z) = AN (AR) T @p|AG' (b — An2)|" — ®n|2|* =0

Notation: |a|* := |ala Variables: z Parameters: b
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. . . TRR
Parametric solution of the algebraic condition 154

Theorem requires — 3z : AIfh(b7 z) = dylz|z

With definition of h(-, -) this is equivalent to solving the algebraic equation:

F(b,2) = AN (Ap) ' @5|AE (b — An2)|" — @n]2|" =0

Notation: |a|* := |ala Variables: z Parameters: b

Analytical properties of F (b, -)
m F(b,-): R — RW'is continuous and (strongly) coercive
B Forevery b € IRV~ there exists a (unique) solution z(b) with F (b, z(b)) = 0
B System of | V| multivariate polynomial equations of degree 2 with | N | indeterminates

B Cycle Network: As long as cycles are disjoint, for fixed b, F (b, z) = 0 separates into
"highschool quadratic equations"

— Parametric Solution:  z(-) : R'VI7' — R
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Uncertainty quantification: Single cycle network example 154

B Computing the probability of feasible nominations under Gaussian distribution

-1 0 0 0o -1
1 -1 0 0 0
A= 0 1 -1 0 0
0 0 1 -1 0
0 0 0 1 1

Figure: Network graph and incidence matrix of the network
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Uncertainty quantification: Single cycle network example 154

B Computing the probability of feasible nominations under Gaussian distribution

-1 0 0 0o -1
1 -1 0 0 0
A= 0 1 -1 0 0
0 0 1 -1 o
0 0 0 1 1

Figure: Network graph and incidence matrix of the network

MCcrude-sampling ——
MC-spheric-radial
QMC-spheric-radial ——

0.985 m

[probability]
°
o
8
=
kL

o™

0.975

o 2000 4000 6000 8000 10000
[sample size]

Figure: Average of probability vs. sample size for both crude sampling and spheric-radial decomposition.
Monte Carlo (MC) and Quasi-Monte Carlo (QMC) number generators have been used.
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Application: Optimization in gas transport networks 154

B Formulation of gas specific optimization problems in terms of:
- uncertain parameters (e.g. exit demand, roughness, free booked capacities)
- constraints representing technical feasibility (depending on net parameters)

Parametric constraints:  g;(z,z) >0  (i=1,...,k)
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Application: Optimization in gas transport networks 154

B Formulation of gas specific optimization problems in terms of:
- uncertain parameters (e.g. exit demand, roughness, free booked capacities)
- constraints representing technical feasibility (depending on net parameters)

Parametric constraints:  g;(z,z) >0  (i=1,...,k)
Probabilistic approach Robust approach
P.(gi(z,z) > 0) > p gi(z,2) >0 Vzeld
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Application: Optimization in gas transport networks 154

B Formulation of gas specific optimization problems in terms of:
- uncertain parameters (e.g. exit demand, roughness, free booked capacities)
- constraints representing technical feasibility (depending on net parameters)

Parametric constraints:  g;(z,z) >0  (i=1,...,k)
Probabilistic approach Robust approach
P.(gi(z,z) > 0) > p gi(z,2) >0 Vzeld

New class of problems

Joint robust/probabilistic model

min { £(2) | Pe (9(z,5,€) 2 0 vy € U) > p}
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Application: Optimization in gas transport networks 154

B Formulation of gas specific optimization problems in terms of:
- uncertain parameters (e.g. exit demand, roughness, free booked capacities)
- constraints representing technical feasibility (depending on net parameters)

Parametric constraints:  g;(z,z) >0  (i=1,...,k)
Probabilistic approach Robust approach
P.(gi(z,z) > 0) > p gi(z,2) >0 Vzeld

New class of problems

Joint robust/probabilistic model

min { £(2) | Pe (9(z,5,€) 2 0 vy € U) > p}

Challenge: Problem involves an infinite system of random constrains!
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Maximization of free booked capacities (entry/exit model) 154

Problem: Maximizing booking capacities in a robust/probabilistic setting

Demand (exit load) £ is of stochastic nature (due to historical data). A network operator aims to
enlarge capacities while guaranteeing a reliable network operation with high probability level p:

P(le(fﬂ/) >0; k1 :07~--7IV|) >p
The additional nomination ¥ is considered to be uncertain as well. In particular, we assume
y €[0,4],

where z is the maximal available free booked capacity. This motivates to consider a joint
robust/probabilistic model for maximizing available booking capacities in the network:

max CTZL‘ s.t.

