Subdifferential Characterization of Gaussian probability functions

R. Henrion

Weierstrass Institute Berlin

Joint work with A. Hantoute, P. Perez Aros (CMM, Santiago)
Probability functions

We consider probability functions of the type

\[\varphi(x) := \mathbb{P}(g(x, \xi) \leq 0), \]

where

- \(x \in X \) is a decision variable in a separable and reflexive Banach space \(X \)
- \(\xi \) is an \(m \)-dimensional random vector defined on a probability space \((\Omega, \mathcal{A}, \mathbb{P}) \)
- \(g : X \times \mathbb{R}^m \to \mathbb{R} \) is a mapping defining the random inequality constraint \(g(x, \xi) \leq 0 \)

Our basic assumptions:

- \(g \) locally Lipschitzian
- \(g(x, \cdot) \) convex for all \(x \in X \)
- \(\xi \) is a Gaussian random vector

Probability functions occur in many optimization problems from engineering, e.g.

\[
\begin{align*}
\max \{ \varphi(x) \mid x \in X \} & \quad \text{reliability maximization} \\
\min \{ f(x) \mid \varphi(x) \geq p \} & \quad \text{probabilistic constraints}
\end{align*}
\]
Consider a reservoir with random inflow ξ and controlled release x:

Assume a finitely parameterized inflow process

$$\xi(t) = \langle \xi, a(t) \rangle, \quad \xi \sim \mathcal{N}(\mu, \Sigma) \quad \text{(e.g., K-L expansion)}$$

Water level at time t:

$$l(\xi, x, t) = l_0 + \int_0^t \langle \xi, a(\tau) \rangle d\tau - \int_0^t x(\tau) d\tau$$

Probability of satisfying a critical lower level profile l_* given a release profile x:

$$\varphi(x) := \mathbb{P}(l(\xi, x, t) \geq l_*(t) \; \forall t \in [0, T]) = \mathbb{P}\left(\max_{t \in [0, T]} \{l_*(t) - l(\xi, x, t)\} \leq 0 \right)$$

g locally Lipschitz and convex in $\xi \implies$ basic assumptions satisfied.
Let $\bar{x} \in X$ be a point of interest for our probability function $\varphi(x) := \mathbb{P}(g(x, \xi) \leq 0)$.

In addition to our basic assumptions

g locally Lipschitz, $g(x, \cdot)$ convex, $\xi \sim \mathcal{N}(\mu, \Sigma)$

suppose that: $g(\bar{x}, \mu) < 0$ (mean is a Slater point).

Slater point assumption

- is satisfied whenever $\varphi(\bar{x}) \geq 0.5$ \implies no restriction of generality
- implies continuity of φ at \bar{x}.

Question: Does the Slater point assumption for the mean along with $g \in C^1$ imply that $\varphi \in C^1$?

Answer: No in general, Yes for g linear in ξ.
Possibly Non-Lipschitzian \(\varphi(x) = \mathbb{P}(g(x, \xi) \leq 0) \) for \(g \in C^1 \)

Let \(\xi \sim \mathcal{N}(\mu, \Sigma) \) and

\[
g(x, z) := \langle a(x), z \rangle - b(x), \quad a \in C^1(X, \mathbb{R}^m), \quad b \in C^1(X, \mathbb{R}), \quad X - \text{Banach space}
\]

Slater point assumption at point of interest: \(\langle a(\bar{x}), \mu \rangle < b(\bar{x}) \). Then, with \(\Phi = \text{CDF of } \mathcal{N}(0, 1) \):

\[
\varphi(\bar{x}) = \Phi \left(\frac{b(\bar{x}) - \langle a(\bar{x}), \mu \rangle}{\sqrt{\langle a(\bar{x}), \Sigma a(\bar{x}) \rangle}} \right) \in C^1
\]

Let \(g(x, z_1, z_2) := x^2 \cdot 1_{[0, \infty)}(x) \cdot \exp(-1 - 4 \log(1 - \Phi(z_1))) + z_2 - 1 \in C^1 \).

Then, \(g \) is convex in \((z_1, z_2) \) for every \(x \in \mathbb{R} \).

