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Motivation

We consider a peer-to-peer community,

where different buildings exchange energy
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• Decision centers at nodes

• Power flows through edges

• Multistage decisions

• Large-scale problem
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Lecture outline

Problem statement

Price and resource decomposition algorithms

Application to the management of microgrids
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Problem statement



Modeling energy exchanges between nodes

Fi

Qa

Grid is represented

by a graph G = (N ,A)

Let T ∈ N? be a horizon and

• Qa
t energy exchanged through arc a,

• Fi
t energy imported at node i

At each time t ∈ J0,T − 1K we consider a

coupling between the nodal subproblems

Fi
t =

∑
a∈input(i)

Qa
t −

∑
b∈output(i)

Qb
t
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Each node manages its own devices

At each node i of the grid, at each time t, we have

Wi
t

Xi
t

Ui
t

Qa
t

Qb
t

Fi
t

• Xi
t ∈ Xi

t : state variable

(battery, hot water tank)

• Ui
t ∈ Ui

t : control variable

(energy production)

• Wi
t ∈Wi

t : noise

(consumption, renewable)
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Electrical and thermal demands are uncertain
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These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven 6/24



Writing down the nodal production problem

We aim at minimizing the operational costs over the nodes i ∈ J1,NK

J iP(Fi ) = min
Xi ,Ui

E
[ T−1∑

t=0

Lit(Xi
t ,U

i
t ,W

i
t+1)︸ ︷︷ ︸

operational cost

+K i (Xi
T )
]

subject to, for all t ∈ J0,T − 1K

i) The nodal dynamics constraint (for battery and hot water tank)

Xi
t+1 = f it (Xi

t ,U
i
t ,W

i
t+1)

ii) The non-anticipativity constraint (future remains unknown)

σ(Ui
t) ⊂ σ(Wi

0, · · · ,W
i
t)

iii) The load balance equation (production + import = demand)

∆i
t(Xi

t ,U
i
t ,F

i
t ,W

i
t+1) = 0
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Transportation costs are decoupled in time

At each time step t ∈ J0,T − 1K , we define the transport cost as the

sum of the costs of flows Qa
t through the arcs a of the grid

JT ,t(Qt) = E
(∑

a∈A
lat (Qa

t )
)

where the lat ’s are easy to compute functions (say quadratic)

Kirchhoff’s law

The balance equation stating the conservation between Qt and Ft

rewrites in a compact manner

AQt + Ft = 0

where A is the node-arc incidence matrix of the grid.
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The overall production transport problem

The production cost JP aggregates the costs at all nodes i

JP(F) =
∑
i∈N

J iP(Fi )

and the transport cost JT aggregates the edges costs at all time t

JT (Q) =
T−1∑
t=0

JT ,t(Qt)

The compact production transport problem formulation writes

V ] = min
F,Q

JP(F) + JT (Q)

s.t. AQ + F = 0
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What do we plan to do?

• We have formulated a stochastic optimization problem

• We will handle the coupling constraints by two methods:

– Price decomposition

– Resource decomposition

• We will show the scalability of decomposition algorithms!

(We solve problem gathering up to 48 buildings)

Assumption

JP(·) and JT (·) are differentiables and strongly-convex w.r.t. F and Q
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Price and resource

decomposition algorithms



Of decomposition and class struggle

Price decomposition formulates as a capitalistic world

Three levels of hierarchy

1. The boss fixes the price λ so as

to optimize global cost

2. The nodal managers manage buildings

to decrease local costs

3. The workers compute locally

nodal value functions for each building
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The boss basically just listens to the global oracle

• The boss aims to find the optimal deterministic price λ

max
λ

V (λ) := min
F,Q

JP(F) + JT (Q) +
〈
λ ,AQ + F

〉
• Let λ(k) be a given price

The boss decomposes the global function V (λ(k)) w.r.t. nodes and arcs

P1

λ
(k)
1

P2

λ
(k)
2

P3

λ
(k)
3

//
//

//

min
F

JP(F) +
〈
λ(k) ,F

〉
= min

F1,··· ,FN

N∑
i=1

J iP(Fi ) +
〈
λi ,Fi

〉
=

N∑
i=1

min
Fi

{
J iP(Fi ) +

〈
λi ,Fi

〉}

• Once subproblems solved by each nodal managers,

she updates the price with the oracle ∇V (λ(k))

λ(k+1) = λ(k) + ρ∇V (λ(k))
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Managing buildings in each node

At each building i ∈ J1,NK, the nodal manager

• Receives a deterministic price λi from the boss and build the nodal problem

V i (λi ) = min
Fi

J iP(Fi ) +
〈
λi ,Fi

〉
which rewrites as a Stochastic Optimal Control problem

V i (λi ) = min
Xi ,Ui ,Fi

E
[ T−1∑

t=0

Lit(Xi
t ,U

i
t ,W

i
t+1) +

〈
λi
t ,F

i
t

〉
+ K i (Xi

T )
]

s.t. Xi
t+1 = f it (Xi

t ,U
i
t ,W

i
t+1)

σ(Ui
t) ⊂ σ(Wi

0, · · · ,Wi
t)

∆i
t(Xi

t ,U
i
t ,F

i
t) = 0

• Solves V i by Dynamic Programming

• Estimates by Monte Carlo the local gradient

with the optimal flow (Fi )] = (Fi
0, · · · ,Fi

T−1)]

∇V i (λi ) = E
[
(Fi )]

]
∈ RT
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Workers compute value functions on the assembly line

V i
0 V i

1 V i
2 V i

T

The price process is deterministic λ = (λ0, · · · , λT−1). So

• We are able to compute value functions {V i
t} by backward recursion

• Each worker has to solve the one-step DP problem

V i
t(x

i
t ) = min

uit ,f
i
t

E
[
Lt(x

i
t , u

i
t ,W

i
t+1) +

〈
λi
t , f

i
t

〉
+ V i

t+1(f it (x i
t , u

i
t ,W

i
t+1)

]
• DP one-step problems formulate as LP or QP problems!
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How about resource allocation?

• Same idea, but in a communistic world!

• We fix allocations R rather than prices λ

and solve

min
R

V (R) := V P(R) + V T (R)

with

V P (R) = min
F

JP (F)

s.t. F − R = 0

V T (R) = min
Q

JT (Q)

s.t. AQ + R = 0

• We must ensure that Rt ∈ im(A), that is

R1
t + · · ·+ RN

t = 0

• The update step becomes

R(k+1) = R(k) − ρ∇V (R(k))
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We obtain lower and upper bounds

Theorem

• For all multipliers λ = (λ0, · · · ,λT−1)

• For all allocations R = (R0, · · · ,RT−1) such that

R1
t + · · ·+ RN

t = 0

we have

V (λ) ≤ V ] ≤ V (R)

16/24



Application to the management

of microgrids



Problem settings

• One day horizon at 15mn time step: T = 96

• Weather corresponds to a sunny day in Paris (June 28th, 2015)

• We mix three kind of buildings

1. Battery + Electrical Hot Water Tank

2. Solar Panel + Electrical Hot Water Tank

3. Electrical Hot Water Tank

and suppose that all consumers are commoners sharing their devices
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We consider different configurations

3-Nodes 6-Nodes 12-Nodes

24-Nodes 48-Nodes
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Algorithms inventory

Nodal decomposition

• Encompass price and resource decomposition

• Resolution by Quasi-Newton (BFGS) gradient descent

λ(k+1) = λ(k) + ρ(k)W (k)∇V (λ(k))

• BFGS iterates till no descent direction is found

• Each nodal subproblem solved by SDDP (quickly converge)

• Oracle ∇V (λ) estimated by Monte Carlo (Nscen = 1, 000)

SDDP

We use as a reference the good old SDDP algorithms

• Noises W1
t , · · · ,WN

t are independent node by node

(total support size is |supp(Wi
t)|N .) Need to resample the noise!

• Level-one cut selection algorithm

• Converged once gap between UB and LB is lower than 1%
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Each level of hierarchy has its own algorithm

L-BFGS (IPOPT)

SDDP (StochDynamicProgramming)

QP (Gurobi)
Workers

Nodal managers

Boss

All glue code is implemented in Julia 0.6 with JuMP
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Results

Graph 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP time 1’ 3’ 10’ 79’ 453’

SDDP LB 2.252 4.559 8.897 17.528 33.103

SDDP value 2.26 ± 0.006 4.71 ± 0.008 9.36 ± 0.011 18.59 ± 0.016 35.50 ± 0.023

Price time 6’ 14’ 29’ 41’ 128’

Price LB 2.137 4.473 8.967 17.870 33.964

Price value 2.28 ± 0.006 4.64 ± 0.008 9.23 ± 0.012 18.39 ± 0.016 34.90 ± 0.023

Resource time 13’ 15’ 36’ 64’

Resource UB 2.539 5.273 10.537 21.054

Resource value 2.29 ± 0.006 4.71 ± 0.008 9.31 ± 0.011 18.56 ± 0.016

• For large problems (N ≥ 12), Price Decomposition yields

a better lower bound than SDDP (the larger the better)

• The upper bound is further from optimal than the lower bound

• For the biggest instance, Price Decomposition is 3.5x as fast as SDDP
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Hunting down the duck curve

Looking at the average global electricity import from EDF
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Do the nodal units manage well their buildings?
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• Node 1: 3kWh Battery

• Node 2: nothing

• Node 3: 16m2 of solar panels

Looking at Node 3

• During day, Node 3

– Produces energy with its solar panels

– Exports energy

to other nodes (F3 < 0)

– Has lowest marginal price λ3

• During evening, Node 3

– Imports energy from Node 1 (who

has battery)

– Has larger marginal price than

Node 1

λ1 < λ3
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Conclusion



Proletariat of the world, conclude!

• We design an algorithm that decompose spatially and temporally,

in a decentralized manner

• Beat SDDP for large instances (≥ 24 nodes)

• Can we obtain tighter bounds?

If we select properly the stochastic processes R and λ,

we can obtain nodal value functions but with an extended local state
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