P(gu(€+1) 2 05 k1 =0,...,V]; ¥y € [0,2]) 2 p (2> 0)
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Constraint qualifications for the booked capacity problem

Constraints: Single entry tree network

A demand vector z admissible, if and only if it holds

gri(2) = (™) + aw(z) — (0™")* — au(2) 2 0

where a (+) is defined as

2
ak(z) = E ¢)e( Z Zt) (k:0$7lv|)
teV:it>h(e)

ecll(k)

TRR
154

(k,1=0,...,|V]),
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TRR
Constraint qualifications for the booked capacity problem 154

Constraints: Single entry tree network

A demand vector z admissible, if and only if it holds

gri(2) 7= (PR™)* + aw(2) = (P"™)* —au(2) 20 (k1 =0,...,|V]),

where a (+) is defined as

2
@)= ¥ <1>e( 2 ) (k=0,...,[V]).
ecll(k) teV:it>h(e)

Theorem (passive network, tree, single entry)

For the feasibility set M () := {z | gri(z +2) > 0} we have:
M(z) € AU B, where

(i) A satisfies the Rank-2-Constraint-Qualification (R2CQ)
(i) For B it holds codim(B) = 2
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Constraint qualifications for the booked capacity problem 154

Constraints: Single entry tree network

A demand vector z admissible, if and only if it holds

gri(2) 7= (PR™)* + aw(2) = (P"™)* —au(2) 20 (k1 =0,...,|V]),

where a (+) is defined as

2
@)= ¥ <1>e( 2 ) (k=0,...,[V]).
ecll(k) teV:it>h(e)

Theorem (passive network, tree, single entry)

For the feasibility set M () := {z | gri(z +x) > 0} we have: Gradients of the
M(z) € AU B, where = probability function
(i) A satisfies the Rank-2-Constraint-Qualification (R2CQ) exist

(i) For B it holds codim(3) = 2
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Computation: Free capacities for a network with 27 nodes and random exit demand &:

O
O
(@ e S ——)
o ® o Assumption
(€€ TN, 0,1)) |
@)
Probability level

o 0
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Computation: Free capacities for a network with 27 nodes and random exit demand &:

o

Assumption
OO p—O—O0—0 P

(€€ TN, 0,1)) |

Probability level

O—0—0—0
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Computation: Free capacities for a network with 27 nodes and random exit demand &:

Assumption
€€ TN (1,3, [0, L) |

Probability level
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Computation: Free capacities for a network with 27 nodes and random exit demand &:

(@)

Assumption
€€ TN (. [0, 1)) |

Probability level

A probabilistic approach to optimization in gas transport - H. Heitsch - June 1, 2017 - Page 16 (18)



] A - - 7 TRR
Numerical results for maximizing booking capacities 154

Computation: Free capacities for a network with 27 nodes and random exit demand &:

Assumption

€€ TN (1,3, [0, 1) |

Probability level

A probabilistic approach to optimization in gas transport - H. Heitsch - June 1, 2017 - Page 16 (18)



] A - - 7 TRR
Numerical results for maximizing booking capacities 154

Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption
(€€ TN (3. [0.1)) |

Optimal solution
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Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption
(€€ TN (3. [0.1)) |

Sample[1] — feasible
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Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption
(€€ TN (3. [0.1)) |

Sample[2] — feasible
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Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption

(€€ TN (1,2, [0,L))]

Sample[3] — infeasible
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Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption
(€€ TN (3. [0.1)) |

Sample[4] — feasible
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Out-of-sample test: Capacity problem with fixed probability level p = 0.80:

Assumption
(€€ TN (3. [0.1)) |

Sample[5] — feasible
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