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Why an Energy Storage System (ESS) ?
example usage: a wind-storage system

Objective: the wind farm must respect a day-ahead commitment.

Storage Control
to fulfill a production commitment
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→ an ESS is used to mitigate commitment errors:

Pdev = Pmis − Psto
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The issue of storage aging

Technological problem: ESS (electrochemical) can only perform a
limited number of charge/discharge cycles over its lifetime.

To avoid the high cost of premature replacements, aging should be
taken into account:
◦ in the system design: aging-aware ESS sizing
◦ in the energy management: aging-aware ESS control

Main question being addressed
How to embed the limitation of storage aging,

as a strict constraint,
in the energy management optimization ?

aging constraint: Ncycl (Tlife) ≤ Nlife
example: Tlife = 20 years, Nlife = 3000 cycles
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Modeling battery aging: some background

Battery aging is a complex physical (chemical/thermal/mechanical)
process. It usually split into two:
◦ cycling aging: happens when charging/discharging.
◦ calendar aging: happens even at rest (6= only at rest).

Modeling for control purpose:
◦ a physics-based model would be unusable: high dimension +
unknown parameter fitting.
◦ use instead empirical models, fitted from manufacturer’s
datasheet (“aging curves”).

Basis of this work on aging-aware energy management
A simple empirical model of cycling aging: “energy counting”
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Modeling cycling aging

Cycling aging is modeled using the energy counting method:

Ncycl (t) = 1
2Erated

∫ t

0
|Psto|dt︸ ︷︷ ︸

exchanged energy
Ncycl (t) is the number of equivalent full cycles at each instant.

Much simpler than counting actual cycles!

→ aging constraint can be re-expressed as a constraint on the
lifetime average of |Psto|:

〈|Psto|〉Tlife ≤ Pexch with Pexch = 2EratedNlife
Tlife

ex: Erated = 1h, Nlife = 3000, Tlife = 20 yr → Pexch = 0.034 pu
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Optimal energy management

ESS energy management is treated as an optimization problem:
minimize J , the average of an instant penalty cost:

J = 1
K E

{K−1∑
k=0

cost(k)
}

with K →∞

with cost(k) = max
{
0, |Pdev (k)| − Ptol

} tolerance 

. . . while respecting the aging constraint:

〈|Psto|〉Tlife ≤ Pexch

Algorithmic difficulty of this optimization
a constraint on a Tlife horizon (~10 years) is not manageable!

→ a reformulation is needed
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Reformulation of the aging constraints

To deal with cycling aging on a “reasonable” horizon, I introduce a
new state variable: Xsto a buffer of “exchangeable energy”:

Stored
Energy

Exchangeable
Energy

overflow

Xsto(k + 1) = sat
{
Xsto(k) + (Pexch − |Psto(k)|)∆t

}
similarity with the dynamics of the storage Esto(k + 1) = Esto(k) + Psto(k)∆t
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Reformulation of the aging constraints: properties

Aging limitation is guaranteed
Keeping the “exchangeable energy” buffer non empty (Xsto ≥ 0)
is a sufficient condition to satisfy the aging constraint
〈|Psto|〉Tlife ≤ Pexch

Always feasible solution
Constraint on the state Xsto ≥ 0 can be transfered to the control
variable:

|Psto(k)| ≤ Pexch + Xsto(k)/∆t

which is always feasible.
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Validation test case

Input data for the simulation:
The ESS control is simulated with a 132MW wind farm from
NREL “Eastern Wind Dataset” (publicly available):
◦ 3 years of production/forecast data, with a 1 hour timestep.
◦ mean production of the farm: 0.343 pu
◦ RMS forecast error: σP = 0.195 pu.

Penalty for commitment errors:

tolerance 

The tolerance for the deviation penalty is set at 0.2 pu

13 / 17



Introduction to aging control ESS control with aging limitation Control evaluation on a simulation Conclusion

Validation test case

Input data for the simulation:
The ESS control is simulated with a 132MW wind farm from
NREL “Eastern Wind Dataset” (publicly available):
◦ 3 years of production/forecast data, with a 1 hour timestep.
◦ mean production of the farm: 0.343 pu
◦ RMS forecast error: σP = 0.195 pu.

Penalty for commitment errors:

tolerance 

The tolerance for the deviation penalty is set at 0.2 pu
13 / 17



Introduction to aging control ESS control with aging limitation Control evaluation on a simulation Conclusion

Simulation results

10 days extract, with over tol. Pgrid highlighted in orange
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No storage:
◦ 28% over tol.

Optimal control:
◦ 6 372 cycles
◦ 8.5% over tol.

Optimal control
with aging lim:
◦ 2 966 cycles
◦ 10% over tol.

→ The aging limiting control is effective.
→ Aging limitation comes with a slight performance drop.
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Choosing the Aging Control Horizon

Our aging limiting control is based on a buffer of “exchangeable
energy” Xsto. The buffer size (Xmax ) needs to be hand-picked.

Effect of the “aging control horizon” (TX = Xmax/Pexch)
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→ an horizon of 2-3 days is enough (for this example).
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Conclusion

Contribution
A formulation of cycling aging which fits naturally in the ESS
control optimization.
Validated in a simulation with an open dataset.

Going further
Adapt the method to also deal with calendar aging.

(calendar aging often depends on operational conditions like SoE,
in particular for super capacitors)
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Bonuses

◦ Lithium-ion aging curve
◦ A similar approach for calendar aging ?
◦ Aging as a constraint vs. as a penalty ?
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Lithium-ion aging curve
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Aging curve of a Lithium-ion NCA battery by SAFT (Lippert, 2010):
◦ 3000 cycles at full discharge depth.
◦ many more small cycles (180k at 10%)

Relation to the “energy counting” model used in this work
assumption Ncycles ∝ 1/DoD (conservative)
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A similar approach for calendar aging ?

Similar ideas could lead to a reformulation of the calendar aging.
However, there is one extra difficulty:
◦ calendar aging depends on the state (T, SoE) instead of

just the control variable (Psto)
◦ so I’m not sure it is possible to get an always feasible
constraint on the control.
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Aging as a constraint vs. as a penalty ?

Option 1: penalize cycling with its real levelized cost: can be over
overwhelming!

Option 2: tunable penalty → burden of parameter tuning for the
control designer.

Argument against penalizing aging:
1. once operation starts, the battery is already paid
2. calendar aging will kill the battery anyway
3. so this is my claim: the marginal cost of cycling within the

allowed cycling bound is zero.
→ use instead a constraint on maximum number of cycles.
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