Let \(\xi = (\xi_1, \xi_2) \sim \mathcal{N}(0, I_2) \). Then, \(g(\bar{x} := 0, \mu = 0) < 0 \)

(Slater point assumption) and

\[
\varphi(x) = \begin{cases}
\frac{1}{\sqrt{2\pi}} \int e^{-s^2/2} \Phi(1) ds & x \leq 0 \\
\frac{1}{\sqrt{2\pi}} \int e^{-s^2/2} \Phi(1 - x^2 \exp(-1 - 4 \log(1 - \Phi(s)))) ds & x > 0
\end{cases}
\]

\(\varphi \) is continuous (by Slater point assumption) but not even locally Lipschitz.
A quick reminder of subdifferentials

Definition

Let X be a Banach space and $f : X \to \mathbb{R}$ lsc. Then, the Fréchet subdifferential of f at $\bar{x} \in X$ is defined as

$$\partial^F f(\bar{x}) := \left\{ x^* \in X^* \mid \liminf_{x \to \bar{x}} \frac{f(x) - f(\bar{x} - \langle x^*, x - \bar{x}\rangle)}{\|x - \bar{x}\|} \geq 0 \right\}.$$

If X is a reflexive Banach space, then the limiting (Mordukhovich) subdifferential of f at $\bar{x} \in X$ is defined as

$$\partial^M f(\bar{x}) := \left\{ x^* \in X^* \mid \exists x_n \to \bar{x}, x_n^* \rightharpoonup x^* : x_n^* \in \partial^F f(x_n) \right\}.$$

If f is locally Lipschitzian, then Clarke’s subdifferential is obtained from the limiting one by

$$\partial^C f(\bar{x}) = \text{co} \partial^M f(\bar{x}).$$

Example: $\partial^F (-|\cdot|)(0) = \emptyset$, $\partial^M (-|\cdot|)(0) = \{-1, 1\}$, $\partial^C (-|\cdot|)(0) = [-1, 1]$.
Spheric-radial decomposition of a Gaussian random vector

Let $\xi \sim \mathcal{N}(\mu, \Sigma)$ with $\Sigma = LL^T$. Then,

$$
\mathbb{P}(\xi \in M) = \int_{v \in S^{m-1}} \mu_\eta (\{r \geq 0 : \mu + rLv \cap M \neq \emptyset\}) d\mu_\zeta(v),
$$

where μ_η, μ_ζ are the laws of $\eta \sim \chi(m)$ and of the uniform distribution on S^{m-1}.

For a parameter-dependent set:

$$
\varphi(x) = \mathbb{P}(g(x, \xi) \leq 0) = \int_{v \in S^{m-1}} \mu_\eta (\{r \geq 0 : g(x, \mu + rLv) \leq 0\}) d\mu_\zeta(v),
$$

where $e(x, v)$: radial probability function

QMC sampling of the sphere
The cone of nice directions

Definition

According to our basic assumptions, let $g : X \times \mathbb{R}^m \to \mathbb{R}$ be locally Lipschitz. For $l > 0$, we define the l-cone of nice directions at $\bar{x} \in \mathbb{R}^n$, as

$$C_l := \{ h \in X \mid d^C g(\cdot, z)(x; h) \leq l \|z\|^{-m} \exp(\|z\|^2/(2\|L\|^2))\|h\| \forall x \in B_{1/l}(\bar{x}) \ \forall z : \|z\| \geq l \}$$

Here (Clarke’s directional derivative of partial function),

$$d^C g(\cdot, z)(x; h) := \limsup_{y \to x, t \downarrow 0} \frac{g(y + th, z) - g(y, z)}{t}$$

If $g \in C^1$, then $d^C g(\cdot, z)(x; h) = \langle \nabla_x g(x, z), h \rangle = g'(\cdot, z)(x; h)$.

Proposition

Let $\bar{x} \in X$ such that $g(\bar{x}, \mu) < 0$. Then, for every $l > 0$ there exists a neighbourhood U of \bar{x} such that

$$\partial_F^x e(x, v) \subseteq \mathbb{B}^*_R(0) - C_l^*(\bar{x}) \quad \forall x \in U \forall v \in S^{m-1}.$$
Theorem (Correa, Hantoute, Perez-Aros (2016))

Let \((\Omega, \mathcal{A}, \nu)\) a \(\sigma\)-finite measure space and \(f : \Omega \times X \to [0, \infty]\) a normal integrand. Define the integral functional

\[I_f(x) := \int_{\omega \in \Omega} f(\omega, x) d\nu. \]

Assume that for some \(\delta > 0\), \(K \in L^1(\Omega, \mathbb{R})\) and some closed cone \(C \subseteq X\) having nonempty interior:

\[\partial^F_x f(\omega, x) \subseteq K(\omega)B_1^*(0) + C^* \quad \forall x \in B_\delta(x_0) \quad \forall \omega \in \Omega. \]

Then,

\[\partial^M I_f(x_0) \subseteq \text{cl}^* \left\{ \int_{\omega \in \Omega} \partial^M f(\omega, x_0) d\nu(\omega) + C^* \right\} \]
Theorem (Hantoute, H., Pérez-Aros 2017)

