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Hydrothermal Scheduling

Goal
Satisfy electricity demand by scheduling a set of hydro and thermal
generators in a cost-efficient manner via the following optimization
problem:

I Minimization of operating cost of electricity production

I subject to:

I Total electricity production must meet electricity demand.
I Reservoir dynamics.
I Operational limits of thermal power plants.
I Operational limits of hydro power plants.
I Operational limits of the transmission network.
I Operational and environmental limits of reservoir.
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General mathematical formulation

minimize
xd ,xa

∑
t

(
c>t xd

t + d>t xa
t

)
subject to

∑
τ≤t

(
Aτx

d
τ + Bτx

a
τ

)
≤ bt +

∑
τ≤t

Dτ Ĩτ ,

∀t ∈ 1, . . . ,T , and ∀
[
Ĩ1; Ĩ2; . . . ; ĨT

]
∈ UΩ

I Vector xd
t represents the actual decisions the planner has to make at time

t (hydro and thermal generation)

I Vector xa: variables needed to fully describe the mathematical model do
not represent a real decision (voltage angles, power flows).

I Equalities are avoided. That is the reason why time coupling is reflected
from τ = 1, . . . , t.

I Ĩt refers to uncertain water inflows at time t.

I UΩ is the uncertainty set for water inflows.
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Uncertainty sets

I Points represent historical data (monthly inflow)

I Several approaches were considered to construct an uncertainty set:
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I Mathematical representation:

UΩ =
{
Ĩ ∈ Rk :

∥∥∥Q−1/2
(
Ĩ − Ī

)∥∥∥
2
≤ Ω

}
I Ω controls the level of uncertainty.

5/23



Robust hydrothermal scheduling
Integrated Generation-Transmission Expansion Planning

Robust vs Adjustable Robust Optimization

I Traditional RO focuses on making decisions under wrost-case
realizations of uncertainty.

I It is really conservative when it comes to make decisions over
time.

I All decisions are “here and now”.

I “Adjustable” means that decisions are not necessarily static
over time. That is,

xt = ft
(
ζ[t]

)
where ζ[t] refers to available information at time t.

I ft is a function that maps data into a time t decision.

I Finding the optimal ft is difficult problem.

I We stick to the affine case given acceptable arguments
presented in the literature.
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Affine decision rules

I Problem is less difficult since need to find parameters of an
affine function:

xdt = γ0
t + 1{t≥2}

t−1∑
τ=1

Γτt Ĩτ , ∀t = 1, . . . ,T

xat = π0
t +

T∑
τ=1

Πτ
t Ĩτ , ∀t = 1, . . . ,T

I Coefficients are the new decision variables of the optimization
problem

I If Gammaτt = 0 and Piτt , the model is nothing but a static RO
model.
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RC of ball uncertainty set

Consider Z is a circle, i.e.,

Z =
{
ζ ∈ <L : ‖ζ‖2 ≤ Ω

}
The uncertain constraint:

(a0)>x +
L∑

l=1

ζl(a
l)>x ≤ b0 +

L∑
l=1

ζlb
l , ∀ (ζ : ‖ζ‖2 ≤ Ω)

becomes

(a0)>x + Ω

√√√√ L∑
l=1

((al)>x − bl)
2 ≤ b0 : second-order cone
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Results
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I Typical hydro chain in Colombia

I 12 months and 4 hydro power
plants (dimension of U is 48).

I 6 buses and 8 transmission lines
were considered.

I The static solution was obtained
only for Ω ≤ 0.1, i.e., this
solution is protected against
random inflows realizing at the
mean ± 0.1 standard deviations.
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Price of robustness

I PoR is seen as extra cost needed to protect the solution against
uncertainty.

I Static model is not even feasible for Ω = 1

Ω
Cost

Expected PoR

0.0 180.67 N.A.

0.5 184.53 2.1%
1.0 212.49 17.6%
1.5 218.22 20.8%
2.0 229.58 27.7%
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Affine decision rules results
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I generation of plant A gA
3 has a strong fixed component of 409.6 MW;

I Results also show temporal dependence with inflows.

