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Probability functions

We consider probability functions of the type

e(x) :==P(g(z,€) < 0),
where
B x € X is adecision variable in a separable and reflexive Banach space X
B ¢ is an m-dimensional random vector defined on a probability space (€2, .4, P)

B g: X x R™ — Ris a mapping defining the random inequality constraint g(z, £) < 0

Our basic assumptions:
W g locally Lipschitzian
B g(x,-)convexforalz € X

B ¢ is a Gaussian random vector

Probability functions occur in many optimization problems from engineering, e.g.

max{p(z) | x € X} reliability maximization

min{f(z) | p(z) > p} probabilistic constraints
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Reservoir control problem

Consider a reservoir with random inflow £ and controlled release x:

50
Assume a finitely parameterized inflow process E— b
£(t) = (& a(t)), £~N(u,X) (eg. K-Lexpansion) !
a
Water level at time t¢: 4 X(t)

t t
(& x,t) =10+ /(E,a('r))d'r — /x(T)dT
0 0

Probability of satisfying a critical lower level profile I« given a release profile z:

p(x) =P xz,t) > 1.(t) VL€ [0,T]) =P térf&?]{l*(t) —1(&z,t)} <0

g(x,8)

g locally Lipschitz and convex in §& = basic assumptions satisfied.
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Slater point assumption

Let Z € X be a point of interest for our probability function ¢ (z) := P(g(x, &) < 0).
In addition to our basic assumptions

g locally Lipschitz, g(z, -) convex, & ~ N'(u, 32)

suppose that:  g(Z, ) < 0 (mean is a Slater point).

Slater point assumption

W s satisfied whenever (Z) > 0.5 == no restriction of generality

W implies continuity of ¢ at Z.

Question: Does the Slater point assumption for the mean along with g € C imply that ¢ € C1?

Answer:  No in general, Yes for g linear in &.
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Possibly Non-Lipschitzian () = P(g(x,£) < 0) forg € C*

Leté ~ N(u,X) and
g(x,2) := (a(z),2) — b(z), a€CHX,R™), b€ C'(X,R), X -Banach space
Slater point assumption at point of interest: (a(Z), 1) < b(Z). Then, with & = CDF of A/(0, 1):

@) - @@
A7) _(b( <a<f>,za<:z«>>) ¢

Let g(x, 21, 22) 1= 22 - 1[0,00) (@) - exp(—1 — 4log(l — @(21))) + 22 — 1 € ch.

Then, g is convex in (z1, z2) for every x € R.
Let€ = (€1, €2) ~ N(0, I2). Then, g(& = 0, 1 = 0) < 0 .

(Slater point assumption) and

0 ED o5 10

L [ /20(1)d: <
p(z) = \/127fe_g2/2 ( )dsz o
vers Je 7 /20(1 — 2% exp(—1 — 4log(1 — ®(s))))ds x>0

¢ is continuous (by Slater point assumption) but not even locally Lipschitz.
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A quick reminder of subdifferentials

Let X be a Banach space and f : X — R Isc. Then, the Fréchet subdifferential of f at Z € X is defined
as

aFf(E) = {m* cX* ‘ hin_,igf f(z) - f(i— <:L‘*,x—j> > 0} .

[l — 2|

If X is a reflexive Banach space, then the limiting (Mordukhovich) subdifferential of f at Z € X is defined
as
M f(z) == {x € X* | Jxn = 5,0k — o 12l € BFf(xn)}.

If f is locally Lipschitzian, then Clarke’s subdifferential is obtained from the limiting one by

0% f(z) =0 0™ f(z)

Example: 97 (—| - [)(0) = 0, &M (~[-[)(0) = {~1,1}, 99(~|-[)(0) = [-1,1].
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Spheric-radial decomposition of a Gaussian random vector

Let £ ~ N (i1, Z) with © = LLT . Then,

PEeM = [ y({r=0: s rlon M #0)duclo),
pesm—1

where fin, ¢ are the laws of 1 ~ x(m) and of the uniform distribution on sm—1,

For a parameter-dependent set:

() = P(g(z,€) < 0) = /‘uﬂszmmu+mwsmmmwx

vesm—1

e(z,v): radial probability function

QMCsampling of the sphere

Lv

Sm—l
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The cone of nice directions

Definition

According to our basic assumptions, let g : X X R™ — R be locally Lipschitz.
For [ > 0, we define the |- cone of nice directions at z € R™, as

G = {h € X | d%g(- 2)(w; h) < |zl ~™ exp(||=11%/ I LII%)) |14l
Vz € By () Yz« |2l > 1}
Here (Clarke’s directional derivative of partial function),

th —
dcg(-,z)(a:; h) := limsup g(y+ 72) g(y7 Z)
y—z, tl0 t

Ifg € C',then dg(:, 2)(z; h) = (Vag(z,2),h) = ¢ (-, 2)(x; h).

Proposition

LetT € X such that g(Z, ) < 0. Then, for everyl > 0 there exists a neighbourhood U of T such that

df'e(z,v) CB%(0) — Cf (7) Vz € UVw € S L.
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Subdifferential of Integral Functionals

Theorem (Correa, Hantoute, Perez-Aros (2016))

Let (2, A, v) a o- finite measure space and f : Q2 X X — [0, 00| a normal integrand. Define the
integral functional

@ = [ sz

weN

Assume that for some 6 > 0, K € L' (9, R) and some closed cone C' C X having nonempty interior:
OF f(w,z) C K(w)B;(0) + C* Va € Bs(wo) Yw € Q.
Then,

oM If(xo) Ccl” {v/ M f(w,x%)dv(w) + C*
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Main Result: Limiting subdifferential of o(z) = P(g(z, &) < 0)

Theorem (Hantoute, H., Pérez-Aros 2017)

Assume that g : X X R™ — R is locally Lipschitz and convex in the second argument. Moreover, let
& ~ N (p, X) and fix a point T satistying g(Z, p) < 0. Finally, suppose that for some I > 0 the I-cone
C of nice directions at T has nonempty interior. Then,

oM p(z) C ol* / OM e, v)dpc (v) — Cf

vesm—1
Here, OM refer to the Mordukhovich subdifferential, e is the uniform distribution on S™~1 and
e(x,v) := pp{r > 0| gz, u+rLv) <0}, (z,v) € X xS™™ 1, (LLT =%),

where iy, is the x-distribution with m degrees of freedom.

