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Energy Optimization

Optimal management of a power mix, given that
— Power can be generated by different technologies

Pu

o

— The production of electricity needs to be

coordinated |



Short-term coordination: unit commitment

» Optimal scheduling (next day) of generation units

coupled by system-wide constraints

» Declined in many different versions

> Bilateral or centralized market frameworks
» System with hydro/thermal/nuclear utilities
> Intermittent sources (sun and wind)

» Uncertain intermittent and run-of-river generation

» Other sources of uncertainty

> energy demand
> unit availability
> energy prices

» A large-scale stochastic nonlinear problem with
0-1 variables



Short-term coordination: unit commitment

» Optimal scheduling (next day) of generation units

coupled by system-wide constraints

» Declined in many different versions

> Bilateral or centralized market frameworks
» System with hydro/thermal/nuclear utilities
> Intermittent sources (sun and wind) renewable is nice, but ...

» Uncertain intermittent and run-of-river generation

» (Most common) sources of uncertainty
» renewable generation (water inflows, wind, sun),
» energy demand
> unit availability
> energy prices

» A large-scale stochastic nonlinear problem with
0-1 variables



Impact of intermittent sources

» Wind is unpredictable
> Intra-hour variability

» Batteries provide have scalable and flexible
storage systems:

» dynamics to charge/discharge

» Demand-side management:

» to smooth rapid woltage swings, when customers go on and off
the grid massively (sunset!)



Impact of intermittent sources

» Wind is unpredictable
> Intra-hour variability

» Batteries provide have scalable and flexible
storage systems:

» dynamics to charge/discharge

» Demand-side management:
» to smooth rapid woltage swings, when customers go on and off

the grid massively (sunset!)
To reflect these features, the UC mathematical
optimization model is
mixed 0-1, stochastic, with nonlinear relations
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» Where is the nonconvexity
» How we represent uncertainty
» Which decomposition method we put in place

» Tricks to make it work

Results and comments



Our HUC formulation: pieces of the puzzle

» Where is the nonconvexity

»
» How we represent uncertainty
>
» Which decomposition method we put in place

Il Benders’-like

» Tricks to make it work
[l Lower convex-hull

[l Shrewd bundle stabilization

i IPOPT with good starting point

Results and comments



Our HUC formulation: pieces of the puzzle

» Where is the nonconvexity

»
» How we represent uncertainty
>
» Which decomposition method we put in place

Il Benders’-like

» Tricks to make it work
[l Lower convex-hull

[l Shrewd bundle stabilization

i IPOPT with good starting point

Results and comments on [ElNETod



Productivity of hydro-units is honconvex

The hydro-production function converts water (m3/s)
into energy (MW/h)

Brazil is a hydro-dominated system: a good
representation of such a function is fundamental
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The hydro-production function converts water (m3/s)
into energy (MW/h)

Brazil is a hydro-dominated system: a good
representation of such a function is fundamental
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The hydro-production function

* ph: unit output
I -~ === pOWer (R{W)

VYV  Unit

turbined
Intake

* n("): unit

Powerhouse

‘ r Q\Utflow n Generator efﬁCienCy
H- \‘\q‘ | - I
|| ) ey
i :f:,_’(, ?@itfcf“"*—ﬁ"h\\‘ ‘, i
(» dugy -'-—_R__R\J‘W' ey Turbine e
L= Qfs

ph = 0,00081-1(¢*,h?)-h-q EEEp h=f('Q"s )
- ph = f(1™,Q",5%,q") (worst case)



The hydro-production function

* Huge reservoirs in short-term horizon

ph = f(Q"%s%,q") or ph=f(Q"q")

* Run of river plants

ph = f(v",Q%, s%,q¢") or ph=(v*Q",q")

* Polynomials that represents forebay and
tailrace levels can be very different

h=f(v.Q.5q") P ph=[0"Q"5"0)  (casy cases)
ph=f(Q"s".q"), ph = f(Q".¢"), ph=f(v",Q",q")



The hydro-production function
Hydro-generated energy ph is a polynomial of
» reservoir volume v

» volume of water going through the considered
turbine q

» volume of water going through all turbines Q
» spillage s
Given an operational vector y D (ph, v, q, Q, s), the

relation
ph=1f(v,q,Q,s)

is represented by

hp(y) =0



Dealing with Uncertainty

» [master] Strategic level sets units on/off (every 8h)

» [slave] Operational level defines the generation for the
commitment given by the strategic level, for each
considered scenario

Ramp and reservoirs balance constraints
are dynamic, cannot be split!

» this work: multi-level scenario tree for HUC
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Dealing with Uncertainty

» [master] Strategic level sets units on/off (every 8h)

» [slave] Operational level defines the generation for the
commitment given by the strategic level, for each
considered scenario

Ramp and reservoirs balance constraints
are dynamic, cannot be split!