Assume that \(g : X \times \mathbb{R}^m \to \mathbb{R} \) is locally Lipschitz and convex in the second argument. Moreover, let \(\xi \sim \mathcal{N}(\mu, \Sigma) \) and fix a point \(\bar{x} \) satisfying \(g(\bar{x}, \mu) < 0 \). Finally, suppose that for some \(l > 0 \) the \(l \)-cone \(C_l \) of nice directions at \(\bar{x} \) has nonempty interior. Then,

\[
\partial^M \varphi(\bar{x}) \subseteq \text{cl}^* \left\{ \int_{v \in \mathbb{S}^{m-1}} \partial_x^M e(\bar{x}, v) d\mu_\xi(v) - C_l^* \right\}
\]

Here, \(\partial^M \) refer to the Mordukhovich subdifferential, \(\mu_\xi \) is the uniform distribution on \(\mathbb{S}^{m-1} \) and

\[
e(x, v) := \mu_\eta \{ r \geq 0 \mid g(x, \mu + rLv) \leq 0 \}, \quad (x, v) \in X \times \mathbb{S}^{m-1}; \quad (LL^T = \Sigma),
\]

where \(\mu_\eta \) is the \(\chi \)-distribution with \(m \) degrees of freedom.

Example

In the non-differentiable example before, we have (for \(l > 0 \) large enough) that

\[
\partial^M \varphi(\bar{x}) = \{0\}, \quad C_l = (-\infty, 0], \quad \partial_x^M e(\bar{x}, v) = \{0\} \text{ for } \mu_\xi - \text{a.e. } v,
\]

whence the inclusion in the Theorem reads here as: \(\{0\} \subseteq (-\infty, 0] \).
Local Lipschitz continuity and differentiability of \(\varphi(x) = \mathbb{P}(g(x, \xi) \leq 0) \)

Theorem (Hantoute, H., Pérez-Aros 2017)

Assume that \(g : X \times \mathbb{R}^m \to \mathbb{R} \) is locally Lipschitz and convex in the second argument. Moreover, let \(\xi \sim \mathcal{N}(\mu, \Sigma) \) and fix a point \(\bar{x} \) satisfying \(g(\bar{x}, \mu) < 0 \). Finally, suppose that \(C_l = X \) for some \(l > 0 \) or that the set \(\{ z \mid g(\bar{x}, z) \leq 0 \} \) is bounded. Then, \(\varphi \) is locally Lipschitzian around \(\bar{x} \) and

\[
\partial^C \varphi(\bar{x}) \subseteq \int_{v \in \mathbb{S}^{m-1}} \partial^C_x e(\bar{x}, v) d\mu_\zeta(v); \quad (\partial^C = \text{Clarke subdifferential}).
\]

For locally Lipschitzian functions \(f \) one always has that \(\emptyset \neq \partial^C f(\bar{x}) \) and

\[
\# \partial^C f(\bar{x}) = 1 \iff f \text{ strictly differentiable at } \bar{x}
\]

Corollary

In addition to the assumptions above, assume that \(\# \partial^C_x e(\bar{x}, v) = 1 \) for \(\mu_\zeta \)-a.e. \(v \). Then, \(\varphi \) is strictly differentiable at \(\bar{x} \) and

\[
\nabla \varphi(\bar{x}) = \int_{v \in \mathbb{S}^{m-1}} \nabla_x e(\bar{x}, v) d\mu_\zeta(v)
\]
Partial (Clarke-) subdifferential of $e(x, v)$

Theorem (v. Ackooij / H. 2015)

For $g(x, z) := \max_{i=1,\ldots,p} g_i(x, z)$ and $\xi \sim \mathcal{N}(\mu, \Sigma)$ suppose that

- $g_i \in C^1(\mathbb{R}^n \times \mathbb{R}^m)$ and convex in the second argument
- $C = \mathbb{R}^n$ (all directions nice); $g_i(\bar{x}, \mu) < 0$ for $i = 1, \ldots, n$ (Slater point)

Then, $\partial^C_x e(\bar{x}, v) = \text{Co} \left\{ -\frac{\chi(\rho(\bar{x}, v))}{\langle \nabla z g_i(\bar{x}, \rho(\bar{x}, v) L v), L v \rangle} \nabla_x g_i(\bar{x}, \rho(\bar{x}, v) L v) : i \in I(v) \right\}$

Here, $I(v) := \{ i \mid \rho(\bar{x}, v) = \rho_i(\bar{x}, v) \}$ and χ is the density of the Chi-distribution with m d.f.

