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Introduction The microgrid model

Motivation: the Microgrid

The microgrid is disconnected from
the main network

Constraints: on the control and the
state.

Operating cost: cost of diesel

We have a forecast for PV production
and load

Goal: minimize the operating cost
(such that production meets demand)
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Introduction The microgrid model

Dynamics and continuous time optimal control formulation

State of charge: c

diesel cost: `(u) = βu2

state of charge dynamics: Fc(c, u, t) = (ρiPi(u, t)− Po(u, t)/ρo)/C
with

I Pi(u, t) = (−u− Ps(t) + Pl(t))
+ being the power that gets into the

battery
I Po(u, t) = (−u− Ps(t) + Pl(t))

− being the power that gets out of
the battery.
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Introduction Dynamic programming

Resolution by dynamic programming

In R. Bellman words: “An optimal policy has the property that
whatever the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to the state
resulting from the first decision.”
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Introduction Dynamic programming

BocopHJB

The value function of the optimal control problem is the viscosity
solution of an Hamilton-Jacobi-Bellman (HJB) equation

We solve this equation with a semi-Lagrangian scheme:

V
k
(x) = min

u
h`

u
(x)︸ ︷︷ ︸

running cost

+ V
k+1 (

x + hf
u
(x)
)︸ ︷︷ ︸

value at the next point

We then use the value function to build a decision

The scheme is implemented in BocopHJB (available online)

Bonnans, Giorgi, B. H. , Martinon, and Tissot, Bocophjb 1.0.1
user guide, tech. rep., 2015.
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Battery aging Battery ageing model

The ageing dilemma
Why grad students are always tired?

Cafeine makes you take a suboptimal trajectory.
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Battery aging Battery ageing model

Battery ageing models

loss of efficiency:
ρi(a) = (1− a)ρ,

where ρ is the initial coefficient for a = 0.

The aging dynamics corresponds to a severity factor model :

Fa(a(t), c(t), u(t), t) = η(c)
Po(a, c, u, t)

K

where η(c) = (−4c2+5)
5
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Battery aging Battery ageing model

Claim

By combining pre-computation and dimension reduction, the algorithm
reduces the computing time by several orders and allows for online
implementations.
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Battery aging The long term problem

Problem formulation

The age a and the charge c follow a T -periodic dynamics controlled by
a time dependent parameter u:

P (a0, c0, t0)


V (a0, c0, t0) := inf

u∈U

∫ NT

t0

`(u(t), t)dt+ ψ(aNT )

(a(t0), c(t0)) = (a0, c0), a(NT ) ≤ amax
(ȧ, ċ) = (Fa(a, c, u, t), Fc(a, c, u, t))
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Battery aging The long term problem

Problem structure

Assumption (Slow aging)

There exists a constant L > 0 such that Fc is L-Lipschitz and uniformly
bounded by L, and Fa is L/N -Lipschitz and uniformly bounded by L/N .

Assumption (Monotonicity)

The value functions V µ and V are non decreasing in a0 and non
increasing in c0.

Assumption (Regularity of the ageing process)

For any ε > 0, ∆ > 0, there exists ε1 > 0 such that if
x0 = (a0, c0) ∈ A× C, u ∈ Ux0 and

∆ ≤
∫ T
0 Fa(X(t), u(t), t)dt ≤ ∆ + ε1, then there exists u′ ∈ Ux0 such

that
∫ T
0 Fa(X(t), u′(t), t)dt = ∆ and

∣∣∣∫ T0 [`(u(t), t)− `(u′(t), t)]dt
∣∣∣ ≤ ε.