» this work: multi-level scenario tree for HUC

» Two-stage modelling for 0-1 variables
(strategic)
NEWe Multi-period scenario fan for continuous
variables (operational)
NEWe Benders-like decomposition
NEeWe Sustainable scenario selection (simulation)



Multi-level Scenario Trees: usual approach
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Multi-level Scenario Trees: usual approach
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Multi-level Scenario Trees: usual approach
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Multi-level Scenario Trees: usual approach
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Multi-level Scenario Trees: our approach




Multi-level Scenario Trees: our approach

Node 1: first stage
Nodes 2-7: second stage
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Multi-level Scenario Trees: our approach

©)

t=(17

Node 1 sees [\MM scenarios fromf=11t024 (iststage)
Node 2 sees [§OlVI:8 scenarios fromt=91t024 (2nd stage)
Node 5 sees scenarios  from t =17 to 24 (2nd stage)
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{ By = b { ramp, flow limits



Mathematical Formulation . u.ceriny or now
[ min {(c,x) +f(y)
st. xe{0,1},y>0

- start-up
Ax = a shut-down
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Mathematical Formulation . u.ceriny or now
[ min {(c,x) +f(y)
st. xe{0,1},y>0

- start-up
Ax = a shut-down
water balance
{ By = b ramp, flow limits

demand

generation only
if switched on

XYiow <y < xy*®

hydro-production
function

—— A A

hp(y) =0

» fis convex, linear o quadratic
» h can be nonconvex



Mathematical Formulation ..cciny

f .
min [Eg [(Cs: Xs> + ]Eoeo(s) (fso(yg))}
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AsXs = ds
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Mathematical Formulation ..cciny
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Mathematical Formulation ....ccuiny

[ min {(c,x) +f(y)
st. x€{0,1},y>0
. start-up
Ax = a { shut-down
water balance
{ By = b ramp, flow limits
demand
generation only
X Yiow S y S qup { if switched on
. hydro-production
L hp (}/) =0 { function

» fis convex, linear o quadratic
» hp can be nonconvex



Mathematical Formulation

[ min {(c,x) +f(y)
st. xe{0,1},y>0
_ start-up
Ax=a { shut-down
water balance
S By =0> ramp , flow limits
demand
Coupling =
XYiow < Y < qup { Benders’ Decomposition
o hydro-production
L hp(y) =0 { function

» fis convex, linear o quadratic
» hp can be nonconvex



Mathematical Formulation: Benders decomposition
[ min {c,x) + Vi (x)
st. x€{0,1},y>0

Ax = a

» V is a piecewise linear approximation
of the value-function V, computed by the slaves
(feasibility+optimality cuts)



Mathematical Formulation: Benders decomposition

min (¢, x) + Vi(x)

st. xe{0,1}
Ax = a where
min  f(y)
st. y>0
vE={ B-b
YIow <y< yup
hp(y) =0

» V is a piecewise linear approximation
of the value-function V, computed by the slaves at each

(feasibility+optimality cuts)



Mathematical Formulation: Benders decomposition

min (¢, x) + V(x)

st. xe{0,1}
Ax = a where
( min f(y)
st. y>0
V(xk) = By=b
Xk}/low <y< XkyuP
hp(y) =0

» Convergence under P1 assumption, (Geoffrion 1972)



Benders decomposition

MASTER SLAVE(S)
. min  f(y)
T e w2 st bzoiey=5)
R Xk Yiow < y < xg y*P

convhp(y) <0

> SLAVE gives a cut (s, ) + rk, computed using W (x4 ) and a multiplier

for the coupling constraints.
» Cutting-plane model W (no feasibility cuts in HUC):

min (¢, x) +«a
st. xe{0,1}N{x:Ax=a}
0(2<S,‘,X>+I’,', i€/kC{1:k}.

MASTER

> |f kth-MASTER solution is denoted by xx41, Benders stops when
Ak = v’ — v®" < tol, where

v = Eiln{(c,x,) +W(x)} and vo%:= rpea}x{(c, Xi41) +Wi(xip1)}-
k k



Mathematical Formulation: Benders decomposition

min (¢, x) + Wk(x)

st. xe{0,1}
Ax = a where
[ min f(y)
st. y>0

W(Xk) = < By =b
Xk Yiow < ¥ < xx y*P

conv(hp)(y) <0

\

» Convergence under P1 assumption, convex hp (Geoffrion 1972)
» For nonconvex hp, X. Li, A. Tomasgard, and P.l. Barton, JOTA (2011)

» Benders with convex W gives a lower bound if Reelgq@sie) Igiste)



Mathematical Formulation: Benders decomposition

min (¢, x) + Wk(x)

st. xe{0,1}
Ax = a where
[ min f(y)
st. y>0

W (x) = ¢ By =b
Xk Yiow < ¥ < xx y*P

conv(hp)(y) <0

\

» Convergence under P1 assumption, convex hp (Geoffrion 1972)

» For nonconvex hp, X. Li, A. Tomasgard, and P.l. Barton, JOTA (2011)
» Benders with convex W gives a lower bound if
» Upper bound from solving the NLP computing V (xx) (with hp)
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Creating a [FY34 convex hull conv(hp) < hp

» hp(y) = 0 represents the relation ph = f(v,q, Q, s)
» conv(hp) < 0 represents the relation ph < F(v,q,Q, s)
with F concave satisfying F > f on a box B Dfeasible set.

