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We consider a peer-to-peer community,
where different buildings exchange energy

Decision centers at nodes

Power flows through edges

Multistage decisions

Large-scale problem
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Lecture outline

Problem statement
Price and resource decomposition algorithms

Application to the management of microgrids
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Problem statement



Modeling energy exchanges between nodes

Grid is represented
by a graph G = (N, A)

Let T € N* be a horizon and
e Q7 energy exchanged through arc a,

° FQ energy imported at node i

At each time t € [0, T — 1] we consider a
coupling between the nodal subproblems

= > Q- )

acinput(i) beoutput(i)
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Each node manages its own devices

At each node / of the grid, at each time t, we have

Pl
. ° X’; € Xi: state variable

(battery, hot water tank)
e Ui € Ui: control variable
(energy production)
e Wi € Wi: noise
(consumption, renewable)
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Electrical and thermal demands are uncertain

House 1 House 2 House 3

Elec. demand [kW]

DHW demand [kW]

0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24

These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven 6/24



Writing down the nodal production problem

We aim at minimizing the operational costs over the nodes i € [1, N]

T-1
JplF) = min, B[ 3 LX], UL W) +K(X)|
l7 i = ———

operational cost

subject to, for all t € [0, T — 1]

i) The nodal dynamics constraint (for battery and hot water tank)
Y VA R TIRY Y11
Xt+1 =1 (Xt7 Ut’Wt+1)
II) The non-anticipativity constraint (future remains unknown)

O'(U:;) C O'(Wé, e ,W’t)

III) The load balance equation (production + import = demand)
i i i i i —
AL(X,, U, FL W) =0
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Transportation costs are decoupled in time

At t €0, T —1] , we define the as the
sum of the costs of flows Q7 through the arcs a of the grid

@) =E( D #(Q))

acA

where the /2's are easy to compute functions (say quadratic)

Kirchhoff’s law
The balance equation stating the conservation between Q, and F,
rewrites in a compact manner

AQ,+F,=0
where A is the node-arc incidence matrix of the grid.
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The overall production transport problem

The production cost Jp aggregates the costs at all nodes i
Jp(F) = Z Jp(F')
ieN

and the transport cost JT aggregates the edges costs at all time t

The compact production transport problem formulation writes

V*# = min Jp(F) + J7(Q)

Q
st. AQ+F=0

73
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What do we plan to do?

e We have formulated a stochastic optimization problem

e We will handle the coupling constraints by two methods:

— Price decomposition
— Resource decomposition

e We will show the scalability of decomposition algorithms!
(We solve problem gathering up to 48 buildings)

Assumption

Jp(-) and J7(+) are differentiables and strongly-convex w.r.t. F and Q
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Price and resource
decomposition algorithms




Of decomposition and class struggle

Price decomposition formulates as a capitalistic world
Three levels of hierarchy

1. The boss fixes the price A so as
to optimize global cost

2. The nodal managers manage buildings
to decrease local costs

3. The workers compute locally
nodal value functions for each building
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The boss basically just listens to the global oracle

e The boss aims to find the optimal deterministic price A
max V() := min Jp(F) + Jr(Q) + (X,AQ +F)

e Let A(K) be a given price
The boss decomposes the global function V(A(K)) w.r.t. nodes and arcs

N
2
\/};\\ f (k) . u i (gl i i
\2/4\1 mF|an(F)+<)\ ,F>:F1m|nFNZJP(F)+<A LF7
A e BN
//H/ ':‘P)‘ N o o
@S =3 min {J(F) + (X, F)}
Y A3 -
A

e Once subproblems solved by each nodal managers,
she updates the price with the oracle VV/(A(K)

AUHD = A 4 oy (ak)
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Managing buildings in each no

At each building i € [1, N], the nodal manager

e Receives a deterministic price A’ from the boss and build the nodal problem
V(X)) = min Jp(F') + (X', F)
FI
which rewrites as a Stochastic Optimal Control problem
T-1
Vi) = min B[ Y7 LEXE UL W) + (AL FL + KT(X7))
X',U’,F’ 0
s.t. X’t"-%—l = fti(xi‘: U{HW{*+1)
a(Uh) C o(WE,--- ,Wi)
Ay(Xi, Up, F) =0

e Solves V/ by Dynamic Programming

e Estimates by Monte Carlo the local gradient

with the optimal flow (F/)* = (F},--- ,Fi._ )¢

VVI(A) =E[(F)}] eRT -



rkers compute value functions on the assembly line

The price process is deterministic A = (Ao, -+ ,A7_1). So

e We are able to compute value functions {Vi} by backward recursion

e Each worker has to solve the one-step DP problem
Vi) = min E[Le(xt, e, Wern) + (s ) 4 Vi (R0, e, W)
Cholis

e DP one-step problems formulate as LP or QP problems! 14/24



How about resource allocation?

