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Introduction

We are interested in multistage stochastic optimization problems
of the form

min
π

E
[ T−1∑

t=0

Lt(X t ,U t , ξt) + K (XT )

]
s.t. X t+1 = ft(X t ,U t , ξt), X 0 = x0

U t = πt(X t , ξt) ∈ Ut(x , ξt)

where

x t is the state of the system,

ut is the control applied at time t,

ξt is the noise happening between time t and t + 1, assumed
to be time-independent,

π is the policy.
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Time-decomposition

min
π

E

[
L0(x0,U0, ξ0) + E

[ T−1∑
t=1

Lt(X t ,U t , ξt) + K (XT )

]]
s.t. X 0 = x0

X 1 = ft(X 0,U0, ξ0),

U0 = π0(x0, ξ0) ∈ U0(x0, ξ0)

X 1 = ft(X 0,U0, ξ0)

X t+1 = ft(X t ,U t , ξt)

U t = πt(X t , ξt) ∈ Ut(X t , ξt)
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Stochastic Dynamic Programming

By the white noise assumption, this problem can be solved by
Dynamic Programming, where the Bellman functions satisfy

VT (x) = K (x)

V̂t(x , ξ) = min
ut∈Ut(x ,ξ)

Lt(x , ut , ξ) + Vt+1 ◦ ft(x , ut , ξ)︸ ︷︷ ︸
”xt+1”

Vt(x) = E
[
V̂t(x , ξt)

]
Indeed, π is an optimal policy if

πt(x , ξ) ∈ arg min
ut∈Ut(x ,ξ)

{
Lt(x , ut , ξ)︸ ︷︷ ︸
current cost

+Vt+1 ◦ ft(x , ut , ξ)︸ ︷︷ ︸
future costs

}
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Bellman operator

For any time t, and any function R : X→ R ∪ {+∞} we define

T̂t(R)(x , ξ) := min
ut∈U

Lt(x , ut , ξ) + R ◦ ft(x , ut , ξ)

and
Tt(R)(x) := E

[
T̂t(R)(x , ξ)

]
.

Incidentally, R induce a policy πRt (x , ξ) given by a minimizer of the
above problem, and an optimal policy is given by πV .
Finally the Bellman equation simply reads{

VT = K
Vt = Tt(Vt+1)
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Properties of the Bellman operator

Monotonicity:

V ≤ V ⇒ Tt
(
V
)
≤ Tt

(
V
)

Convexity: if Lt is jointly convex in (x , u), V is convex,
and ft is affine then

x 7→ Tt
(
V
)
(x) is convex

Polyhedrality: for any polyhedral function V ,
if Lt is also polyhedral, and ft affine, then

x 7→ Tt
(
V
)
(x) is polyhedral
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J(x)
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Duality property

Consider J : X× U→ R jointly convex, and define

ϕ(x) = min
u∈U

J(x , u)

Then we can obtain a subgradient λ ∈ ∂ϕ(x0)
as the dual multiplier of

min
x ,u

J(x , u),

s.t. x0 − x = 0 [λ]

(This is the marginal interpretation of the multiplier)

In particular, we have that

ϕ(·) ≥ ϕ(x0) + 〈λ, · − x0〉
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Computing cuts (1/2)

Suppose that we have V
(k+1)
t+1 ≤ Vt+1

β̂
(k+1)
t

(ξ)

= min
x ,u

Lt(x , u

, ξ)

+ V
(k+1)
t+1 ◦ ft(x , u

, ξ

)

s.t x = x
(k)
t [λ̂

(k+1)
t

(ξ)

]

This can also be written as

β̂
(k+1)
t

(ξ)

= T̂t
(
V

(k+1)
t+1

)
(x

, ξ

)

λ̂
(k+1)
t

(ξ)

∈ ∂x T̂t
(
V

(k+1)
t+1

)
(x

, ξ

)

Thus, Ĉ(k+1)

,ξ

t : x 7→ β̂
(k+1)
t

(ξ)

+
〈
λ̂

(k+1)
t

(ξ)

, x − x
(k)
t

〉
satisfy

, for

all ξ,

Ĉ(k+1)

,ξ

t (x) ≤ T̂t
(
V

(k+1)
t+1

)
(x

, ξ

) ≤ T̂t (Vt+1) (x

, ξ

) = V̂t(x

, ξ

)
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Computing cuts (2/2)

