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MULTISTAGE STOCHASTIC LINEAR PROGRAMS - MSLPSs

Consider the multistage linear stochastic program:

. T s T N T
min cy 1 +E min co wg +E |- +E[ min cpap]
Aqmy=by L Bozq+Agzo=by 2 Bragp_q1+Apep=bp L T
x12>0 x9>0 x>0

» Some elements of the data & = (ct, B¢, At, bt) depend on uncertainties
(&1 = (c1,A1,b1) is supposed to be known)

» We view the sequence & = (£1,...,&7) as a stochastic process

> We say that the stochastic process is stagewise independent if &1 is
independent of £y := (§1,...,&), t=1,...,T

In multistage stochastic linear programs (MSLP) the uncertain data is
revealed gradually over time t =1,...,T




MULTISTAGE STOCHASTIC LINEAR PROGRAMMING

. T . T . T
Aym=by T o Bawi 4 Agwa=by 2 ? e * ]E[BTIT—lrilfngIT:bT erer]
120 220 x>0
DYNAMIC EQUATIONS: & = (¢, By, Ay, by)
> Staget =T
. T
Qr(zr_1,&t) = min crar
( &) Brap_i+Apep=bp L
x>0
> At stagest=2,...,7 —1
. T
t(xe—1,&) = min ¢y vt + Q1 (we
@ ( ’ ) Bixy_1+Atzt=by t + ( )
24>0
> Staget =1
min cIml + Qa(z1)
Ajx1=by
x1>0

> Recourse function.

Qir1(zt) := E[Qeq1(we, Ee41))] /_{MA

Conte e anématives opiutes



MULTISTAGE STOCHASTIC LINEAR PROGRAMMING

min chl +E min c;—rg +E|[---4+E[ min c; xp]
Aqzq=bq Bozq+Agmg=by Bpap_1+Apzp=bp
x12>0 x92>0

@ >0

DYNAMIC EQUATIONS: CUTTING-PLANE APPROXIMATIONS

> Staget =T
. T
Qr(zrr-1,8) = min cpxT
’ Brzp_1+Apxzp=bp T
x>0

> At stagest=2,..., 7T —1

. T =

Ti— = min c; Tt + X

Q,(we—1,8&) P Qr1(xt)
x>0

> Staget =1

min chl —+ Qg(xl)
Arm1=by

21>0

> O is a cutting-plane approximation of the recourse function
. - ,
Qi1 (xt) = jzfglf}?fyk{ﬁﬁﬂt +al 1} < Quyi(ae)

AZMA
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SDDP ALGORITHM

STOCHASTIC DUAL DYNAMIC PROGRAMMING, PEREIRA AND PINTO, 1991

Let {€1,...,€N} be the set of scenarios representing the considered tree

FORWARD PASS
At iteration k, the forward step of the SDDP algorlthm consists in choosing
M < N scenarios J* := {El {M} and computing xt as a solution of

min ¢ 2t + Qf+1(xt)
x4 >0

s.t. Aixe = by — Bﬁtfﬁl

for all! t =2,...,7T and allée.jk
» Estimate an upper bound for the MSLP

BACKWARD PASS

By considering the new trial points :c,’f, in this step the algorithm comes backward
computing new cuts to improve the cutting-plane models to Qf"'l,
t=T,T—1,...,2

» A valid lower bound is available

gk:min c1 $1+Qk+1( 2)

x1>0

s.t. Ajx1 =b1

1We define QT+1 =0.



SDDP: 1TS ENGINE

The workhorse in this kind of decomposition is the Kelley’s cutting-plane method
k : T Nk
Ty €arg min ¢t T x
t gwtzo t t+Qt+1( t)

s.t. Aizy = by — Btmf;]

» Unstable, slow convergence

In two-stage stochastic programming (and in deterministic convex optimization)
regularized methods provide faster convergence than the Kelley’s cutting-plane
method (L-Shaped method)

It is then a natural idea to try to accelerate the SDDP algorithm by employing
some kind of regularization




MULTISTAGE REGULARIZED DECOMPOSITION

The Regularized Decomposition for MSLPs (2) replaces® the cutting-plane master
problem at each visited node (j,t) with

< 1 -
ot cargmin e o+ Ofa(w) + GG — 20

s.t. Aize = by — Btmf_l

» where G is a square matrix, typically G =1, G=[01], G =[I 0]

