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Multistage stochastic linear programs - MSLPs

Consider the multistage linear stochastic program:

min
A1x1=b1
x1≥0

c
>
1 x1 + E

 min
B2x1+A2x2=b2

x2≥0

c
>
2 x2 + E

· · · + E[ min
BT xT−1+AT xT=bT

xT≥0

c
>
T xT ]




I Some elements of the data ξt = (ct, Bt, At, bt) depend on uncertainties
(ξ1 = (c1, A1, b1) is supposed to be known)

I We view the sequence ξ = (ξ1, . . . , ξT ) as a stochastic process

I We say that the stochastic process is stagewise independent if ξt+1 is
independent of ξ[t] := (ξ1, . . . , ξt), t = 1, . . . , T

In multistage stochastic linear programs (MSLP) the uncertain data is
revealed gradually over time t = 1, . . . , T

It is convenient to write the dynamic equations of the above MSLP
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Dynamic equations: ξt = (ct, Bt, At, bt)

I Stage t = T
QT (xT−1, ξt) := min

BT xT−1+AT xT=bT
xT≥0

c>T xT

I At stages t = 2, . . . , T − 1

Qt(xt−1, ξt) := min
Btxt−1+Atxt=bt

xt≥0

c>t xt +Qt+1(xt)

I Stage t = 1
min

A1x1=b1
x1≥0

c>1 x1 +Q2(x1)

I Recourse function

Qt+1(xt) := E [Qt+1(xt, ξt+1)]
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Dynamic equations: cutting-plane approximations

I Stage t = T
QT (xT−1, ξt) := min

BT xT−1+AT xT=bT
xT≥0

c>T xT

I At stages t = 2, . . . , T − 1

Q
t
(xt−1, ξt) := min

Btxt−1+Atxt=bt
xt≥0

c>t xt + Q̌t+1(xt)

I Stage t = 1
min

A1x1=b1
x1≥0

c>1 x1 + Q̌2(x1)

I Q̌t is a cutting-plane approximation of the recourse function

Q̌t+1(xt) := max
j=1,...,k

{βj>t+1xt + αjt+1} ≤ Qt+1(xt)



SDDP algorithm
Stochastic Dual Dynamic Programming, Pereira and Pinto, 1991

Let {ξ1, . . . , ξN} be the set of scenarios representing the considered tree

Forward pass
At iteration k, the forward step of the SDDP algorithm consists in choosing
M < N scenarios J k := {ξ̃1, . . . , ξ̃M} and computing xkt as a solution of

min
xt≥0

ct
>xt + Q̌kt+1(xt)

s.t. Atxt = bt −Btxkt−1

for all1 t = 2, . . . , T and all ξ̃ ∈ J k

I Estimate an upper bound for the MSLP

Backward pass
By considering the new trial points xkt , in this step the algorithm comes backward

computing new cuts to improve the cutting-plane models to Q̌k+1
t ,

t = T, T − 1, . . . , 2

I A valid lower bound is available

zk = min
x1≥0

c1
>x1 + Q̌k+1

2 (x2)

s.t. A1x1 = b1

1We define Q̌T+1 ≡ 0.



SDDP: its engine

The workhorse in this kind of decomposition is the Kelley’s cutting-plane method

xkt ∈ arg min
xt≥0

ct
>xt + Q̌kt+1(xt)

s.t. Atxt = bt −Btxkt−1

I Unstable, slow convergence

In two-stage stochastic programming (and in deterministic convex optimization)
regularized methods provide faster convergence than the Kelley’s cutting-plane
method (L-Shaped method)

It is then a natural idea to try to accelerate the SDDP algorithm by employing
some kind of regularization



Multistage regularized decomposition

The Regularized Decomposition for MSLPs (2) replaces3 the cutting-plane master
problem at each visited node (j, t) with

xkt ∈ arg min
xt≥0

ct
>xt + Q̌kt+1(xt) +

1

2τk
‖G(xt − x̂t)‖2

s.t. Atxt = bt −Btxkt−1

I where G is a square matrix, typically G = I, G = [0 I], G = [I 0]

I It is necessary that τk → +∞ for convergence

I The authors define x̂t = xk−1
t

I Notice that x̂t = xk−1
t may not be feasible at iteration k and visited node

(j, t)!

2T. Asanov, Q. Powell. Regularized Decomposition of High-Dimensional Multistage
Stochastic Programs with Markov Uncertainty, 2018

3A related idea is present in (Sen and Zhou 2014)



Multistage level decomposition

The Level Decomposition for MSLPs (4) replaces the cutting-plane master
problem at each visited node (j, t) with

xkt ∈ arg min
xt≥0

1

2
‖xt‖2

s.t. Atxt = bt −Btxkt−1

c>t xt + Q̌t+1(xt) ≤ f tlev

I Ideally, f tlev is the optimal value of

min
xt≥0

ct
>xt +Qt+1(xt)

s.t. Atxt = bt −Btxkt−1

In practice, f tlev is defined via heuristics

I When f tlev is too small the level QP is infeasible: it is necessary to resort back
to the standard SDDP in this case