If $\mu_\zeta(\{v \in S^{n-1} \mid \#I(v) \geq 2\}) = 0$ then φ is strictly differentiable at \bar{x}.
Corollary

In addition to the assumptions of the previous theorem assume the following constraint qualification:

\[
\text{rank } \{ \nabla_z g_i(\bar{x}, z), \nabla_z g_j(\bar{x}, z) \} = 2 \quad \forall i \neq j \in \mathcal{I}(z) \quad \forall z : g(\bar{x}, z) \leq 0,
\]

where, \(\mathcal{I}(z) := \{ i \mid g_i(\bar{x}, z) = 0 \} \).

Then, \(\varphi \) is strictly differentiable at \(\bar{x} \). If this condition holds locally around \(\bar{x} \), then \(\varphi \) is continuously differentiable. Moreover the gradient formula

\[
\nabla \varphi (\bar{x}) = - \int_{v \in S^{m-1}} \frac{\chi (\rho (\bar{x}, v))}{\langle \nabla_z g_i^*(v) (\bar{x}, \rho (\bar{x}, v) Lv), Lv \rangle} \nabla_x g_i^*(v) (\bar{x}, \rho (\bar{x}, v) Lv) d\mu_\zeta (v)
\]

holds true. Here, \(i^*(v) := \{ i \mid \rho(\bar{x}, v) = \rho_i(\bar{x}, v) \} \).
Feasibility of random demands in a gas network

Consider a simple algebraic model of a gas network \((V, E)\):

- **Pressure bounds:**
 \[p^{\text{min}} \leq p \leq p^{\text{max}} \]

- **Nodal balance:**
 \[\sum_{j:(i,j) \in E} q_{ij} = \xi_i \]

- **Flow \(q\):**
 \[q \]

- **Demand \(\xi\):**
 \[\xi \]

- **Pressure drop:**
 \[(p_i)^2 - (p_j)^2 = \Phi_{ij} |q_{ij}| \]

- **Roughness coefficient \(\Phi\):**
 \[\Phi \]

Demand vector \(\xi\) feasible \iff \exists p, q :

\[Aq = \xi, \quad A^T p^2 = -\Phi |q| q, \]

\[p^{\text{min}} \leq p \leq p^{\text{max}} \]

\((A = \text{incidence matrix})\)

Explicit inequality system for a tree: demand vector \(\xi\) feasible \(\iff\)

\[(p_k^{\text{max}})^2 + g_k(\xi, \Phi) \geq (p_l^{\text{min}})^2 + g_l(\xi, \Phi) \quad (k, l = 0, \ldots, |V|) \]

\[g_k(\xi, \Phi) = \sum_{e \in \Pi(k)} \Phi_e \left(\sum_{t \in V : t \geq h(e)} \xi_t \right)^2 \]

\(^1\text{see: Gotzes, Heitsch, H. Schultz 2016}\)
Mixed probabilistic and robust constraint

The network owner is interested in guaranteeing the feasibility of a random demand with given probability:

$$\mathbb{P} \left((p_k^{\text{max}})^2 + g_k(\xi, \Phi) \geq (p_l^{\text{min}})^2 + g_l(\xi, \Phi) \quad (k, l = 0, \ldots, |V|) \right) \geq p$$

Roughness coefficient Φ uncertain too. In contrast with ξ one does not have access to statistical information in general. Worst-case model with respect to a rectangular or ellipsoidal uncertainty set:

$$\mathbb{P} \left((p_k^{\text{max}})^2 + g_k(\xi, \Phi) \geq (p_l^{\text{min}})^2 + g_l(\xi, \Phi) \quad (k, l = 0, \ldots, |V|) \right) \geq p$$

$$\forall \Phi \in [\bar{\Phi} - \delta, \bar{\Phi} + \delta] \quad \text{or:} \quad \forall \Phi : (\Phi - \bar{\Phi})^T \Sigma_\delta (\Phi - \bar{\Phi}) \leq 1 \geq p$$

Here, $\bar{\Phi}$ is a nominal vector of roughness coefficients.

Infinite system of random inequalities. Mixed model of probabilistic and robust constraints.

Choice of δ often not evident. In order to to gain information about local sensibility w.r.t. uncertainty in Φ, we define the following optimisation problem: locale de l’incertitude en Φ:

’Maximize’ uncertainty set while keeping feasibility of demands with given probability:

$$\text{maximize } \sum_{e \in E} \delta_e^{0.9} \quad \text{under probabilistic constraint (1)}$$
Numerical solution for an example

Illustration of the optimal solution for a tree with 27 nodes, $p = 0.9/0.8$, ξ Gaussian:
Numerical solution for an example

Illustration of the optimal solution for a tree with 27 nodes, \(p = 0.9/0.8, \xi \) Gaussian: