Stochastic HUC

via

Multi-level Scenario Trees

Claudia Sagastizábal
(IMECC-UniCamp, adjunct researcher)
(partly supported by CNPq and FAPERJ, Brazil)
joint with

E. Finardi, R. Lobato, V. de Matos, A. Tomasgard SESO 2018, May 22, 2018

Energy Optimization

Optimal management of a power mix, given that

- Power can be generated by different technologies

The production of electricity needs to be coordinated.

Short-term coordination: unit commitment

- Optimal scheduling (next day) of generation units
 coupled by system-wide constraints
- Declined in many different versions
 - Bilateral or centralized market frameworks
 - System with hydro/thermal/nuclear utilities
 - Intermittent sources (sun and wind)
- Uncertain intermittent and run-of-river generation
- Other sources of uncertainty
 - energy demand
 - unit availability
 - energy prices
- A large-scale stochastic nonlinear problem with 0-1 variables

Short-term coordination: unit commitment

- Optimal scheduling (next day) of generation units
 coupled by system-wide constraints
- Declined in many different versions
 - ► Bilateral or centralized market frameworks
 - System with hydro/thermal/nuclear utilities
 - ► Intermittent sources (sun and wind) renewable is nice, but ...
- Uncertain intermittent and run-of-river generation
- (Most common) sources of uncertainty
 - ► renewable generation (water inflows, wind, sun),
 - energy demand
 - unit availability
 - energy prices
- ▶ A large-scale stochastic nonlinear problem with 0-1 variables

Impact of intermittent sources

- Wind is unpredictable
 - ► Intra-hour variability
- Batteries provide have scalable and flexible storage systems:
 - dynamics to charge/discharge
- Demand-side management:
 - to smooth rapid woltage swings, when customers go on and off the grid massively (sunset!)

Impact of intermittent sources

- Wind is unpredictable
 - Intra-hour variability
- Batteries provide have scalable and flexible storage systems:
 - dynamics to charge/discharge
- Demand-side management:
 - to smooth rapid woltage swings, when customers go on and off the grid massively (sunset!)

To reflect these features, the UC mathematical optimization model is mixed 0-1, stochastic, with nonlinear relations

Our HUC formulation: pieces of the puzzle

- Where is the nonconvexity
- How we represent uncertainty
- Which decomposition method we put in place
- Tricks to make it work

Results and comments

Our HUC formulation: pieces of the puzzle

- Where is the nonconvexity
 - hydro-production function
- How we represent uncertainty
 - ► multi-level tree with a fan
- Which decomposition method we put in place
 - ► Benders'-like
- Tricks to make it work
 - ► Lower convex-hull
 - Shrewd bundle stabilization
 - ► IPOPT with good starting point

Results and comments

Our HUC formulation: pieces of the puzzle

- Where is the nonconvexity
 - hydro-production function
- How we represent uncertainty
 - ► multi-level tree with a fan
- Which decomposition method we put in place
 - ► Benders'-like
- Tricks to make it work
 - ► Lower convex-hull
 - Shrewd bundle stabilization
 - ► IPOPT with good starting point

Results and comments on **simulation**

Productivity of hydro-units is nonconvex

The hydro-production function converts water (m³/s) into energy (MW/h)

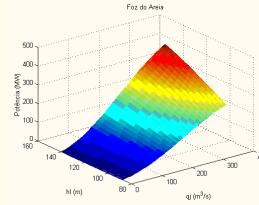
Brazil is a hydro-dominated system: a good representation of such a function is fundamental

Productivity of hydro-units is nonconvex

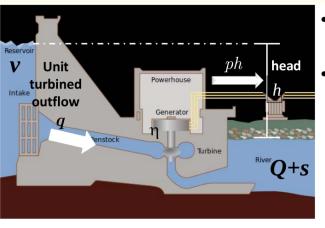
The hydro-production function converts water (m³/s) into energy (MW/h)

Brazil is a hydro-dominated system: a good representation of such a function is fundamental

Generally the hydro-production function is nonconvex

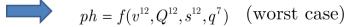


The hydro-production function



- ph: unit output power (MW)
- $\eta(\cdot)$: unit efficiency

$$ph = 0.00981 \cdot \eta(q^2, h^2) \cdot h \cdot q \qquad h = f(v^4, Q^4, s^2, q^2)$$



The hydro-production function

Huge reservoirs in short-term horizon

$$ph = f(Q^{12}, s^{12}, q^7)$$
 or $ph = f(Q^{12}, q^7)$

Run of river plants

$$ph = f(v^{12}, Q^{12}, s^{12}, q^7)$$
 or $ph = (v^{12}, Q^{12}, q^7)$

 Polynomials that represents forebay and tailrace levels can be very different

$$h = f(v, Q, s, q^2)$$
 $ph = f(v^3, Q^3, s^3, q^7)$ (easy cases)
 $ph = f(Q^3, s^3, q^7), ph = f(Q^3, q^7), ph = f(v^3, Q^3, q^7)$

The hydro-production function

Hydro-generated energy ph is a polynomial of

- ▶ reservoir volume v
- volume of water going through the considered turbine q
- volume of water going through all turbines Q
- ▶ spillage s

Given an operational vector $y \supset (ph, v, q, Q, s)$, the relation

$$ph = f(v, q, Q, s)$$

is represented by

$$hp(y) = 0$$

- ► [master] Strategic level sets units on/off (every 8h)
- Slave Operational level defines the generation for the commitment given by the strategic level, for each considered scenario

Ramp and reservoirs balance constraints

are dynamic, cannot be split!

this work: multi-level scenario tree for HUC

- [master] Strategic level sets units on/off (every 8h)
- Slave Operational level defines the generation for the commitment given by the strategic level, for each considered scenario

Ramp and reservoirs balance constraints

- this work: multi-level scenario tree for HUC
 - Two-stage modelling for 0-1 variables (strategic)

- [master] Strategic level sets units on/off (every 8h)
- [slave] Operational level defines the generation for the commitment given by the strategic level, for each considered scenario

Ramp and reservoirs balance constraints

- this work: multi-level scenario tree for HUC
 - Two-stage modelling for 0-1 variables (strategic)
- NeW● Multi-period scenario fan for continuous variables (operational)

- [master] Strategic level sets units on/off (every 8h)
- [slave] Operational level defines the generation for the commitment given by the strategic level, for each considered scenario

Ramp and reservoirs balance constraints

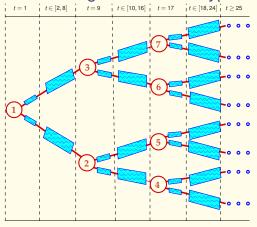
- this work: multi-level scenario tree for HUC
 - Two-stage modelling for 0-1 variables (strategic)
- NeW Multi-period scenario fan for continuous variables (operational)
- **New** Benders-like decomposition à la bundle

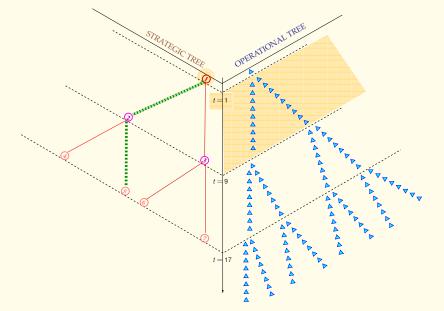
- [master] Strategic level sets units on/off (every 8h)
- [slave] Operational level defines the generation for the commitment given by the strategic level, for each considered scenario

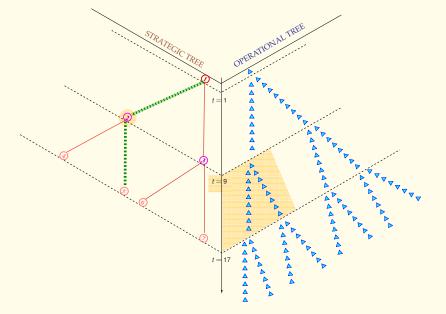
Ramp and reservoirs balance constraints

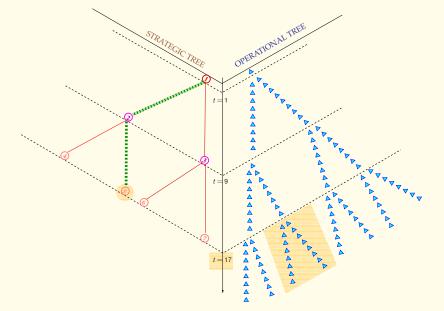
- this work: multi-level scenario tree for HUC
 - Two-stage modelling for 0-1 variables (strategic)
- NeW● Multi-period scenario fan for continuous variables (operational)
- NeW Benders-like decomposition à la bundleNeW Sustainable scenario selection (simulation)

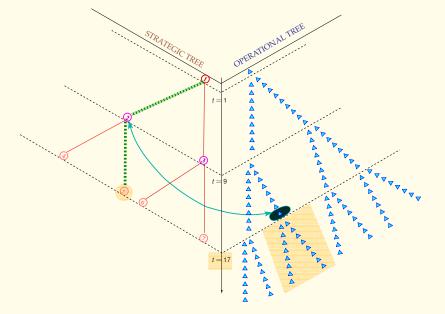
For multistage trees with 2 type of variables

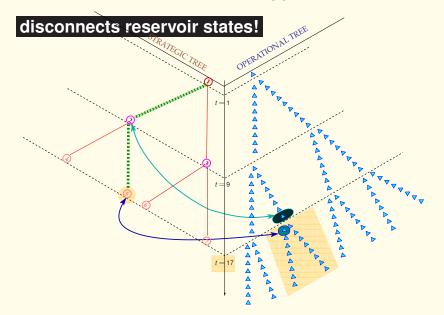


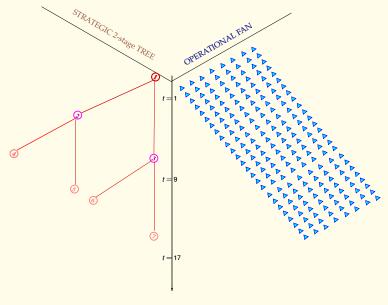


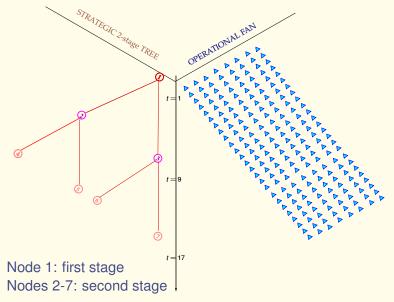


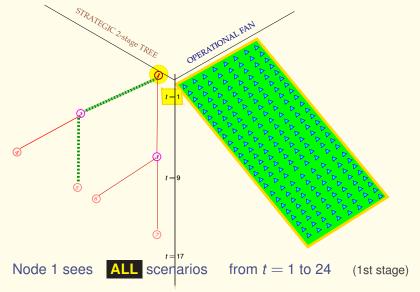


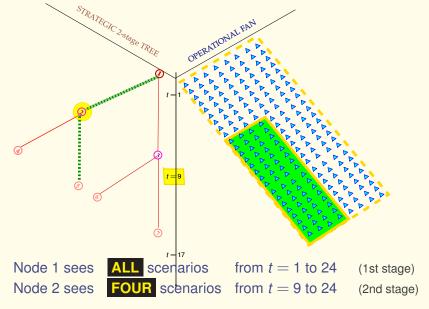


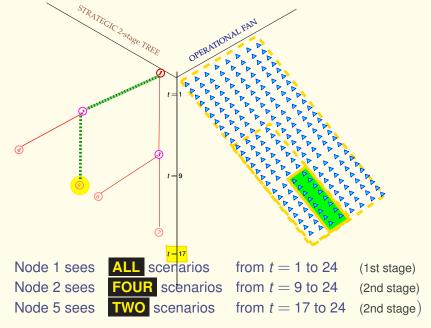












Mathematical Formulation no uncertainty for now

$$\begin{cases} \min & \langle c, x \rangle + f(y) \\ \text{s.t.} & x \in \{0, 1\}, y \geq 0 \\ & Ax = a \end{cases} \quad \begin{cases} \text{start-up shut-down} \\ \text{shut-down} \end{cases}$$

$$By = b \quad \begin{cases} \text{water balance ramp, flow limits demand} \\ & \text{demand} \end{cases}$$

$$x y_{low} \leq y \leq x y^{up} \quad \begin{cases} \text{generation only if switched on} \\ \text{hp}(y) = 0 \end{cases} \quad \begin{cases} \text{hydro-production function} \end{cases}$$

Mathematical Formulation no uncertainty for now

$$\begin{cases} \min & \langle c, x \rangle + f(y) \\ \text{s.t.} & x \in \{0, 1\}, y \ge 0 \\ Ax = a & \begin{cases} \text{start-up shut-down} \\ \text{sup} & \text{start-up shut-down} \end{cases} \\ By = b & \begin{cases} \text{water balance ramp, flow limits demand} \\ x y_{low} \le y \le x y^{up} \end{cases} \begin{cases} \text{generation only if switched on} \\ \text{hp}(y) = 0 \end{cases}$$

▶ f is convex, linear o quadratic

Mathematical Formulation no uncertainty for now

$$\begin{cases} \min & \langle c, x \rangle + f(y) \\ \text{s.t.} & x \in \{0, 1\}, y \ge 0 \\ Ax = a & \begin{cases} \text{start-up shut-down} \\ \text{shut-down} \end{cases} \end{cases}$$

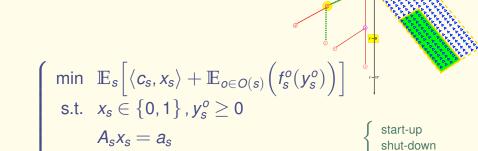
$$By = b & \begin{cases} \text{water balance ramp, flow limits demand} \\ x y_{low} \le y \le x y^{up} \end{cases} \begin{cases} \text{generation only if switched on} \\ \text{hp}(y) = 0 \end{cases}$$

- ▶ f is convex, linear o quadratic
- ▶ h can be nonconvex

Mathematical Formulation if uncertainty

$$\begin{cases} & \min \quad \mathbb{E}_s \Big[\langle c_s, x_s \rangle + \mathbb{E}_{o \in O(s)} \Big(f_s^o(y_s^o) \Big) \Big] \\ & \text{s.t.} \quad x_s \in \left\{ 0, 1 \right\}, y_s^o \geq 0 \\ & A_s x_s = a_s \\ & \begin{cases} & \text{start-up shut-down} \\ & \text{shut-down} \end{cases} \\ & B_s^o y_s^o = b_s^o \\ & \begin{cases} & \text{water balance ramp, flow limits demand} \\ & x_s y_{low} \leq y_s^o \leq x_s y^{up} \\ & \text{hp}(y_s^o) = 0 \end{cases} \end{cases}$$