4W. van Ackooij, W. de Oliveira and Y. Song. On regularization with normal solutions in
decomposition methods for multistage stochastic programming, 2017



Multistage level decomposition

Bilevel formulation

There exists a constant τ̄ > 0 such that for all τ ≥ τ̄ the xt-solution of the QP5
min
r,xt

r + 1
2τ
‖xt‖2

s.t. Atxt = bt −Btxkt−1

c>t xt + Q̌t+1(xt) ≤ r
xt ≥ 0, f tlev ≤ r

either solves min
xt≥0

1

2
‖xt‖2

s.t. Atxt = bt −Btxkt−1

c>t xt + Q̌t+1(xt) ≤ f tlev

(if it is feasible)

Level Iterate

or computes the normal solution of min
xt≥0

c>t xt + Q̌t+1(xt)

s.t. Atxt = bt −Btxkt−1

Normal Iterate

Normal solution is the solution of minimal norm

Specialized QP solver: K.C. Kiwiel. Finding normal solutions in piecewise linear

programming. Applied Mathematics and Optimization, 32(3):235–254, 1995.

5Finite perturbation of convex programs, Ferris and Mangasarian 1991



A hydro-thermal power generation planning problem
Numerical assessments

I The objective of the model is to minimize the (expected) total cost over T stages,
including the power generation cost and the penalty of insufficient power to satisfy the
demand, under the uncertainty of the amount of rainfall in the future

I Power can be generated by 30 hydro power plants (16 with reservoir) and 38 thermal
power plants

I The inflow of water into each reservoir is random, and a finite set of scenarios for each
time stage (monthly by default) in the planning horizon is available from prediction

I Fixed time limit of one hour (3600 seconds) for every solver and employ 10 sample paths
in each forward step

I An exception is that for the multistage regularized decomposition, which uses only one
sample path per iteration as suggested by Asamov and Powell, 2015 (we also observed in
our numerical experiments that this variant yielded better results)

• Improvement of LB w.r.t. SDDP: T = 61, # Nodest = 50
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A hydro-thermal power generation planning problem
Numerical assessments

I The objective of the model is to minimize the (expected) total cost over T stages,
including the power generation cost and the penalty of insufficient power to satisfy the
demand, under the uncertainty of the amount of rainfall in the future

I Power can be generated by 30 hydro power plants (16 with reservoir) and 38 thermal
power plants

I The inflow of water into each reservoir is random, and a finite set of scenarios for each
time stage (monthly by default) in the planning horizon is available from prediction

I Fixed time limit of one hour (3600 seconds) for every solver and employ 10 sample paths
in each forward step

I An exception is that for the multistage regularized decomposition, which uses only one
sample path per iteration as suggested by Asamov and Powell, 2015 (we also observed in
our numerical experiments that this variant yielded better results)

• Improvement of LB w.r.t. SDDP

T # Nodest
Reg. Decomp. Level Decomp.
LB Iter LB Iter

25 20 0.2% 1222 3.3% 130
50 2.8% 1125 5.9% 122
80 2.9% 1067 8.0% 115

61 20 -10.8% 817 -2.2% 87
50 -8.4% 744 2.5% 79
80 -4.3% 692 8.8% 74

97 20 -12.2% 685 -6.9% 73
50 -0.3% 617 3.3% 67
80 -1.1% 567 2.0% 61

I The Forward step is
more time consuming

I QPs are harder than
LPs

I What if we try a simpler
regularization scheme?
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Central cutting-plane algorithm: Chebyshev center

Consider the deterministic convex optimization problem

min
x∈X

f(x), f : <n → <

and let
f̌k(x) := max

j≤k
{βj>x+ αj}

be a cutting-plane for f

To overcome the instability inherent in the cutting-plane method, the work (6)
proposes to define iterates in X as the Chebyshev center of the polyhedron:

Sk :=

{
(x, r) ∈ <n+1

∣∣∣ r ≤ z̄k
βj>x+ αj ≤ r , ∀ j ≤ k

}
where z̄k is an upper bound on the optimal value of the above problem

This amounts to solving the LP

(xk+1, r̃, σ̃) ∈ arg


maxx,r,σ σ
s.t. r + σ ≤ z̄k

βj>x+ αj + σ
√

1 + ‖βj‖2 ≤ r, j = 1, . . . , k
x ∈ X, r, σ ∈ <,

6J. Elzinga and T. G. Moore. A central cutting plane algorithm for the convex
programming problem, Math. Program., 1975.



Central Path Cutting-plane Method
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Central cutting-plane algorithm for MSLPs
Our idea is to employ this technique to SDDP

To this end, we replace the SDDP subproblems in the forward step

{
min
xt≥0

ct>xt + Q̌kt+1(xt)

s.t. Atxt = bt −Btxkt−1

≡


min
xt,rt

rt

s.t. Atxt = bt −Btxkt−1

(ct + βjt+1)>xt + αjt+1 ≤ rt ∀ j ≤ k
xt ≥ 0

with

max
xt,rt,σt

σt

s.t. Atxt = bt −Btxkt−1

(ct + βjt+1)>xt + αjt+1 + σt

√
1 + ‖(ct + βjt+1)‖ ≤ rt ∀ j ≤ k

σt + rt ≤ z̄(ξ[t])k
xt ≥ 0, rt, σt ∈ <

I This is a LP with only two additional variables!