Thus,

β̂
(k+1)
t (ξ) +

〈
λ̂

(k+1)
t (ξ), x − x

(k)
t

〉
≤ V̂t(x , ξ)

for each realization ξ of ξt .
Replacing ξ by ξt and taking the expectation yields

E
[
β̂

(k+1)
t (ξt)

]
+E
[ 〈
λ̂

(k+1)
t (ξt), x − x

(k)
t

〉 ]
≤ E

[
V̂t(x , ξt)

]
= Vt(x)

and finally we have the cut

β
(k+1)
t +

〈
λ

(k+1)
t , · − x

(k)
t

〉
≤ Vt

where  β
(k+1)
t := E

[
β̂

(k+1)
t (ξt)

]
= Tt

(
V

(k)
t+1

)
(x)

λ
(k+1)
t := E

[
λ̂

(k+1)
t (ξt)

]
∈ ∂Tt

(
V

(k)
t+1

)
(x)
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SDDP algorithm

Under linear dynamics, and convex costs, the SDDP algorithm
iteratively constructs polyhedral outer approximations of Vt .

More precisely, at iteration k

We have polyhedral functions V k
t (·) = max

κ≤k

{〈
λκt , ·

〉
+ βκt

}
,

such that V k
t ≤ Vt .

Forward pass: We simulate the dynamical system, along one
scenario, according to πV

k
, yielding a trajectory {xkt }t∈J0,T K.

Backward pass: We compute cuts

Ckt : x 7→
〈
λk+1
t , x

〉
+ βk+1

t ≤ Vt

along this trajectory, and update our outer approximations.
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SDDP strengths

SDDP is a widely used algorithm in the energy community,
with multiple applications in

mid and long term water storage management problem,
long-term investment problems,
...

Recent works have presented extensions of the algorithm to

deal with some non-convexity,
treat risk-averse or distributionally robust problems,
incorporate integer variables.

Multiple numerical improvements have been proposed

cut selection
regularization
multi-cut or ε-resolution
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SDDP weaknesses

There are still some gaps in our knowledge of this approach:

there is no convergence speed guaranteed,

regularization methods are not mature yet,

there is no good stopping test.

V. Leclère D-SDDP 24/05/2018 14 / 42
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SDDP Stopping test

Exact lower bound of the problem : V k
0(x0).

Upper-bound estimated by Monte-Carlo simulation yielding
costly statistical stopping tests (Pereira Pinto (1991) or
Shapiro (2011))

Alternative statistical tests have been proposed (see Homem
de Mello et al (2011))

Exact upper-bound computation has been proposed by
Philpott et al (2013) but without any proof of convergence,
leading to possibly not converging stopping tests.
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Linear Bellman Operator

An operator B : F (Rnx )→ F (Rnx ) is said to be a linear Bellman
operator (LBO) if it is defined as follows

B(R) : x 7→ inf
(u,y)

E
[
c>u + R(y)

]
s.t. Tx +Wu(u) +Wy (y) ≤ h

where Wu : L0(Rnu)→ L0(Rnc ) and Wy : L0(Rnx )→ L0(Rnc ) are
two linear operators. We denote S(R)(x) the set of y that are part
of optimal solutions to the above problem.
We also define G(x)

G(x) :=
{

(u, y) | Tx +Wu(u) +Wy (y) ≤ h
}

V. Leclère D-SDDP 24/05/2018 16 / 42
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Examples

Linear point-wise operator:

W : L0(Rnx ) → L0(Rnc )(
ω 7→ y(ω)

)
7→

(
ω 7→ Ay(ω)

)
Such an operator allows to encode almost sure constraints.

Linear expected operator:

W : L0(Rnx ) → L0(Rnc )(
ω 7→ y(ω)

)
7→

(
ω 7→ A E(y)

)
Such an operator allows to encode constraints in expectation.
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Relatively Complete Recourse and cuts

Definition (Relatively Complete Recourse)

We say that the pair (B,R) satisfy a relatively complete recourse
(RCR) assumption if for all x ∈ dom(G) there exists admissible
controls (u, y) ∈ G(x) such that y ∈ dom(R).