For a sample S:= {y1,..., Ym} C B, let
Pa(y,Ab,c) = (y,Ay) + (b,y) + ¢

= F(v,q,Q,s) :=Pa(y,A",b*,c")
where (A*, b*, c¢*) solves

inimi P2(y', A b,
minimize I;S >(y c)
subject to ph' < Pa(y', A b,c),i € S (recall ph C y)
AcR¥ beR* ceR,
A negative semidefinite.



Creating a [[X{34 convex hull
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Creating a [E34 convex hull

sample with 160.000 y’ (SDPT3 ~ 1h)



Mathematical Formulation: Benders decomposition
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Mathematical Formulation: Benders decomposition
min (¢, x) + W(x)

st. xe{0,1}
Ax = a where
[ min f(y)
st. y>0

W () = 4 By =b :
Xk Yiow <y < xx y'P

conv(hp)(y) <0

\

» Convergence under P1 assumption, convex hp (Geoffrion 1972)
» For nonconvex hp, X. Li, A. Tomasgard, and P.l. Barton, JOTA (2011)

» Benders with convex W gives a lower bound if conv(hp) < hp
» Upper bound from solving the NLP computing V (xx) (with hp)
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Great idea ... but

Speed of
Generalized
Benders
Decomposition
in our setting

(desperately slow!)




Speeding up the Master: a /a level-bundle
Replace the Generalized Benders master
min (¢, x) + Wy(x)

st. xe {0,1}
Ax = a

by the following stabilized variant:

min %||x—xb95t||2
st. xe{0,1}
{c,x) + W(x) <

Ax = a



Speeding up the Master: a /a level-bundle with a [

Replace the Generalized Benders master

min (¢, x) + Wx(x)
st. x€{0,1}
Ax = a

by the following stabilized variant:

min %HX o Xbest||2 E%(X—I— Xbest) o <X,XbeSt>
st. x€{0,1}

<C,X> + Wk(X) < Level
Ax = a remains an LP!



A toy -yet realistic- power system

» System with 21 units, 6 transmission lines and 5 buses, 4 of load
(distributed energy)

1
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Ly : energy demand of bus k
f; :energy flow of line j
gx : energy generation of source x (x can be t: thermal, w: wind or h: hydro)



A toy -yet realistic- power system

» System with 21 units, , 6 transmission lines and 5 buses, 4 of load
(distributed energy)

L : energy demand of bus k
f; :energy flow of line j
gx : energy generation of source x (x can be t: thermal, w: wind or h: hydro)

» Random variables
> Inflows in ghy, gho and ghg
» Wind generation gwy and gw,






Is the decomposition beneficial? And the stabilization?
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Is the decomposition beneficial? And the stabilization?
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Already for small instances there is a gain



Tuning parameters: which /evel?

Average Computational Time [s] - Level Parameter Standard Deviation of Computational Time [s] - Level Parameter

12,054199682
56,5415911 lI 57,7571828 ‘I 18,5385553713
48,8546276
30,2994675151

6,96976121

65,150891

19,6008899245

57,1925043

=05 m055 w06 m0,65 WO,7 =05 ®m055 W06 m0,65 W07

For some level choices, the variability in solving times
is higher



Mathematical Formulation ..cciny

Calculations done over 27 scenariosin s € O

(
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Bgys = bg
Xs Yiow < yso < XsyuP

hp(yg) =0
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start-up
shut-down
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if switched on
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Calculations done over 27 scenarios in s

(

min Es |:<CSI Xs> + IEoeo(s) (fso(y;’))}
st. xs€4{0,1},y2>0

AsXs = ds
Bgys = bg
Xs Yiow < yso < XsyuP

hp(yg) =0

= = A

start-up
shut-down

water balance
ramp, flow limits
demand

generation only
if switched on

hydro-production
function



(

€]

min [Eg |:<CSI Xs> + ]Eoeo(s) (W2<XS)>}
st. x€{0,1},y2>0

AsXs = as
Bsys = bg

Xs Yiow < Y;) < XsyUp

convhp(y?) <0

{
{
{
{

start-up
shut-down

water balance
ramp, flow limit
demand

generation only
if switched on

hydro-productiol
function



Tuning parameters: which starting point?