Mathematical Formulation if uncertainty



$$B_s^o y_s^o = b_s^o$$
 $x_s y_{low} \leq y_s^o \leq x_s y^{up}$ $ext{hp}(y_s^o) = 0$

generation only if switched on hydro-production function

water balance ramp, flow limits

demand

Mathematical Formulation no uncertainty

$$\begin{cases} \min & \langle c, x \rangle + f(y) \\ \text{s.t.} & x \in \{0, 1\}, y \ge 0 \end{cases}$$

$$Ax = a \qquad \begin{cases} \text{start-up} \\ \text{shut-down} \end{cases}$$

$$By = b \qquad \begin{cases} \text{water balance} \\ \text{ramp, flow limits} \\ \text{demand} \end{cases}$$

$$x y_{low} \le y \le x y^{up} \qquad \begin{cases} \text{generation only} \\ \text{if switched on} \end{cases}$$

$$\text{hp}(y) = 0 \qquad \begin{cases} \text{hydro-production} \\ \text{function} \end{cases}$$

- ▶ f is convex, linear o quadratic
- ▶ hp can be nonconvex

Mathematical Formulation

$$\begin{cases} \min & \langle c, x \rangle + f(y) \\ \text{s.t.} & x \in \{0, 1\}, y \geq 0 \end{cases}$$

$$Ax = a \qquad \begin{cases} \text{start-up} \\ \text{shut-down} \end{cases}$$

$$By = b \qquad \begin{cases} \text{water balance} \\ \text{ramp, flow limits} \\ \text{demand} \end{cases}$$

$$x y_{low} \leq y \leq x y^{up} \qquad \begin{cases} \text{Coupling} \Rightarrow \\ \text{Benders' Decomposition} \end{cases}$$

$$hp(y) = 0 \qquad \begin{cases} \text{hydro-production} \\ \text{function} \end{cases}$$

- ▶ f is convex, linear o quadratic
- ▶ hp can be nonconvex

```
min \langle c, x \rangle + \mathbb{V}_k(x)
s.t. x \in \{0, 1\}, y \ge 0
Ax = a
         By = b
          x y_{low} \leq y \leq x y^{up}
           hp(y) = 0
```

▶ \mathbb{V}_k is a piecewise linear approximation of the value-function \mathbb{V} , computed by the slaves (feasibility+optimality cuts)

$$\begin{cases} \min & \langle c, x \rangle + \mathbb{V}_k(x) \\ \text{s.t.} & x \in \{0, 1\} \\ Ax = a \end{cases} \quad \text{where}$$

$$\mathbb{V}(x^k) = \begin{cases} \min & f(y) \\ \text{s.t.} & y \ge 0 \\ By = b \\ x^k & y_{low} \le y \le x^k & y^{up} \\ \text{hp}(y) = 0 \end{cases}$$

 \mathbb{V}_k is a piecewise linear approximation of the value-function \mathbb{V} , computed by the slaves at each x^k

(feasibility+optimality cuts)

$$\begin{cases} \min & \langle c, x \rangle + \mathbb{V}_k(x) \\ \text{s.t.} & x \in \{0, 1\} \\ Ax = a \end{cases} \quad \text{where}$$

$$\mathbb{V}(x^k) = \begin{cases} \min & f(y) \\ \text{s.t.} & y \ge 0 \\ By = b \\ x^k y_{low} \le y \le x^k y^{up} \\ \text{hp}(y) = 0 \end{cases}$$

► Convergence under P1 assumption, convex hp (Geoffrion 1972)

Benders decomposition

$$\begin{cases} & \min \quad \langle c, x \rangle + \mathbf{W}_k(x) \\ & \text{s.t.} \quad x \in \{0, 1\} \\ & Ax = a \end{cases} \qquad \mathbb{W}(x_k) = \begin{cases} & \text{slave(s)} \\ & \min \quad f(y) \\ & \text{s.t.} \quad \{y \geq 0 : By = b\} \\ & x_k \, y_{low} \leq y \leq x_k \, y^{up} \\ & conv \, \text{hp}(y) \leq 0 \end{cases}$$

- ▶ SLAVE gives a $cut \langle s_k, \cdot \rangle + r_k$, computed using $W(x_k)$ and a multiplier for the coupling constraints.
- Cutting-plane model W_k (no feasibility cuts in HUC):

$$\begin{tabular}{ll} & \underset{\begin{subarray}{c} \mathsf{W} \\ \mathsf{W} \\ \mathsf{W} \\ & \mathsf{S}.\mathsf{I}. & x \in \{0,1\} \cap \{x : \mathsf{A}x = a\} \\ & \alpha \geq \langle s_i, x \rangle + r_i, & i \in I_k \subset \{1 : k\}. \end{subarray}$$

If kth-MASTER solution is denoted by x_{k+1} , Benders stops when $\Delta_k := v_k^{up} - v_k^{low} \le tol$, where

$$v_k^{up} := \min_{i \in I_k} \{ \langle c, x_i \rangle + \mathbb{W}(x_i) \} \quad \text{and} \quad v_k^{low} := \max_{i \in I_k} \{ \langle c, x_{i+1} \rangle + \mathbf{W}_i(x_{i+1}) \}.$$

$$\begin{cases} \min & \langle c, x \rangle + \mathbf{W}_k(x) \\ \text{s.t.} & x \in \{0, 1\} \\ Ax = a \end{cases} \quad \text{where}$$

$$\mathbb{W}(x_k) = \begin{cases} \min & f(y) \\ \text{s.t.} & y \ge 0 \\ By = b \\ x_k y_{low} \le y \le x_k y^{up} \\ \hline conv(\text{hp})(y) \le 0 \end{cases}$$

