Decentralized energy problems with large number of customers

Yezekael HAYEL, Université d'Avignon

30/05/2017 - SESO

Context of smart cities

- Smart grids/new energy context
- Decentralized decisions
- Large number of decision makers in interaction:
 - many local producers of energy
 - Electrical Vehicles
 - devices, etc ...

Outline

- •Games with large number of players
 - •Wardrop equilibrium
 - Network Congestion games
- Optimization methods and game frameworks
 - Stackelberg games
 - Mathematical Programming with Equilibrium Constraints
- A coupled energy / traffic problem
- Conclusion and perspectives

Wardrop equilibrium

- If the number of players tends to be important, standard Nash equilibrium concept becomes difficult to determine explicitly. We talk of Non-atomic Games.
- A player has no influence on the average strategy of all the players.
- There exists from the 70s, in the routing community, a notion of equilibrium that takes into account the infinitesimal number of players. This is the Wardrop Equilibrium.
- This equilibrium concept has important links with particular types of games: potential games, congestion games and population games.

Concept of Wardrop Equilibrium

- A large number of vehicles choose their travel path every day.
- Each vehicle has a source and a destination.
- A typical goal for each vehicle is to minimize his delay.
- The optimality concept is the Wardrop Equilibrium.

J. Wardrop, *Some theoretical aspects of road traffic research communication networks*, Proc. Inst. Civ. Eng., Part 2, 1:325-378, 1952.

Principles and concept

- First Wardrop principle : « The journey time on all routes actually used are equal, and less those which would be experienced by a single vehicle on any unused route. »
- Second Wardrop principle : « The journey time is a minimum. »
- This definition is very close to the first principle of a Nash Equilibrium : « a flow patten is in Nash equilibrium if no individual decision maker on the network can change to a less costly strategy or route. »
- The main difference is the impact of an individual on the other players. In the Wardrop context, a unique individual has a **negligible** impact on the performances of the other players.

Each flow on each path r from a commodity (demand for a pair O-D) w is even null, or even his cost is equal to the minimum cost on the path.

Notations:

 h_{wr} the flow on the path *r*,

 R_w the set of paths associated to the commodity w,

W the set of commodities,

 C_{wr} is the cost of path r, π_{wr} is the minimum cost over all the paths for this commodity and d_w the demand for this commodity.

The first Wardrop principle gives the following system:

$$h_{wr}(c_{wr} - \pi_{wr}) = 0, \quad r \in R_w, w \in W, \tag{1}$$

$$c_{wr} - \pi_{wr} \geq 0, \quad r \in R_w, w \in W, \tag{2}$$

$$\sum_{r \in R_w} h_{wr} = d_w, \quad w \in W.$$
(3)

- The Wardrop equilibrium is a good approximation of the Nash equilibrium for a game in which the number of players is finite but important (A. Haurie, P. Marcotte, On the relationship between Nash-Cournot and Wardrop Equilibria, Networks, 15:295-308,1985.)
- The Wardrop equilibrium is generally simpler to compute than the Nash equilibrium.
- This equilibrium has important links with specific games like potential games, congestion games and population games.
- In terms of applications: network congestion games, road networks and electricity markets.

Network Congestion Games

Network Congestion Games

- Directed graph G=(V,E)
- Multiple source-destination pairs (s_k,t_k), demand d_k for commodity k
- Players are nonatomic (infinitesimally small)
- Strategy set: paths P_k between (s_k,t_k) for all k
 Players' decisions: flow vector x
- * Edge delay (latency) functions: $l_e(x_e)$ typically assumed continuous and non-decreasing.

Wardrop's First Principle

- « Travel times on used routes are equal and no greater than travel times on unused routes. »
- A flow x is a Wardrop Equilibrium if for every source-destination pair k and for every path p with positive flow between this pair:

$$I_p(x) \leq I_{p'}(x)$$
, for all p'

where $l_p(\mathbf{x}) = \sum_{e \in p} l_e(x_e)$

Alternative definition: A Flow vector x is a Wardrop Equilibrium if it solves:

$$\label{eq:expectation} \begin{split} \min \sum_{e \in E} h_e(x_e) \\ & \star \end{split} \text{ where } h'_e(x_e) := l_e(x_e) \text{ , then we get: } \min \sum_{e \in E} \int_0^{x_e} l_e(z) dz \\ & \star \end{split}$$

- Then algorithms based on convex combination methods (like Franck-Wolf and variants) can be applied to find a Wardrop Equilibrium.
- Many extensions to the concept of Wardrop Equilibrium exist.
- Other concepts of large games are: population games, mean-field type games, ...

Optimization methods and game frameworks

- How to control a Wardrop Equilibrium?
- Two frameworks when the « «controller » has his own objective:
 - Stackelberg Games
 - Mathematical Programming with Equilibrium Constraints

Stackelberg Games

- Two types of players with their own objective functions: leader and follower.
- Leader plays first and the follower plays after observing the action of the leader.

Stackelberg Games

Link with bilevel programming problem:

Mathematical Programming with Equilibrium Constraints (MPEC)

- In this framework, there are several followers that interact into a game setting.
 - The lower level solution concept is an equilibrium (which depends on the leader's strategy).
 - Numerous Applications: Toll pricing, control of EV, etc.
- MPEC are difficult to solve and many different methods are proposed in the literature, depending on the type of lower-level problem considered.

Mathematical Programming with Stochastic Equilibrium Constraints (MPSEC)

- The decisions of the followers are non-deterministic, i.e. not fully rational.
- Logit based discrete choice models can be proposed to illustrate such behavior.
- This framework is more suitable for realistic problems, particularly for individual energy consumption and behavior.
- It is also possible to extend beckman's formula for such framework (minimization of a convex function).

An energy problem

- Coupling bilevel optimization problems with large number of customers.
- Electrical Vehicles can be considered as large number of players in interaction:
 - on the road (driving problem)
 - on electricity demand (charging problem)

Context

- Integrated network management and energy planning
- Coupled two main actors: transportation planner and energy company
- GOAL: to design a model which integrates the couple decision processes of these actors, taking into account customers (particularly EV) behaviors.
- Joint work with EDF Labs, founded by PGMO.

Global Problem

Transportation

Global Problem

Transportation

Energy

Global Problem

EV customers determine only his path. (The optimal charging profile is computed directly based on the path).

Lower Level

Some ongoing results

- The optimal charging profile is explicitly given depending on the traffic equilibrium flow, considering non flexible part (Valley-filling method).
- Cost functions that include tolls, delays and energy are not symmetric
 - Beckmann's formulae is not directly applicable
 - we consider generalization of network congestion games

THANKYOU

Questions?