General scheme:

1.

Given a commitment xx, solve operational
problems W2(x«(s)) (with convhp(y) < 0)

Use the optimal dispatch to find a feasible y°(s)
for the nonconvex problem

Starting with y°(s), solve VI(x«(s)) (with

hp(y) = 0) (IPOPT)

Stop if E[V2(xk(s)) — W2(x«(s))] is sufficiently
small

. Otherwise, add Benders cut from EW2(x,(s)) to

master problem to compute x,.1 and loop



Tuning parameters: which starting point?

General scheme:

1. Given a commitment xx, solve operational
problems W2(x«(s)) (with convhp(y) < 0)

2. Use the optimal dispatch to find a feasible y°(s)
for the nonconvex problem

3. Starting with y°(s), solve V9(x,(s)) (with
hp(y) = 0) (IPOPT)

4. Stop if E[VI(xk(s)) — W2(xk(s))] is sufficiently
small

5. Otherwise, add Benders cut from EW?(x4(s)) to
master problem to compute x,.1 and loop

Total CPU time: 3h



Assessing the quality of the commitment

Simulation over 1000 scenarios in O°*!
» Take s € 0%, find the closest scenario
(s*,0") €O
» Solve operational problem with dispatch x*(s*):
compute V9 (x*)
» Compute A(s) :=% deficit w.r.t demand(s)
» Compute Cost(s)

Take averages, standard deviations and compare for
5 different sets O°Y!
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Simulation over 1000 scenarios in O°*!
» Take s € 0%, find the [ElINaa] scenario
(s*,0") €O
» Solve operational problem with dispatch x*(s*):
compute V9 (x*)
» Compute A(s) :=% deficit w.r.t demand(s)
» Compute Cost(s)

Take averages, standard deviations and compare for
5 different sets O°Y!



What is the closest scenario?
One scenario has very heterogeneous components
» wind at different locations
» inflows to different reservoirs
» demand at different buses
Three options

» Brute force: compute V2(x) for all s € O, take x*
giving the smallest cost

» Pseudo-distance: as in scenario selection

» Sustainable measure: prioritize demand
satisfaction

'W. de Oliveira, C. S., et al. Optimal scenario tree reduction for stochastic
streamflows in power generation planning problems. OMS 2010, V 25 pp. 917-936
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One scenario has very heterogeneous components
» wind at different locations
» inflows to different reservoirs
» demand at different buses
Three options

» Brute force: compute V2(x) for all s € O, take x*
giving the smallest cost

» Pseudo-distance: as in scenario selection

» Sustainable measure: folglelf1ir{-3 demand
satisfaction

2W. de Oliveira, C. S., et al. Optimal scenario tree reduction for stochastic
streamflows in power generation planning problems. OMS 2010, V 25 pp. 917-936



Numerical results

For a convex hp(y), over 24000h

Scen | Avg. cost St.Dev. # Rel. Avg. rel. St.Dev. rel.
sel (x108) | cost (x108) | deficit > 1% | deficit > 1% | deficit > 1%
Brute 5.6 0.3 17 2.2% 0.6%
Pseu 6.5 2.8 140 9.2% 6.4%
Sust 7.1 3.4 210 9.8% 5.7%




Numerical results

For a convex hp(y), over 24000h

Scen | Avg. cost St.Dev. # Rel. Avg. rel. St.Dev. rel.
sel (x108) | cost (x108) | deficit > 1% | deficit > 1% | deficit > 1%
Brute 5.6 0.3 17 2.2% 0.6%
Pseu 6.5 2.8 140 9.2% 6.4%
Sust 7.1 3.4 210 9.8% 5.7%
For a nonconvex hp(y)
Scen | Avg. cost St.Dev. # Rel. Avg. rel. St.Dev. rel.
sel (x108) | cost (x108) | deficit > 1% | deficit > 1% | deficit > 1%
Pseu 13.1 100.7 1414 17.2% 38.0%
Sust 9.9 11.25 1473 8.8% 6.2%
Pseu 13.2 12.9 1958 10.1% 6.7%
Sust 12.9 82.7 1472 14.4% 30.1%




Concluding Comments

» Changing the UC along the day reduces costs

» Slave parallelization should increase the gain in
computational time

» Stabilizing Benders with level bundle improves convergence
speed

» MIP tuning is crucial (off-the shelf not good)

Our aim: solve a real-life instance

» toy system with 3 hydro and 7 thermal units, 6 transmission
lines and 5 buses with 4 scenarios took more than 14h.

» Brazilian Interconnected System: 1000 hydro units, 150
thermal units, 600 lines, 4000 buses

» Would want to consider 50-100 scenarios ...