- Convergence under P1 assumption, convex hp (Geoffrion 1972)
- ► For nonconvex hp, X. Li, A. Tomasgard, and P.I. Barton, JOTA (2011)
 - ▶ Benders with convex W gives a lower bound if $conv(hp) \le hp$

$$\begin{cases} \min & \langle c, x \rangle + \mathbf{W}_k(x) \\ \text{s.t.} & x \in \{0, 1\} \\ Ax = a \end{cases} \quad \text{where}$$

$$\mathbb{W}(x_k) = \begin{cases} \min & f(y) \\ \text{s.t.} & y \ge 0 \\ By = b \\ x_k y_{low} \le y \le x_k y^{up} \\ \hline conv(\text{hp})(y) \le 0 \end{cases}$$

- ► Convergence under P1 assumption, convex hp (Geoffrion 1972)
- ► For nonconvex hp, X. Li, A. Tomasgard, and P.I. Barton, JOTA (2011)
 - ▶ Benders with convex \mathbb{W} gives a lower bound if $\frac{\textit{conv}(hp)}{\textit{conv}(hp)} \leq hp$
 - ▶ Upper bound from solving the NLP computing $\mathbb{V}(x_k)$ (with hp)

▶ hp(y) = 0 represents the relation ph = f(v, q, Q, s)

- ▶ hp(y) = 0 represents the relation ph = f(v, q, Q, s)
- ▶ $conv(hp) \le 0$ represents the relation $ph \le F(v, q, Q, s)$ with F concave satisfying $F \ge f$ on a box $B \supset feasible$ set.

- ▶ hp(y) = 0 represents the relation ph = f(v, q, Q, s)
- ▶ $conv(hp) \le 0$ represents the relation $ph \le F(v, q, Q, s)$ with F concave satisfying $F \ge f$ on a box $B \supset feasible$ set.

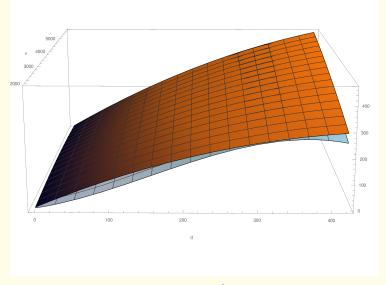
For a sample
$$S := \{y_1, \dots, y_m\} \subset B$$
, let $\mathcal{P}_2(y, A, b, c) := \langle y, Ay \rangle + \langle b, y \rangle + c$ $\Longrightarrow F(v, q, Q, s) := \mathcal{P}_2(y, A^*, b^*, c^*)$

- ▶ hp(y) = 0 represents the relation ph = f(v, q, Q, s)
- ▶ $conv(hp) \le 0$ represents the relation $ph \le F(v, q, Q, s)$ with F concave satisfying $F \ge f$ on a box $B \supset feasible$ set.

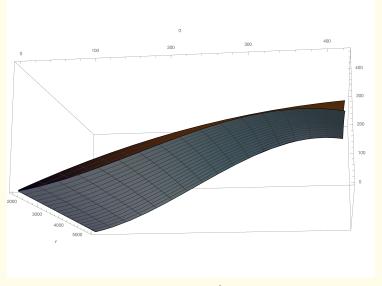
For a sample
$$S := \{y_1, \dots, y_m\} \subset B$$
, let $\mathcal{P}_2(y, A, b, c) := \langle y, Ay \rangle + \langle b, y \rangle + c$ $\Longrightarrow F(v, q, Q, s) := \mathcal{P}_2(y, A^*, b^*, c^*)$

where (A^*, b^*, c^*) solves

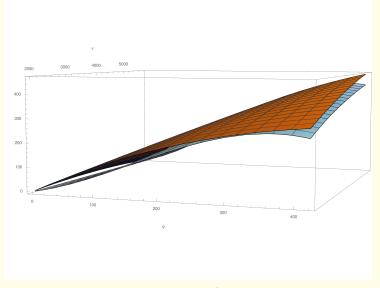
$$\begin{cases} & \underset{A,b,c}{\text{minimize}} & \sum_{i \in S} \mathcal{P}_2(y^i,A,b,c) \\ & \text{subject to} & ph^i \leq \mathcal{P}_2(y^i,A,b,c), i \in S \text{ (recall } ph \subset y) \\ & A \in \mathbb{R}^{4\times 4}, b \in \mathbb{R}^4, c \in \mathbb{R}, \\ & A \text{ negative semidefinite.} \end{cases}$$