» It is necessary that 7, — +oo for convergence

» The authors define &y = mf -1
» Notice that 2+ = :13571 may not be feasible at iteration k£ and visited node
(, )
2 2\
T. Asanov, Q. Powell. Regularized Decomposition of High-Dimensional Multistage _,MA
Stochastic Programs with Markov Uncertainty, 2018 Cene e s ot

3 A related idea is present in (Sen and Zhou 2014)



MULTISTAGE LEVEL DECOMPOSITION

The Level Decomposition for MSLPs (4) replaces the cutting-plane master
problem at each visited node (7, t) with

1
k . 2
xry € arg min  —||x
Feargmin el
s.t. Aixy = by — Bt$i671
C,Tm + Qt+1 (x1) < fltev
» Ideally, fi,, is the optimal value of
. T
min ¢t x¢ + Qey1(xt)
x>0
s.t. Aizy = by — th?—l

In practice, fi,, is defined via heuristics

» When ff  is too small the level QP is infeasible: it is necessary to resort back
to the standard SDDP in this case

ZMA

e —

4W. van Ackooij, W. de Oliveira and Y. Song. On regularization with normal solutions in*
decomposition methods for multistage stochastic programming, 2017



MULTISTAGE LEVEL DECOMPOSITION

There exists a constant 7 > 0 such that for all 7 > 7 the x¢-solution of the QP5

: 1 2
min 7+ 57|z

s.t. Azt = by — Btmf,I

cfxe + Opp1(xe) <7
Tt 2 07 ffev S T

either solves min =z (if it is feasible)
>0 2

s.t. Apxy = by — Bzl | Level Iterate

cf mt+ Qe (w1) < floy

. oIt — 5
or computes the normal solution of ;?121’10 ¢ ot + Qrr1(xe) Normal Tterate

s.t. Arxy = by — Bt$4€71

Specialized QP solver: K.C. Kiwiel. Finding normal solutions in piecewise linear

programming. Applied Mathematics and Optimization, 32(3):235-254, 1995. /IVIA
7
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5Finite perturbation of convex programs, Ferris and Mangasarian 1991



A HYDRO-THERMAL POWER GENERATION PLANNING PROBLEM

NUMERICAL ASSESSMENTS

» The objective of the model is to minimize the (expected) total cost over T stages,
including the power generation cost and the penalty of insufficient power to satisfy the
demand, under the uncertainty of the amount of rainfall in the future

Power can be generated by 30 hydro power plants (16 with reservoir) and 38 thermal
power plants

The inflow of water into each reservoir is random, and a finite set of scenarios for each
time stage (monthly by default) in the planning horizon is available from prediction

e Improvement of LB w.r.t. SDDP: T = 61, # Nodes; = 50
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A HYDRO-THERMAL POWER GENERATION PLANNING PROBLEM

NUMERICAL ASSESSMENTS

» The objective of the model is to minimize the (expected) total cost over T stages,
including the power generation cost and the penalty of insufficient power to satisfy the
demand, under the uncertainty of the amount of rainfall in the future

» Power can be generated by 30 hydro power plants (16 with reservoir) and 38 thermal
power plants

» The inflow of water into each reservoir is random, and a finite set of scenarios for each
time stage (monthly by default) in the planning horizon is available from prediction

» Fixed time limit of one hour (3600 seconds) for every solver and employ 10 sample paths
in each forward step

» An exception is that for the multistage regularized decomposition, which uses only one
sample path per iteration as suggested by Asamov and Powell, 2015 (we also observed in
our numerical experiments that this variant yielded better results)

e Improvement of LB w.r.t. SDDP
T # Nodesy Reg. Decomp.  Level Decomp.

LB Iter LB Iter

25 20 02% 1222 33% 130

50 28% 1125 5.9% 122

80 29% 1067 8.0% 115

61 20 108% 817 22% 87

50 84% 744 25% 79

80 43% 692 88% T4

97 20 122% 685 6.9% 73

50 03% 617  33% 67
80 11% 567 2.0% 61 ZMA
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A HYDRO-THERMAL POWER GENERATION PLANNING PROBLEM

NUMERICAL ASSESSMENTS

» The objective of the model is to minimize the (expected) total cost over T stages,
including the power generation cost and the penalty of insufficient power to satisfy the
demand, under the uncertainty of the amount of rainfall in the future

» Power can be generated by 30 hydro power plants (16 with reservoir) and 38 thermal
power plants

» The inflow of water into each reservoir is random, and a finite set of scenarios for each
time stage (monthly by default) in the planning horizon is available from prediction

» Fixed time limit of one hour (3600 seconds) for every solver and employ 10 sample paths
in each forward step

» An exception is that for the multistage regularized decomposition, which uses only one
sample path per iteration as suggested by Asamov and Powell, 2015 (we also observed in
our numerical experiments that this variant yielded better results)

e Improvement of LB w.r.t. SDDP
T # Nodesy Reg. Decomp.  Level Decomp.

LB Iter LB Iter

25 20 0.2% 1222 3.3% 130 » The Forward step is

50 2.8% 1125  5.9% 122 more time consuming

80 2.9% 1067  8.0% 115

P harder th

61 20 108% 817 22% 87 g SP: are harder than

50 -8.4% 744 2.5% 79

30 -4.3% 692 8.8% 74 » What if we try a simpler
97 20 12.2% 685 6.9% 73 regularization scheme?

50 -0.3% 617 3.3% 67 7

80 -1.1% 567 2.0% 61 %MA

[ ——




CENTRAL CUTTING-PLANE ALGORITHM: CHEBYSHEV CENTER

Consider the deterministic convex optimization problem
min f(z R R
min f(2), f

and let 3 ) )
fe(z) = max{p’ Tz + o’}
J<k

be a cutting-plane for f

To overcome the instability inherent in the cutting-plane method, the work (%)
proposes to define iterates in X as the Chebyshev center of the polyhedron:

T <zk

— ntl | T .
Sk-*{(“)”* BiTetal <, VjSk}

k

where Z" is an upper bound on the optimal value of the above problem

This amounts to solving the LP

maXg,r.oc O
- s.t. r4+o < zk
o) € arg BiTetad +o/I+ B2 <r j=1,....k
ze X, roceR,

(2F 1,7,

6J. Elzinga and T. G. Moore. A central cutting plane algorithm for the convex
programming problem, Math. Program., 1975.



CENTRAL PATH CUTTING-PLANE METHOD

f(x)
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CENTRAL PATH CUTTING-PLANE METHOD
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CENTRAL PATH CUTTING-PLANE METHOD
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CENTRAL PATH CUTTING-PLANE METHOD
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CENTRAL PATH CUTTING-PLANE METHOD
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CENTRAL PATH CUTTING-PLANE METHOD
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CENTRAL CUTTING-PLANE ALGORITHM FOR MSLPS

Our idea is to employ this technique to SDDP

To this end, we replace the SDDP subproblems in the forward step

min

. T Sk Tt,Tt
min ¢ ' ¢ + Q Tt
>0 f1(2e) = s.t.
s.t. Aizy = by — Bta:i11

with
max ot
Tt,TE,0t
s.t. Arxy = by — Bﬁcfﬁl

Tt
Atz = by — Btmf_l

(ce+ B ) Twe+aly <
Tt Z 0

(ct+ Bl ) T+ ol +on/1+ (e +BL)I <re Vi<k

ot +re < 2(Epk
xt > 0,7, 00 €N

» This is a LP with only two additional variables!

» The upper bound E(E[t])k is not reliable. moreover, it depends on each node

of the underlying scenario tree and decisions made in previous stages

> This hinders a direct application of the central path CP algorithm to

multistage stochastic programming




CENTRAL CUTTING-PLANE ALGORITHM FOR MSLPS

max Tt
Tt,Tt,0¢

S.T. Apxy = by — Bt1571

(et + 8 ) Twe+ ol +oe/T+ e +Bl I <re Vi<k
or + e < E(E"
zt >0, r¢,00 €R

If we fix the radius o; then the (difficult-to-estimate) upper bound can be
dismissed. We can thus reformulate the subproblem as

THE NEW PROPOSAL (ONLY IN THE FORWARD STEP)

min c;rac +re

Tt,Tt
s.t. Atz = by — thf_l
T . B - )
Blirwe + ol + a1+ (e + B ) <re Vi<k
x>0, €N

In this case, g is a parameter
THE CLASSICAL SDDP

min c;rx —+ 7t
T,

s.t. Aixy = by — Btaff,l
i ) )
Bg_thqLag_H <re Vji<k
e > 0,7t €ER

ZMA

[ ——



GEOMETRIC INTERPRETATION: EXAMPLE

Consider a reduced power system with, 1 hydro, 5 five thermal plants, T' = 4 time
steps and 125 scenarios (# Nodes; = 5, t = 2,3,4). The classical SDDP computes
the exact solution and cost R$34,051.40 in 9 iterations, while the SDDP with
Chebyshev centers requires only 6 iterations

AN F LANF T E LANE LA
min 107, +207, +257, +30F, +40f, +7

[s.t. fu+fu+ 1 +J.°’ +f. +q, =1000

v+E, - q+ =v. +K, &
Brov 4o’ ||\ -c+|3_,|| zZr..jel
| P, 2200, g 1000, 5 =0, 40005, =R,

-+ Present cost
——Cut 1_NBD

—+Present Cost
, =+ Cut 1I_NBD-CC

—=Cut 1-NBD
-+ Cut 1-NBD-CC
" 9 ——Ohjective Function NBD s o —+—Objective Function-NBD
20 ‘a‘\‘ -#- Objective Function NBD-CC mee *, -+ Objective Function-NBD-CC

— o N —_ )

= R T ==

w5 - H— o

Z. ~ | m=25408 E-

= \"-‘w‘_ e -

z \‘.““".._ g

O - o

vz =2820.7

2095.2

Stored Volume [hm3] Stored Volume [hm3]

Z
AZNMA
(a) Stage 1. (b) Stage 2. (o



SDDP ALGORITHM WITH CHEBYSHEV CENTERS

Let Sy := {{1, ey {N} be the set of scenarios representing the considered tree

FORWARD PASS

At iteration k, choose M < N scenarios JF := {51, R éM} and solve
min c:z —+ re
It,’l"t
— _ k
xltc c s.t. Atz = by — Brxy_ 4

Bl hwe ol +of it +B8l DI <re Vi<k

zy >0, 17 €ER

forall” t=2,...,T and all £ € J¥

BACKWARD PASS 3
As in the SDDP algorithm: compute new cuts and update the cutting-plane model Q; 1 but

considering only points :ci“ related to the sample set J*

If of = 0 for all stages and iterates, then the above algorithm is nothing but a
SDDP algorithm

Convergence analysis. It follows from the SDDP analysis: just make sure that
limg o0 af =0 forall ¢

ZMA

[ ——

"We define QT+1 =0.



NUMERICAL ASSESSMENT

> We consider the Brazilian multistage hydro-thermal power generation
planning problem with individualized decisions per plant over a five-year
planning horizon (7' = 60) with monthly decisions

> The objective of the model is to minimize the total cost over the horizon,
including power generation cost and penalty of insufficient power to satisfy
the demand, under the uncertainty of the amount of rainfall in the future

> Power can be generated by 294 power plants (153 hydro and 141 thermal
plants

» Every stage t and every node of the scenario tree is composed of 2 886
variables and 1459 constraints

» The inflow uncertainties are handled via a PAR model with a scenario tree
with 20 realizations per stage (N = 2059 scenarios for each one of the 153
hydro plants)

» The comparative analysis is carried out among five solvers for three different
seeds, which generate distinct scenario trees

» The forward step considers 216 scenarios per iteration with resampling
» We considered risk-neutral and risk-averse cases

» A parallel processing algorithm strategy is used within servers that have a
configuration Xeon CPU with 2.60GHz, using 8 threads and 128 GB RAM.
All LPs are solved using Gurobi called from environment C++.




NUMERICAL ASSESSMENT

In our experiments, we consider the following variants of SDDP for comparison:

1.

o

The classical SDDP algorithm CL
The new proposal: SDDP algorithm with Chebyshev centers CC

CC-CL the 24 first hours with CC and the last 24 hours with the classical
SDDP

CL-CC the inverse of the previous strategy

CC50CL Chebyshev centers are computed for 50% of scenarios in the forward
step, and for the other half we solve the SDDP subproblems

With the purpose of obtaining reasonable lower bound stabilizations all our
solvers were stopped with 48 hours of CPU time




[The considered heuristic for updating the parameter &,  is:

G, =510°- == (1-etE=)
I:E.% _ 5.%—1} !
# <10, i-Dalz k=10

The constant 5-10° was tuned for a better scalability of our
problem. Such a constant i1s weighted by a proportion of the
lower bound improvement wrt the last ten iterations. The
main idea 1s to make &, a function of the lower bound pro-
gress. For instance, such parameter increases when the lower
bound presents a high increase rate since, at this point, the con-
vergence 1s not achieved, and new regions of the cost-to-go-
function can be explored. Otherwise, a stabilization of the 2
indicates that new trial points are not improving the model and
T, must decrease to attend the algorithm convergence. Fi-
nally, the last term ensures that 5, = 0 when the lower bound

rate increase 1s null. Several simple updating rules can be for-
mulated by incorporating the dvnamic of the problem

[ r——



Wy
| =4 =
1
| a1
| U0
| QLS |~
| SRONEEONORE I
| (ORORORORE
[ R
E adl
\ I
1 |
=)
\ | 4
' =
] 7s]
1 O_um
i ~
-
\ 8
\ [
\ ~
— -
\
\ on
—
\
\
\ (=)}
1
\
\ 1w
| I S-S —
—
el =] W o W o
a4 a = = o 3
[7e) W W [a)

A )
(1101 $3) punoq I12MmoJ

A



6.15
6.10
6.05
56.00
&
85.95
55.90
%585
5.80
5.75
5.70

el T R ——

CL
CC
CL-CC
-=-=-=-CC-CL

....... o (j(ljSOCIT

—

13 17 21 25 29 33 37 41
Iteration



TABLE II — Comparative analysis.

Lower bound Time reduction to reach
Solver Risk-level i_ﬂcreas_.e (%) the CL lowq bound (%)
5CEenario tree s5CEenaro tree
A p (%) 1 2 3 1 2 3
CC 098 ' 086 073 9934 9832 9610
CL-CC 0/0 028 027 013 3739 3758 3685
CC-CL i 100 090 075 9934 9815 9609
CC50CL 051 038 024 8910 8893 6017
CC 060 051 046 9194 7819 7893
CL-CC 0.1/10% 0.12 005 004 2029 2031 11.39
CC-CL YT D69 062 055 9055 8577 TBES
CC50CL 013 015 010 2560 2655 1803

To comprehend the results, consider the lower bound value
increase of 0.86 highlighted in Table II. This means that, for
the risk-neutral case, the CC provides a z value 0.86% greater
than the CL one (RS 5.1964-10'! 1n Table I) in 48 hours of pro-
cessing. Considering the CL increasing rate of z for the last 10
iterations, the solver CL would require approximately 24 extral
iterations (95 hours) to reach the value given by CC. For the
risk-averse case, the CL would reach an increase of 0.51%

with 15 more iterations (50 hours).



TABLE IV - Comparative simulation results.
Expected cost difference (%)

Solver Rislclevel scenario tree
Lip (%) 1 2 3

cc 024 0.02 0.02
CL-CC 0/0 052 1.29 161
CC-CL ! -0.06 021 -0.21
CC50CL -0.06 -0.12 -0.01
cc 0.001 0.002 0.001
CL-CC 0.1/10% 0.004 0.005 0.003
CC-CL - -0.13 -0.16 -0.18
CC50CL -0.01 011 011

Notice that CC-CL is the only solver that obtains significant
cost reductions in all scenario trees and risk-measure models.
It 1s then natural to inquire why CC solvers, which achieves
similarly z values in relation to CC-CL, are more expensive in
out-of-sample simulation than CL ones. The key aspect 1s that
the CC forward step provides trial points in a small region of
the problem (near to the solution); accordingly, the cutting-
plane model 1s improved exclusively in such region, obtaining
non-sufficiently robust policies for other feasible regions of
the state variables. On the other hand, the second half of the
CC-CL optimization process permits to construct cuts in a
broader state variables domain.




CONCLUDING REMARKS

ot

. Regularize the forward step of SDDP by increasing the cuts’ intercept

. The strategy’s inspiration is the Central Path Cutting-plane model, that uses

Chebyshev centers

Instead of using estimated upper bounds we fix the ball radius

The proposed approach requires

> solving LPs along the forward step
» properly tuning the radius parameters

. No need for stability centers

. The proposed technique computes better lower bounds and (nearly-optimal)

feasible policies in less than 90% of the CPU time required by the classical
SDDP.
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