e Same idea, but in a communistic world!

e We fix allocations R rather than prices A
and solve

mRin V(R) := Vp(R) + V1(R)

with

VP(R) = mFin JP(F) VT(R) :inn JT(Q)

st. F-R=0 st. AQ+R =0

e \We must ensure that R, € im(A), that is

Ri+---+R =0

e The update step becomes

R+ — Rk _ pVV(R(k))
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We obtain lower and upper bounds

Theorem
o For all multipliers X = (Xg,- -+, Ar_1)
e For all allocations R = (R, -+ ,R,_;) such that
Ri+---+RY=0

we have
V(M) < V¥ <V(R)
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Application to the management
of microgrids




Problem settings

e One day horizon at 15mn time step: T = 96
e Weather corresponds to a sunny day in Paris (June 28th, 2015)

e We mix three kind of buildings
1. Battery + Electrical Hot Water Tank
2. Solar Panel + Electrical Hot Water Tank
3. Electrical Hot Water Tank

and suppose that all consumers are commoners sharing their devices
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We consider different configurations

3-Nodes 6-Nodes 12-Nodes
24-Nodes 48-Nodes
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Algorithms inventory

Nodal decomposition

e Encompass and decomposition

e Resolution by Quasi-Newton (BFGS) gradient descent
AAD = AR 4 (O w kg v (AK)
e BFGS iterates till no descent direction is found

e Each nodal subproblem solved by SDDP (quickly converge)
e Oracle VV/(X) estimated by Monte Carlo (N*" = 1,000)

SDDP
We use as a reference the good old SDDP algorithms

e Noises W%, cee ,W,{V are independent node by node
(total support size is |supp(W})|V.) Need to the noise!
e level-one cut selection algorithm

e Converged once gap between UB and LB is lower than 1% y
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Each level of hierarchy has its own algorithm

L-BFGS (IPOPT)
Boss

Nodal managers SDDP (StochDynamicProgramming)

QP (Gurobi
Workers ( )

All glue code is implemented in Julia 0.6 with JuMP

- @
julia or
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Graph 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes
SDDP time 1 3 10’ 79' 453’
SDDP LB 2.252 4.559 8.897 17.528 33.103
SDDP value 2.26 + 0.006 4.71 + 0.008 9.36 4+ 0.011  18.59 £+ 0.016  35.50 £ 0.023
Price time 6’ 14’ 29’ 41’ 128’
Price LB 2.137 4.473 8.967 17.870 33.964
Price value 2.28 + 0.006 4.64 +0.008 9.23 £ 0.012 18.39 £ 0.016  34.90 £ 0.023
Resource time 13’ 15’ 36’ 64’

Resource UB 2.539 5.273 10.537 21.054

Resource value | 2.29 4+ 0.006 4.71 4+ 0.008  9.31 £+ 0.011  18.56 + 0.016
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e For large problems (N > 12), Price Decomposition yields
a better lower bound than SDDP (the larger the better)

e The upper bound is further from optimal than the lower bound

e For the biggest instance, Price Decomposition is 3.5x as fast as SDDP
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Hunting down the d curve

Looking at the average global electricity import from EDF

=== No exchange
=mmm Exchange

Average importation [kW]

0 3 6 9 12 15 18 21 24 02 /24
Time [h] /



Do the nodal units manage well their buildings?

e Node 1: 3kWh Battery
e Node 2: nothing

012 e Node 3: 16m? of solar panels

°

Multipliers [€]
°

e Looking at Node 3

e During day, Node 3

— Produces energy with its solar panels
— Exports energy
to other nodes (F3 < 0)

00 30 60 90 120 150 180 210
Time (h]

— Has lowest marginal price A3

e During evening, Node 3

— Imports energy from Node 1 (who
has battery)

— Has larger marginal price than
Node 1

Injection flow (kW]

A1 < A3

00 30 60 90 120 150 180 210
Time (h]
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Conclusion




Proletariat of the world, conclude!

e We design an algorithm that decompose spatially and temporally,
in a decentralized manner

e Beat SDDP for large instances (> 24 nodes)

e Can we obtain tighter bounds?
If we select properly the stochastic processes R and A,
we can obtain nodal value functions but with an extended local state
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