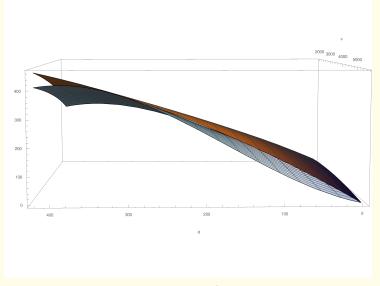
sample with 160.000 y^i (SDPT3 \approx 1h)



sample with 160.000 y^i (SDPT3 \approx 1h)



sample with 160.000 y^i (SDPT3 \approx 1h)



sample with 160.000 y^i (SDPT3 \approx 1h)

$$\begin{cases} \min & \langle c, x \rangle + \mathbf{W}_k(x) \\ \text{s.t.} & x \in \{0, 1\} \\ Ax = a & \text{where} \end{cases}$$

$$\mathbb{W}(x_k) = \begin{cases} \min & f(y) \\ \text{s.t.} & y \ge 0 \\ By = b \\ x_k y_{low} \le y \le x_k y^{up} \\ \hline conv(\text{hp})(y) \le 0 \end{cases}$$

- Convergence under P1 assumption, convex hp (Geoffrion 1972)
- ► For nonconvex hp, X. Li, A. Tomasgard, and P.I. Barton, JOTA (2011)
 - ▶ Benders with convex W gives a lower bound if $conv(hp) \le hp$
 - ▶ Upper bound from solving the NLP computing $\mathbb{V}(x_k)$ (with hp)

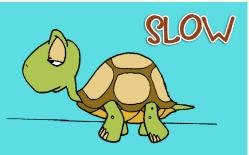
$$\begin{cases} \min & \langle c, x \rangle + \mathbf{W}_k(x) \\ \text{s.t.} & x \in \{0, 1\} \\ Ax = a & \text{where} \end{cases}$$

$$\mathbb{W}(x_k) = \begin{cases} \min & f(y) \\ \text{s.t.} & y \ge 0 \\ By = b \\ x_k y_{low} \le y \le x_k y^{up} \\ \hline conv(\text{hp})(y) \le 0 \end{cases}$$

- Convergence under P1 assumption, convex hp (Geoffrion 1972)
- ► For nonconvex hp, X. Li, A. Tomasgard, and P.I. Barton, JOTA (2011)
 - ▶ Benders with convex \mathbb{W} gives a lower bound if $conv(hp) \leq hp$
 - ▶ Upper bound from solving the NLP computing $\mathbb{V}(x_k)$ (with hp)

Great idea ... but

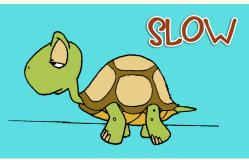
Great idea ... but



Souce: quotemaster.org

Speed of Generalized **Benders Decomposition** in our setting

Great idea ... but



Souce: quotemaster.org

Speed of Generalized **Benders Decomposition** in our setting

(desperately slow!)

Speeding up the Master: à la level-bundle

Replace the Generalized Benders master

$$\begin{cases} \min & \langle c, x \rangle + \mathbf{W}_k(x) \\ \text{s.t.} & x \in \{0, 1\} \\ & Ax = a \end{cases}$$

by the following stabilized variant:

$$\begin{cases} \min & \frac{1}{2} \|x - x^{best}\|^2 \\ \text{s.t.} & x \in \{0, 1\} \\ & \langle c, x \rangle + \mathbf{W}_k(x) \le \ell_{\text{evel}} \\ & Ax = a \end{cases}$$
 remains an LF

Speeding up the Master: à la level-bundle with a twist

Replace the Generalized Benders master

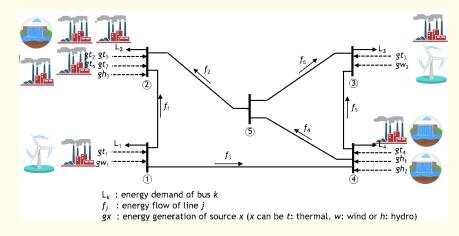
$$\begin{cases} \min & \langle c, x \rangle + \mathbf{W}_k(x) \\ \text{s.t.} & x \in \{0, 1\} \\ Ax = a \end{cases}$$

by the following stabilized variant:

$$\begin{cases} \min & \frac{1}{2} \|x - x^{best}\|^2 & \equiv \frac{1}{2} (x + x^{best}) - \langle x, x^{best} \rangle \\ \text{s.t.} & x \in \{0, 1\} \\ & \langle c, x \rangle + \mathbf{W}_k(x) \leq \ell_{\text{evel}} \\ & Ax = a & \text{remains an LP!} \end{cases}$$

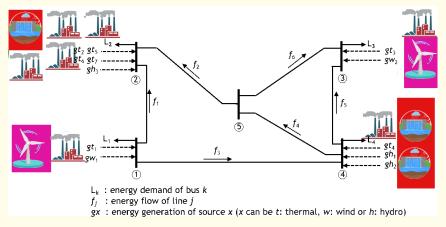
A toy -yet realistic- power system

 System with 21 units, 6 transmission lines and 5 buses, 4 of load (distributed energy)



A toy -yet realistic- power system

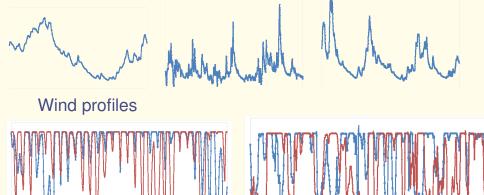
 System with 21 units, , 6 transmission lines and 5 buses, 4 of load (distributed energy)



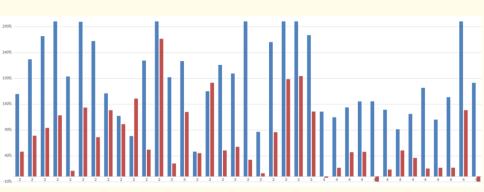
- Random variables
 - ▶ Inflows in gh_1 , gh_2 and gh_3
 - ▶ Wind generation *gw*₁ and *gw*₂

Uncertainty in inflows and wind

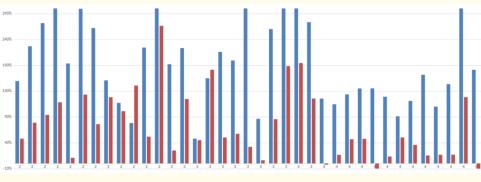
Incremental Inflow profiles



Is the decomposition beneficial? And the stabilization?

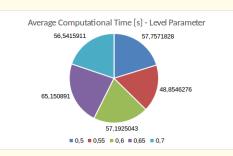


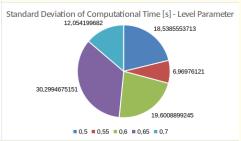
Is the decomposition beneficial? And the stabilization?



Already for small instances there is a gain

Tuning parameters: which ℓevel?





For some level choices, the variability in solving times is higher

Mathematical Formulation if uncertainty

Calculations done over 27 scenarios in $s \in O$

$$\begin{cases} &\min \quad \mathbb{E}_s\Big[\langle c_s, x_s\rangle + \mathbb{E}_{o \in O(s)}\Big(f_s^o(y_s^o)\Big)\Big] \\ &\text{s.t.} \quad x_s \in \{0,1\} \,, y_s^o \geq 0 \\ &A_s x_s = a_s & \left\{\begin{array}{c} \text{start-up} \\ \text{shut-down} \end{array}\right. \\ &B_s^o y_s^o = b_s^o & \left\{\begin{array}{c} \text{water balance} \\ \text{ramp , flow limits} \\ \text{demand} \end{array}\right. \\ &x_s y_{low} \leq y_s^o \leq x_s y^{up} & \left\{\begin{array}{c} \text{generation only} \\ \text{if switched on} \end{array}\right. \\ &\text{hp}(y_s^o) = 0 & \left\{\begin{array}{c} \text{hydro-production} \\ \text{function} \end{array}\right. \end{cases}$$

Mathematical Formulation if uncertainty

Calculations done over 27 scenarios in second

$$egin{aligned} \min & \mathbb{E}_s ig[\langle c_s, x_s
angle + \mathbb{E}_{o \in O(s)} ig(f_s^o(y_s^o) ig) ig] \ & ext{s.t.} & x_s \in \{0,1\} \,, y_s^o \geq 0 \ & A_s x_s = a_s \ & B_s^o y_s^o = b_s^o \ & x_s y_{low} \leq y_s^o \leq x_s y^{up} \ & ext{hp}(y_s^o) = 0 \end{aligned}$$

water balance ramp, flow limits demand

generation only if switched on hydro-production

Mathematical Formulation if uncertainty

Calculations done over 27 scenarios in second

$$egin{aligned} &\min & \mathbb{E}_s ig[\langle c_s, x_s
angle + \mathbb{E}_{o \in O(s)} ig(\mathbb{W}_s^o(x_s) ig) ig]^{rac{1}{s-1}} \ & ext{s.t.} & x_s \in \{0,1\} \,, y_s^o \geq 0 \ &A_s x_s = a_s \ &B_s^o y_s^o = b_s^o \ &x_s \, y_{low} \leq y_s^o \leq x_s \, y^{up} \ &conv \, ext{hp}(y_s^o) \leq 0 \end{aligned}$$

shut-down
water balance

ramp, flow limit demand generation only

generation only if switched on bydro-production

hydro-production function

Tuning parameters: which starting point?

General scheme:

- 1. Given a commitment x_k , solve operational problems $\mathbb{W}_s^o(x_k(s))$ (with $conv \operatorname{hp}(y) \leq 0$)
- 2. Use the optimal dispatch to find a feasible $y^{\circ}(s)$ for the nonconvex problem
- 3. Starting with $y^{\circ}(s)$, solve $\mathbb{V}_{s}^{o}(x_{k}(s))$ (with $\operatorname{hp}(y)=0$) (IPOPT)
- 4. Stop if $\mathbb{E}[\mathbb{V}_s^o(x_k(s)) \mathbb{W}_s^o(x_k(s))]$ is sufficiently small
- 5. Otherwise, add Benders cut from $\mathbb{E}W_s^o(x_k(s))$ to master problem to compute x_{k+1} and loop

Tuning parameters: which starting point?

General scheme:

- 1. Given a commitment x_k , solve operational problems $W_s^o(x_k(s))$ (with $conv hp(y) \le 0$)
- 2. Use the optimal dispatch to find a feasible $y^{\circ}(s)$ for the nonconvex problem
- 3. Starting with $y^{\circ}(s)$, solve $\mathbb{V}_s^o(x_k(s))$ (with $\operatorname{hp}(y)=0$) (IPOPT)
- 4. Stop if $\mathbb{E}[\mathbb{V}_s^o(x_k(s)) \mathbb{W}_s^o(x_k(s))]$ is sufficiently small
- 5. Otherwise, add Benders cut from $\mathbb{E}W_s^o(x_k(s))$ to master problem to compute x_{k+1} and loop

Total CPU time: 3h

Assessing the quality of the commitment

Simulation over 1000 scenarios in Oout

- ► Take $s \in O^{out}$, find the closest scenario $(s^*, o^*) \in O$
- Solve operational problem with dispatch $x^*(s^*)$: compute $\mathbb{V}_s^{o^*}(x^*)$
- ► Compute $\Delta(s)$:=% deficit w.r.t demand(s)
- ▶ Compute Cost(s)

Take averages, standard deviations and compare for 5 different sets O^{out}

Assessing the quality of the commitment

Simulation over 1000 scenarios in Oout

- ► Take $s \in O^{out}$, find the closest scenario $(s^*, o^*) \in O$
- Solve operational problem with dispatch $x^*(s^*)$: compute $\mathbb{V}_s^{o^*}(x^*)$
- ► Compute $\Delta(s)$:=% deficit w.r.t demand(s)
- ▶ Compute Cost(s)

Take averages, standard deviations and compare for 5 different sets O^{out}

What is the closest scenario?

One scenario has very heterogeneous components

- wind at different locations
- ▶ inflows to different reservoirs
- demand at different buses

Three options

- ▶ Brute force: compute $\mathbb{V}_s^o(x)$ for all $s \in O$, take x^* giving the smallest cost
- Pseudo-distance: as in scenario selection
- Sustainable measure: prioritize demand satisfaction

1

¹W. de Oliveira, C. S., et al. Optimal scenario tree reduction for stochastic streamflows in power generation planning problems. OMS 2010, V 25 pp. 917-936

What is the closest scenario?

One scenario has very heterogeneous components

- wind at different locations
- inflows to different reservoirs
- demand at different buses

+ wind = - deficit

Three options

- ▶ Brute force: compute $\mathbb{V}_s^o(x)$ for all $s \in O$, take x^* giving the smallest cost
- ► Pseudo-distance: as in scenario selection
- Sustainable measure: prioritize demand satisfaction

2

²W. de Oliveira, C. S., et al. Optimal scenario tree reduction for stochastic streamflows in power generation planning problems. OMS 2010, V 25 pp. 917-936

Numerical results

For a convex hp(y), over 24000h

Scen	Avg. cost	St.Dev.	# Rel.	Avg. rel.	St.Dev. rel.
sel	$(\times 10^{6})$	cost (×10 ⁶)	deficit \geq 1%	$\text{deficit} \geq 1\%$	$\text{deficit} \geq 1\%$
Brute	5.6	0.3	17	2.2%	0.6%
Pseu	6.5	2.8	140	9.2%	6.4%
Sust	7.1	3.4	210	9.8%	5.7%

Numerical results

For a convex hp(y), over 24000h

Scen	Avg. cost	St.Dev.	# Rel.	Avg. rel.	St.Dev. rel.
sel	$(\times 10^{6})$	$cost (\times 10^6)$	$\mathrm{deficit} \geq 1\%$	$\mathrm{deficit} \geq 1\%$	$deficit \ge 1\%$
Brute	5.6	0.3	17	2.2%	0.6%
Pseu	6.5	2.8	140	9.2%	6.4%
Sust	7.1	3.4	210	9.8%	5.7%

For a nonconvex hp(y)

Scen	Avg. cost	St.Dev.	# Rel.	Avg. rel.	St.Dev. rel.
sel	$(\times 10^{6})$	cost (×10 ⁶)	$\text{deficit} \geq 1\%$	$\mathrm{deficit} \geq 1\%$	$deficit \geq 1\%$
Pseu	13.1	100.7	1414	17.2%	38.0%
Sust	9.9	11.25	1473	8.8%	6.2%
Pseu	13.2	12.9	1958	10.1%	6.7%
Sust	12.9	82.7	1472	14.4%	30.1%

Concluding Comments

- Changing the UC along the day reduces costs
- Slave parallelization should increase the gain in computational time
- Stabilizing Benders with level bundle improves convergence speed
- MIP tuning is crucial (off-the shelf not good)

Our aim: solve a real-life instance

- ▶ toy system with 3 hydro and 7 thermal units, 6 transmission lines and 5 buses with 4 scenarios took more than 14h.
- ► Brazilian Interconnected System: 1000 hydro units, 150 thermal units, 600 lines, 4000 buses
- ▶ Would want to consider 50-100 scenarios . . .