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Context of smart 
cities
✤ Smart grids/new energy context

✤ Decentralized decisions

✤ Large number of decision 
makers in interaction:

✤ many local producers of 
energy

✤ Electrical Vehicles

✤ devices, etc …



Outline
•Games with large number of players 

•Wardrop equilibrium
•Network Congestion games

•Optimization methods and game frameworks 
•Stackelberg games
•Mathematical Programming with Equilibrium Constraints  

•A coupled energy/traffic problem

•Conclusion and perspectives



Wardrop equilibrium

✤ If the number of players tends to be important, standard Nash equilibrium concept becomes 
difficult to determine explicitly. We talk of Non-atomic Games.

✤ A player has no influence on the average strategy of all the players.

✤ There exists from the 70s, in the routing community, a notion of equilibrium that takes into 
account the infinitesimal number of players. This is the Wardrop Equilibrium.

✤ This equilibrium concept has important links with particular types of games: potential 
games, congestion games and population games.



Concept of Wardrop 
Equilibrium

✤ A large number of vehicles choose their travel path every day.

✤ Each vehicle has a source and a destination.

✤ A typical goal for each vehicle is to minimize his delay.

✤ The optimality concept is the Wardrop Equilibrium.

J. Wardrop, Some theoretical aspects of road traffic research communication networks, Proc.
Inst. Civ. Eng., Part 2, 1:325-378, 1952.



Principles and concept

✤ First Wardrop principle : « The journey time on all routes actually used are equal, and less 
those which would be experienced by a single vehicle on any unused route. »

✤ Second Wardrop principle : « The journey time is a minimum. »

✤ This definition is very close to the first principle of a Nash Equilibrium : « a flow patten is in 
Nash equilibrium if no individual decision maker on the network can change to a less costly 
strategy or route. »

✤ The main difference is the impact of an individual on the other players. In the Wardrop 
context, a unique individual has a negligible impact on the performances of the other 
players.



Each flow on each path r  from a commodity (demand for a pair O-D) w is even null, or even his cost is 
equal to the minimum cost on the path. 

Notations:
        the flow on the path r,
        the set of paths associated to the commodity w, 
W the set of commodities,
         is the cost of path r,        is the minimum cost over all the paths for this commodity and       the 
demand for this commodity.

The first Wardrop principle gives the following system:

hwr(cwr � ⇡wr) = 0, r 2 Rw, w 2 W, (1)

cwr � ⇡wr � 0, r 2 Rw, w 2 W, (2)
X

r2Rw

hwr = dw, w 2 W. (3)

hwr
Rw

cwr ⇡wr dw



✤ The Wardrop equilibrium is a good approximation of the Nash equilibrium for a game in 
which the number of players is finite but important (A. Haurie, P. Marcotte, On the 
relationship between Nash-Cournot and Wardrop Equilibria, Networks, 15:295-308,1985.)

✤ The Wardrop equilibrium is generally simpler to compute than the Nash equilibrium.

✤ This equilibrium has important links with specific games like potential games, congestion 
games and population games.

✤ In terms of applications: network congestion games, road networks and electricity markets.



Network Congestion Games



Network Congestion Games

✤ Directed graph G=(V,E)

✤ Multiple source-destination pairs (sk,tk), demand dk for commodity k

✤ Players are nonatomic (infinitesimally small)

✤ Strategy set: paths Pk between (sk,tk) for all k 
Players’ decisions: flow vector x

✤ Edge delay (latency) functions: le(xe) typically assumed continuous and non-decreasing. 



Wardrop’s First Principle
✤ « Travel times on used routes are equal and no greater than travel times on unused 

routes. » 

✤ A flow x is a Wardrop Equilibrium if for every source-destination pair k and for every 
path p with positive flow between this pair: 

                        lp(x) ≤ lp’(x),   for all p’  

where lp(x)= 

✤ Alternative definition:  A Flow vector x is a Wardrop Equilibrium if it solves: 

✤ where                                   , then we get: 
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✤ Then algorithms based on convex combination methods (like Franck-
Wolf and variants) can be applied to find a Wardrop Equilibrium. 

✤ Many extensions to the concept of Wardrop Equilibrium exist.

✤ Other concepts of large games are: population games, mean-field type 
games, …



Optimization methods and game frameworks

✤ How to control a Wardrop Equilibrium?

✤ Two frameworks when the « «controller » has his 
own objective:

✤ Stackelberg Games

✤ Mathematical Programming with 
Equilibrium Constraints



Stackelberg Games

✤ Two types of players with their 
own objective functions: leader 
and follower.

✤ Leader plays first and the 
follower plays after observing 
the action of the leader. 



Stackelberg Games

Link with bilevel programming problem:



Mathematical Programming with 
Equilibrium Constraints (MPEC)

✤ In this framework, there are several followers that interact 
into a game setting.

➡ The lower level solution concept is an equilibrium 
(which depends on the leader’s strategy).

➡ Numerous Applications: Toll pricing, control of EV, etc.

✤ MPEC are difficult to solve and many different methods 
are proposed in the literature, depending on the type of 
lower-level problem considered. 



Mathematical Programming with Stochastic 
Equilibrium Constraints (MPSEC)

✤ The decisions of the followers are non-deterministic, i.e. not 
fully rational.

✤ Logit based discrete choice models can be proposed to 
illustrate such behavior.

✤ This framework is more suitable for realistic problems, 
particularly for individual energy consumption and 
behavior.

✤ It is also possible to extend beckman’s formula for such 
framework (minimization of a convex function). 



An energy problem

✤ Coupling bilevel optimization problems with large 
number of customers.

✤ Electrical Vehicles can be considered as large 
number of players in interaction:

✤ on the road (driving problem)

✤ on electricity demand (charging 
problem)



Context

✤ Integrated network management and energy planning

✤ Coupled two main actors: transportation planner and 
energy company 

✤ GOAL: to design a model which integrates the couple 
decision processes of these actors, taking into account 
customers (particularly EV) behaviors.

✤ Joint work with EDF Labs, founded by PGMO.



Global Problem

Road Operator Electricity Provider

Toll prices

Traffic 
Equilibrium

Transportation Energy

Charging 
Profile

Electricity
 fares
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Global Problem

Road Operator Electricity Provider

Toll prices

EV customers determine only his path.
(The optimal charging profile is computed directly based on the path).

Electricity
 fares

Lower Level



Some ongoing results

✤ The optimal charging profile is explicitly given 
depending on the traffic equilibrium flow, 
considering non flexible part (Valley-filling method).

✤ Cost functions that include tolls, delays and energy 
are not symmetric 

➡ Beckmann’s formulae is not directly applicable

➡ we consider generalization of network congestion 
games
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