Cut

If R is proper and polyhedral, with RCR assumption, then B(R) is
a proper polyhedral function.
Furthermore, computing B(R)(x) consists of solving a linear
problem which also generates a supporting hyperplane of B(R),
that is, a pair (λ, β) ∈ Rnx × R such that{〈

λ , ·
〉

+ β ≤ B(R)(·)〈
λ , x

〉
+ β = B(R)(x)
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Setting

Consider a compatible sequence of LBO {Bt}t∈J0,T−1K, that is,
such that all admissible controls of Bt lead to admissible states of
Bt+1.
Consider a sequence of functions such that{

RT = K

Rt = Bt(Rt+1) ∀t ∈ J0,T − 1K

Then, the abstract SDDP algorithm generates a sequence of lower
polyhedral approximations of Rt . In a forward pass it simulates a
trajectory of states, along which the approximation is refined in the
backward pass.

V. Leclère D-SDDP 24/05/2018 19 / 42
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Abstract SDDP

x

t=0

x

t=1

K

x

t=2

Final Cost V2 = K

V. Leclère D-SDDP 24/05/2018 20 / 42



Introduction Abstract SDDP Primal SDDP Dual SDDP Numerical results

Abstract SDDP

x

t=0

R1
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t=1

K
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Real Bellman function V1 = T1(V2)
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Abstract SDDP

R0

x

t=0

R1

x

t=1

K

x

t=2

Assume that we have lower polyhedral approximations of Vt
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Abstract SDDP

R0

x0

R0(x0)

R2
0(x0)

x

t=0

R1

x

t=1

K

x

t=2

Thus we have a lower bound on the value of our problem
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Abstract SDDP
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Abstract SDDP
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Abstract SDDP
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A new lower approximation of V1 is T1(V
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Data: Initial point x0

R
(0)
t ← −∞

for k : 0, 1, . . . do
// Forward Pass : compute a set of trial points

{
xk
t

}
t∈J0,TK

xk
0 ← x0

for t : 0 to T−1 do
select x

k
t+1 ∈ arg min Tt(Rk

t+1)
(
xk
t

)
Randomly select ωk

t ∈ Ω
xk
t+1 ← x

k
t+1(ωk

t )
end for
// Backward Pass : refine the lower approximations at the trial points
Rk+1

T ← K
for t : T−1 to 0 do
θk+1
t ← Bt(R

k+1
t+1 )(xk

t ) // cut coefficients

select λk+1
t ∈ ∂Bt(R

k+1
t+1 )(xk

t )

βk+1
t ← θk+1

t −
〈
λk+1
t , xk

t

〉
Define Ck+1

t : x 7→
〈
λk+1
t , x

〉
+ βk+1

t // new cut

Rk+1
t ← max

{
Rk

t , C
k+1
t

}
// update lower approximation

end for
STOP if some stopping test is satisfied

end for
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Absract SDDP convergence

Theorem

Assume that Ω is finite, R(x0) is finite, and {Bt}t is compatible.
Further assume that, for all t ∈ J0,T K there exists compact sets Xt

such that, for all k, xkt ∈ Xt (e.g. Bt have compact domain).

Then, (Rk
t )k∈N is a non-decreasing sequence of lower

approximations of Rt , and limk R
k
0(x0) = R0(x0), for t ∈ J0,T −1K.

Further, the cuts coefficients generated remain in a compact set.
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Stochastic Optimization problem

Recall the optimization problem

min
π

E
[ T−1∑

t=0

Lt(X t ,U t , ξt) + K (XT )

]
s.t. X t+1 = ft(X t ,U t , ξt)

U t = πt(X t , ξt) ∈ Ut(x , ξ)

With associated Dynamic Programming equation
VT (x) = K (x)

V̂t(x , ξ) = min
ut∈Ut(x ,ξ)

Lt(x , ut , ξ) + Vt+1 ◦ ft(x , ut , ξ)

Vt(x) = E
[
V̂t(x , ξt)

]
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Primal Bellman equation

Consequently we introduce the following Bellman operators

T̂t(R)(x , ξ) = min
ut∈U

Lt(x , ut , ξ) + R ◦ ft(x , ut , ξ)

and
Tt(R) : x 7→ E

[
T̂t(R(x , ξt))

]
Which allow to rewrite the Dynamic Programming equation as

VT = K

V̂t = T̂t(Vt+1)
Vt = Tt(Vt+1)
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What are the specificities of Primal SDDP algorithm ?