I Results can provide some intuition about what happens between plants.
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Conclusions

I Historical data can be used to tune the uncertainty set.

I Conservatism can be reduced when considering correlations between.
uncertain parameters.

I Affine decision rules provided a wider range of solvability to a problem
that is almost unsolvable using the traditional static RO.

I Decomposition/distributed techniques are required to improve
computational performance.

I This approach can be extended to renewable generation uncertainty.
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Integrated Transmission-Generation Expansion Planning in
Colombia (ITGEP)

I Research project dedicated to construct a decision-making
model to support the expansion planning process in Colombia.

I Need to decide whether or not to construct generation and
transmission projects.

I Tool designed to the Colombian planning entity—UPME.
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Integrated Transmission-Generation Expansion Planning in
Colombia (ITGEP)

ITGEP	(gams)

Expansion	Plan	G-T

Inflow Demand Fuel pricesRenewable 
resources

-Where	and	how	much	G?	
Where	and	how	much	T?
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Motivation

I Need to coordinate decisions.

I Environmental constraints imposed to transmission projects have become
more stringent.

I Need to consider more small-scale generation projects and renewable
technologies (solar PV and wind).

I Need to prepare for critical energy supply conditions.

Algunas aplicaciones en Ingeniería
Eléctrica

Planeación del uso de recursos energéticos
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Stochasticity

I Hydrological uncertainties coded through scenarios
I Multiple reservoirs
I No weather seasons in Colombia. Only rain and dry season.
I Power system operation is really sensitive to hydro resource

changes.

I Fossil fuel price uncertainties
I Coal price fluctuactions.
I Natural gas price fluctuactions.

I Demand uncertainty.

I Renewable resources variability is also considered.
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Stochastic Planning

I Minimization of present value of expected investment and operation costs.

I Nonanticipativity conditions guarantee first-stage decisions fulfill needs of
all scenarios.

1 2 Tpe Tpe+
1

20 t(years)

# 
lín

es
, #

 p
ro

je
ct

s 
G

scenario 1

“here and now”
decisions

Decisions conditional on scenarios

scenario 2

scenario 3

scenario 4

minimize:	Cost	Inv(1) +	E[Cost	Inv(2) (w) +	C.	Oper (w)]

First-stage Investment 
cost

Multi-stage expected cost
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Scenario decomposition

I Progressive hedging.

I Useful approach for understanding individual effects of each
scenario.

I Every optimization instance is as difficult/easy as the
deterministic model.
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The algorithm

Let χs ∈ <n1 , ∀s ∈ S be the decision variable vector xG
gc ,t,s and xT

lc ,t,s for

t ∈
[
1,TPE

]
.

(
νk+1
s , χk+1

s

)
:= argmin

(νs ,χs )∈Xs

(
fs (νs , χs) + y k>

s

(
χs − χ̄k

)
+ (ρ/2)

∥∥∥χs − χ̄k
∥∥∥2

2

)
y k+1
s := y k

s + ρ
(
χk+1
s − χ̄k+1

)
, ∀ s ∈ S

where

χ̄k =
∑
s∈S

ps · χk
s .

I Nonconvexity of the problem worsens the computational performance.

I Several improvements proposed by J.P. Watson and D. Woodruff were
considered.
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Experiments

I Planning horizon 20 years

I Yearly investment
decisions

I Reduced network
employed by UPME.

I N-1 contingencies
considered.

I Ten scenarios (for now).

I Three different loading
levels in a typical day.

I Three operating
conditions per year.
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Conclusions

I The ITGEP model is the first optimization model constructed
for the Colombian planning process.

I The tool can handle multiple user-defined scenarios. Limits
are imposed by CPU time available.

I Need to refine the tunning process of decomposition
algorithms.

I We expect to keep improving the model from both the
research and practical standpoint.
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Collaborators

PLANEACIÓN	INTEGRADA	GENERACIÓN-
TRANSMISIÓN	EN	COLOMBIA

Convocatoria	COLCIENCIAS	No.	643	de	2014
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