In the non-differentiable example before, we have (for [ > 0 large enough) that
My (z) = {0}, C) = (—00,0], dMe(Z,v) = {0} for uc — a.e. v,

whence the inclusion in the Theorem reads here as: {0} C (—o0, 0].
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Local Lipschitz continuity and differentiability of ¢ (z) = P(g(x, &) < 0)

Theorem (Hantoute, H., Pérez-Aros 2017)

Assume that g : X X R™ — R is locally Lipschitz and convex in the second argument. Moreover, let
& ~ N (u, X) and fix a point T satisfying g(Z, ) < 0. Finally, suppose that C; = X for somel > 0 or
that the set {z | g(Z, z) < 0} is bounded. Then, ¢ is locally Lipschitzian around T and

% p(z) C / Bfe(:f,v)d,uc(v); (8€ = Clarke subdlifferential).

vesm—1

For locally Lipschitzian functions f one always has that @ # 9€ f(Z) and

#8€ f(z) = 1 <= f strictly differentiable at &

Corollary

In addition to the assumptions above, assume that #85 e(z,v) =1 for p¢-a.e. v. Then, @ is strictly
differentiable at * and

Ve@= [ Vael@v)duc(v)

vesm—1
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Partial (Clarke-) subdifferential of ¢(x, v)

Theorem (v. Ackooij / H. 2015)

Forg(z, z) := , nax pgi(z, z) and & ~ N (p, X) suppose that

B g; € CL(R™ x R™) and convex in the second argument

m C = R" (all directions nice); g;(Z,p) < 0 fori = 1,...,n (Slater point)

o x (p (7, v)) o w
Then, 8%e(Z,v) = Co {— V21 @.p (& 0) Lv) . Lv) Vzgi (Z,p(Z,v) Lv) : i € I(v)}

Here, I(v) := {i | p(Z,v) = pi(Z,v)} and x is the density of the Chi-distribution with m d.f.

f e ({v € S"1 | #I(v) > 2}) = Othen
p1 (x,v1)

 is strictly differentiable at .
91 (x,2) <0
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Differentiability of (z)=P(g;(x,&) <0 (i=1,...,p)) for £ ~ N(0, R)

Corollary

In addition to the assumptions of the previous theorem assume the following constraint qualification:
rank {V.g;(Z,2),V.g9;(Z,2)} =2 Vi#j€I(z) Vz: g(z,2) <0,

where, Z(z) := {i | 9:(Z, z) = 0}.

Then,  is strictly differentiable at x. If this condition holds locally around &, then ¢ is continuously
differentiable. Moreover the gradient formula

= — x (p(@,v)) -
VRS = / oty Cop o) ), ) - oo (B0 (2 ) nele)
vesm—1

holds true. Here, i* (v) := {i|p(Z,v) = pi(Z,v)}.
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Feasibility of random demands in a gas network

Consider a simple algebraic model of a gas network (V, E):

~

9

ressure bounds: nodal balance: )
ppmm = p & gaz S nesdy = & demand vector & feasible
9 > <~
flow
2 Ip,q:
= O p—— Ag=¢, ATp? = —|qlq,
roughness min max
coefficient @ entry p <p<p
[ L ¢ N
I (A = incidence matrix)
demand ¢
O O
pressure drop: exit
2
@)% - (p;)" = Pyay]q4]
S ey

Explicit inequality system for a tree: demand vector ¢ feasible <= '

PR*)? + gu(&,®) > (™) + (6, @) (k,1=0,...,|V])

2
gr(& @)= > @ > &

ecll(k) teV:t>h(e)

1see: Gotzes, Heitsch, H. Schultz 2016
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Mixed probabilistic and robust constraint

The network owner is interested in guaranteeing the feasibility of a random demand with given probability:

P (0R™)? + g (6, @) 2 ()2 + 9u(6, @) (ki1 =0,...,[V]) 2 p

Roughness coefficient & uncertain too. In contrast with £ one does not have access to statistical
information in general. Worst-case model with respect to a rectangular or ellipsoidal uncertainty set:

P ((0F*)? + gx (€, @) > (™) + 91(6, @) (k,1=0,...,[V]) (1)
VO [P —6P+6] o VO:(2—D)TSs(@—D)<1)>p
Here, ® is a nominal vector of roughness coefficients.
Infinite system of random inequalities. Mixed model of probabilistic and robust constraints.

Choice of § often not evident. In order to to gain information about local sensibility w.r.t. uncertainty in ®,
we define the following optimisation problem: locale de I'incertitude en ®:

"Maximize’ uncertainty set while keeping feasibility of demands with given probability:

maximize 252'9 under probabilistic constraint (1)
ecE
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Numerical solution for an example

lllustration of the optimal solution for a tree with 27 nodes, p = 0.9/0.8, £ Gaussian:

O O

. - 1 . . l sensitive
O O O O O I
(] O O O I nonsensitive
(] O O O O
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O

l sensitive

O nonsensitive

n O O
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