In the forward pass you don’t need to solve Tt(V k
t+1)(xkt )

It is enough to solve T̂t(V k
t+1)(xkt , ξ

k
t )

In the backward pass you need to solve T̂t(V k+1
t+1 )(xkt , ξ) for all

ξ ∈ supp(ξt)

And the cut coefficients are computed as the mean of the cut
coefficient associated to V̂t

And that’s it !
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Data: initial point x0, initial lower bounds V 0
t on Vt

for k : 0, 1, . . . do
// Forward Pass : compute a set of trial points

{
xk
t

}
t∈J0,TK

Draw a noise scenario
{
ξkt
}
t∈J1,TK

for t : 0 to T−1 do
select xk

t+1 ∈ arg min T̂t(V k
t+1)(xk

t , ξ
k
t+1)

end for
// Backward Pass : refine the lower-approximations at the trial points
for t : T−1 to 0 do

for ξ ∈ supp(ξt+1) do

θξ,k+1
t ← T̂t(V k+1

t+1 )(xk
t , ξ)

λξ,k+1
t ∈ ∂T̂t(V k+1

t+1 )(xk
t , ξ)

end for
λk+1
t ←

∑
ξ∈supp(ξt+1)

πξt+1λ
ξ,k+1
t

βk+1

t
←

∑
ξ∈supp(ξt+1)

πξt+1(θξ,k+1
t −

〈
λξ,k+1
t , xk

t

〉
)

V k+1
t ← max

{
V k

t ,
〈
λk
t , ·
〉

+ βk+1

t

}
// update lower approximation

end for
STOP if some stopping test is satisfied

end for

V. Leclère D-SDDP 24/05/2018 26 / 42



Introduction Abstract SDDP Primal SDDP Dual SDDP Numerical results

Contents

1 Introduction
Setting
Duality and cuts
Strength and weaknesses of SDDP

2 Abstract SDDP
Linear Bellman Operator
Abstract SDDP

3 Primal SDDP
Primal Bellman operators
Primal SDDP algorithm

4 Dual SDDP
Fenchel transform of LBO
Dual SDDP
Converging upper bound and stopping test
Inner Approximation

5 Numerical results
V. Leclère D-SDDP 24/05/2018 26 / 42



Introduction Abstract SDDP Primal SDDP Dual SDDP Numerical results

Fenchel transform of LBO

Theorem

Assume that the pair (B,R) satisfy the RCR assumption, R being
proper polyhedral, and B compact (i.e. G is compact valued with
compact domain).

Then B(R) is a proper function and we have that

[B(R)]? = B‡
(
R?
)

where B‡ is an explicitely given LBO.
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Dual LBO

More precisely we have

B‡(Q) : λ 7→ inf
µ∈L0(Rnx ),ν∈L0(Rnc )

E
[
− µ>h + Q(ν)

]
s.t. T>E

[
µ
]

+ λ = 0

W†u(µ) = C

W†y (µ) = ν

µ ≤ 0
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Recursion over dual value function

Denote Dt := V ?
t .

Theorem

Then {
DT = K ?

Dt = B‡t,Lt+1
(Dt+1) ∀t ∈ J0,T − 1K

where B‡t,Lt+1
:= B‡t+I‖λt+1‖∞≤Lt+1

.

This is a Bellman recursion on Dt instead of Vt .
Further, under easy technical assumptions,

{
B‡t,Lt+1

}
t∈J0,T K is a

compatible sequence of LBOs, where Vt is Lt-Lipschitz.
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What’s different with Dual SDDP

It’s exactly the abstract SDDP algorithm applied to the dual
Bellman Operator...

except that we need a starting point, and some bounds on the
dual variables.

the main differences with primal SDDP:

need to solve the coupled problem T ‡
t (Dk

t+1)(λkt ) in the
forward pass, instead of a ”one-realisation” (hat) version
also need to solve the coupled problem in the Backward phase,
instead of multiple ”one-realisation” version that are averaged
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Data: Initial primal point x0, Lipschitz bounds
{
Lt

}
t∈J0,TK

D(0)
t ← −∞

for k : 0, 1, . . . do
// Forward Pass : compute a set of trial points

{
λ

(k)
t

}
t∈J0,TK

Select λk
0 ∈ arg max‖λ0‖∞≤L0

{
x>0 λ0 −Dk

0(λ0)
}

// Fenchel transform

for t : 0 to T−1 do
select λk

t+1 ∈ arg min T ‡t,Lt+1
(Dk

t+1)(λk
t )

and draw a realization λk
t+1 of λk

t+1

end for
// Backward Pass : refine the lower-approximations at the trial points
Dk