I The upper bound z̄(ξ[t])
k is not reliable. moreover, it depends on each node

of the underlying scenario tree and decisions made in previous stages

I This hinders a direct application of the central path CP algorithm to
multistage stochastic programming



Central cutting-plane algorithm for MSLPs

max
xt,rt,σt

σt

s.t. Atxt = bt − Btxkt−1

(ct + β
j
t+1)>xt + α

j
t+1 + σt

√
1 + ‖(ct + β

j
t+1)‖ ≤ rt ∀ j ≤ k

σt + rt ≤ z̄(ξ[t])
k

xt ≥ 0, rt, σt ∈ <

If we fix the radius σt then the (difficult-to-estimate) upper bound can be
dismissed. We can thus reformulate the subproblem as

The new proposal (only in the forward step)
min
xt,rt

c>t x+ rt

s.t. Atxt = bt −Btxkt−1

βj>t+1xt + αjt+1 + σ̄t

√
1 + ‖(ct + βjt+1)‖ ≤ rt ∀ j ≤ k

xt ≥ 0, rt ∈ <

In this case, σ̄t is a parameter

The classical SDDP
min
xt,rt

c>t x+ rt

s.t. Atxt = bt −Btxkt−1

βj>t+1xt + αjt+1 ≤ rt ∀ j ≤ k
xt ≥ 0, rt ∈ <



Geometric interpretation: example
Consider a reduced power system with, 1 hydro, 5 five thermal plants, T = 4 time
steps and 125 scenarios (# Nodest = 5, t = 2, 3, 4). The classical SDDP computes
the exact solution and cost R$34, 051.40 in 9 iterations, while the SDDP with
Chebyshev centers requires only 6 iterations



SDDP algorithm with Chebyshev centers

Let SN := {ξ1, . . . , ξN} be the set of scenarios representing the considered tree

Choose a large constant τ > 0

Forward pass
At iteration k, choose M < N scenarios Jk := {ξ̃1, . . . , ξ̃M} and solve

x
k
t ∈


min
xt,rt

c>t x + rt

s.t. Atxt = bt − Btxkt−1

β
j>
t+1xt + α

j
t+1 + σ̄kt

√
1 + ‖(ct + β

j
t+1)‖ ≤ rt ∀ j ≤ k

xt ≥ 0, rt ∈ <

for all7 t = 2, . . . , T and all ξ̃ ∈ Jk

Backward pass
As in the SDDP algorithm: compute new cuts and update the cutting-plane model Q̌t+1 but

considering only points xkt related to the sample set Jk

If σkt = 0 for all stages and iterates, then the above algorithm is nothing but a
SDDP algorithm

Convergence analysis. It follows from the SDDP analysis: just make sure that
limk→∞ σkt = 0 for all t

7We define Q̌T+1 ≡ 0.



Numerical assessment

I We consider the Brazilian multistage hydro-thermal power generation
planning problem with individualized decisions per plant over a five-year
planning horizon (T = 60) with monthly decisions

I The objective of the model is to minimize the total cost over the horizon,
including power generation cost and penalty of insufficient power to satisfy
the demand, under the uncertainty of the amount of rainfall in the future

I Power can be generated by 294 power plants (153 hydro and 141 thermal
plants

I Every stage t and every node of the scenario tree is composed of 2 886
variables and 1 459 constraints

I The inflow uncertainties are handled via a PAR model with a scenario tree
with 20 realizations per stage (N = 2059 scenarios for each one of the 153
hydro plants)

I The comparative analysis is carried out among five solvers for three different
seeds, which generate distinct scenario trees

I The forward step considers 216 scenarios per iteration with resampling

I We considered risk-neutral and risk-averse cases

I A parallel processing algorithm strategy is used within servers that have a
configuration Xeon CPU with 2.60GHz, using 8 threads and 128 GB RAM.
All LPs are solved using Gurobi called from environment C++.



Numerical assessment

In our experiments, we consider the following variants of SDDP for comparison:

1. The classical SDDP algorithm CL

2. The new proposal: SDDP algorithm with Chebyshev centers CC

3. CC-CL the 24 first hours with CC and the last 24 hours with the classical
SDDP

4. CL-CC the inverse of the previous strategy

5. CC50CL Chebyshev centers are computed for 50% of scenarios in the forward
step, and for the other half we solve the SDDP subproblems

With the purpose of obtaining reasonable lower bound stabilizations all our
solvers were stopped with 48 hours of CPU time













Concluding remarks

1. Regularize the forward step of SDDP by increasing the cuts’ intercept

2. The strategy’s inspiration is the Central Path Cutting-plane model, that uses
Chebyshev centers

3. Instead of using estimated upper bounds we fix the ball radius

4. The proposed approach requires
I solving LPs along the forward step
I properly tuning the radius parameters

5. No need for stability centers

6. The proposed technique computes better lower bounds and (nearly-optimal)
feasible policies in less than 90% of the CPU time required by the classical
SDDP.
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