11 / 25



The Adaptative Weights Algorithm (AWA)

Table of Contents

1 Introduction
The microgrid model
Dynamic programming

2 Battery aging
Battery ageing model
The long term problem

3 The Adaptative Weights Algorithm (AWA)
First step: Bilevel decomposition
Second step: relaxation
Third step: approximation
Implementation and results

4 Conclusion

11 / 25



The Adaptative Weights Algorithm (AWA) First step: Bilevel decomposition

First step: Bilevel decomposition

Pµ(a0, δ, c0, cF )


V µ(a0, δ, c0, cF ) := inf

u∈UT

∫ T

0
`(u(t), t)dt

(a(0), c(0)) = (a0, c0), a(T ) ≤ a0 + δ, c(T ) ≥ cF
(ȧ, ċ) = (Fa(a, c, u, t), Fc(a, c, u, t)).
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The Adaptative Weights Algorithm (AWA) First step: Bilevel decomposition

First step: Bilevel decomposition

Lemma

V (a0, c0, tk) = inf
δ,cf

V µ(a0, δ, c0, cf ) + V (a0 + δ, cf , tk+1)
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The Adaptative Weights Algorithm (AWA) Second step: relaxation

Second step: relaxation

Let us introduce the relaxed micro-problem:

Pµr (.., α)


V µ
r (.., α) := inf

u∈U

∫ T

0
[`(u(t), t) + αFa(X(t), u(t), t)]dt

(a(0), c(0)) = (a0, c0) and c(T ) ≥ cF .
(ȧ(t), ċ(t) = F (a(t), c(t), u(t), t)
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The Adaptative Weights Algorithm (AWA) Second step: relaxation

Lemma

For all (a0, c0, cf , α) ∈ A× C2 × IR+,

V µ
r (a0, c0, cf , α) = inf

δ
V µ(a0, δ, c0, cf ) + αδ.

In particular ∀δ ∈ IR+,V
µ(a0, δ, c0, cf) ≥ Vµ

r (a0, c0, cf , α)− αδ
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The Adaptative Weights Algorithm (AWA) Second step: relaxation

Notations

∆(u) :=
∫ T
0 Fa(X(t), u(t), t))dt

L(u) :=
∫ T
0 `(u(t), t)dt

For any (a0, c0, cF , α) ∈ A× C2 × IR+, let

Γ(a0, c0, cF , α)

be the set of limn ∆(un) where un is a minimizing sequence of
Pµr (a0, c0, cF , α)
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The Adaptative Weights Algorithm (AWA) Second step: relaxation

Result in the absence of jumps

Theorem

If there exists α such that

(a1 − a0) ∈ Γ(a0, c0, c1, α)

Then

V (a0, c0, T ) = inf
(α,cF ,δ)

{V µ
r (a0, c0, cF , α)− αδ + V (a0 + δ, cF , T )}

where the optimization is performed over the (α, δ, cF ) such that
δ ∈ Γ(a0, c0, cF , α).
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The Adaptative Weights Algorithm (AWA) Second step: relaxation

Jumps
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The Adaptative Weights Algorithm (AWA) Second step: relaxation

Result

”The error we make is controlled by the size of the jumps.”
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The Adaptative Weights Algorithm (AWA) Third step: approximation

Third step: approximation

P̃µr (.., α)


Ṽ µ
r (.., α) := inf

u∈U

∫ T

0
[`(u(t), t) + αFa(a0, c(t), u(t), t)]dt

ċ(t) = Fc(a0, c(t), u(t), t)

(a(0), c(0)) = (a0, c0), c(T ) ≥ cF
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The Adaptative Weights Algorithm (AWA) Implementation and results

Algorithms for the periodic case

Offline: Compute L and ∆ for each possible values of (α, a).
Compute the global value function at T .

Online: Get the optimal weight α, solve the corresponding short
term approximate problem.
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The Adaptative Weights Algorithm (AWA) Implementation and results

Numerical results

Bruteforce >10 hours, AWA approx. 12 minute, online approx. 1
sec

Some % of relative error

Figure: The age profile computed with AWA (solid line) and bruteforce
dynamic programming (dotted line) for two initial age values
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Conclusion

Next

other applications (inventory management and budget control ?)

extensions (stochastic, impulse, elliptic, multidimensional...)

finer error analysis
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Conclusion
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Conclusion

Criteo is a really nice company...
... and we are hiring !!!

If you want to know more: b.heymann@criteo.com
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