T ← K?.
for t : T−1 to 0 do
θ
k+1
t ← T ‡t,Lt+1

(Dk+1
t+1 )(λk

t ) // computing cut coefficients

select xk+1
t ∈ ∂T ‡t,Lt+1

(Dk+1
t+1 )(λk

t )

β
k+1

t ← θ
k+1
t −

〈
λk
t , x

k+1
t

〉
Define Ck+1

t : λ 7→
〈
xk+1
t , λ

〉
+ β

k+1

t

Dk+1
t ← max

{
Dk

t , C
k+1
t

}
// update lower approximation

end for
STOP if some stopping test is satisfied

end for
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Converging upper bound and stopping test

We have
V k

t ≤ Vt

and
Dk

t ≤ Dt =⇒
(
Dk

t

)?︸ ︷︷ ︸
:≈V k

t

≥
(
D?t
)

= V ??
t = Vt

Finally, we obtain

V 0(x0) ≤ V0(x0) ≤ V 0(x0).

Using the convergence of the abstract SDDP algorithm we show
that this bounds are converging, yielding converging deterministic
stopping tests.
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Link between primal and dual approximations

x

Primal

λ

Dual
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Inner Approximation

V
k
t :=

[
Dk

t

]?
which is lower than Vt on Xt

Or

V
k
t (x) = min

σ∈∆

{
−

k∑
κ=1

σκβ
κ
t

∣∣∣ k∑
κ=1

σκx
κ
t = x

}

The inner approximation can be computed by solving

V
k+1
t (x) = sup

λ,θ
x>λ− θ

s.t. θ ≥
〈
x it , λ

〉
+ β

κ
t ∀κ ∈ J1, kK
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Inner Approximation - regularized

V
k
t :=

[
Dk

t

]?
�(Lt‖ · ‖1) which is lower than Vt on Xt

Or

V
k
t (x) = min

y∈Rnx ,σ∈∆

{
Lt‖x − y‖1−

k∑
κ=1

σκβ
κ
t

∣∣∣ k∑
κ=1

σκx
κ
t = y

}

The inner approximation can be computed by solving

V
k+1
t (x) = sup

λ,θ
x>λ− θ

s.t. θ ≥
〈
x it , λ

〉
+ β

κ
t ∀κ ∈ J1, kK

‖λ‖∞ ≤ Lt
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A converging strategy - with guaranteed payoff

Theorem

Let C IA,k
t (x) be the expected cost of the strategy πV

k
t when

starting from state x at time t.
We have,

C IA,k
t (x) ≤ V

k
t (x) lim

k
C IA,k
t (x) = Vt(x)

Thus, the inner-approximation yields a new converging strategy,
and we have an upper-bound on the (expected) value of this
strategy.
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Numerical results

0 200 400 600 800 1000
Iterations

2980000

3000000

3020000
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Dual UB
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MC OA
MC IA
Confidence (97.5%)
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Stopping test

Dual stopping test Statistical stopping test
ε (%) n it. CPU time n it. CPU time

2.0 156 183s 250 618s
1.0 236 400s 300 787s
0.5 388 1116s 450 1429s
0.1 > 1000 . 1000 5519s

Table: Comparing dual and statistical stopping criteria for different
accuracy levels ε.
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Conclusion

We extend the SDDP algorithm to an abstract framework.

Leveraging Fenchel conjugate we are able to show a dynamic
recursion between dual Bellman value functions.

We can apply SDDP to this dual recursion.

This yields a converging exact upper bound on the value of
the original problem, hence giving exact and converging
stopping tests.

This also yields a converging strategy with guaranteed payoff.

More information : http://www.optimization-online.org/

DB_FILE/2018/04/6575.pdf
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Implementation

We developp an open-source software in the recent, fast and
efficient julia language

You can test Julia through www.juliabox.com

This software focus on solving stochastic dynamic problem
through dynamic programming and SDDP

You can install the package in Julia simply by typing

Pkg.add("StochDynamicProgramming")

in your Julia console

You can test the dual version through
https://github.com/frapac/DualSDDP.jl
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