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Probability constraints

A probabilistic constraint is a constraint of the type

ϕ(x) := P[g(x , ξ) ≤ 0] ≥ p, (1)

where g : Rn × Rm → Rk is a map, ξ ∈ Rm a (multi-variate) random vari-
able. They arise in many applications. For instance cascaded Reservoir
management.

We will however be interested in the situation:

ϕ(x) := P[gt (x , ξ) ≤ 0, ∀t ∈ T ] ≥ p, , (2)

where gt : Rn × Rm → R is a map and T an “arbitrary index set”.
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Motivating applications

Unit commitment - probust

In unit commitment problems under uncertainty, one may have to find
appropriate generation levels while accounting for uncertainty on load and
/ or wind. This may lead to a classic probability constraint of the form

ϕ(x) := P[Ax ≥ ξ] ≥ p. (3)

However defaults on generation may occur, leading to uncertainty on A.
It may be so that such uncertainty is less well understood and it is more
meaningful to consider “robust” ideas:

we know of perturbations A(u), for all u ∈ U , with U the uncertainty set.

Then one faces the “probust" constraint:

ϕ(x) := P[A(u)x ≥ ξ,∀u ∈ U ] ≥ p. (4)

See, e.g., [van Ackooij et al.(2016)].
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Motivating applications

Unit commitment - robility

It is clear that any feasible point to:

ϕ(x) := P[A(u)x ≥ ξ,∀u ∈ U ] ≥ p. (5)

satisfies the “robility" constraint:

ϕ(x) := P[A(u)x ≥ ξ] ≥ p,∀u ∈ U (6)

but the inverse need not hold. The latter may be seen to have a link with
distributionally robust optimization.
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Motivating applications

Networks - Induced uncertainty

In several management problems, an underlying network structure is present
and ought to be accounted for.

However the potentially arbitrary complex structure of the network “acts”
on uncertainty (much like recourse).

Uncertainty is actually a phenomenon occurring in nodes.

Then uncertainty related to the network means, for instance, existence of
a “feasible flow”.

the probability constraint then reads: for sufficient random realizations,
there exists a feasible flow.
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Motivating applications

Networks - Induced uncertainty II

An interesting application is gas-networks, where under some structural
properties on the network (tree structure or a few fundamental cycles):
the implicit conditions can be recast as regular inequality systems (this is
non-trivial, e.g., references in [González Gradón et al.(2017)]).

The existence of uncertainty on friction coefficients leads again to probust
constraints, since assuming knowledge of distributions of friction coeffi-
cients is not reasonable.

8 / 39



Introduction Tools Arbitrary index sets Better formulæ Summary

Motivating applications

PDE constrained

In certain optimization problems from engineering, e.g., optimal design of
off-shore wind turbines, one deals with computing some optimal shape or
structure while having to account for uncertainty.

the given uncertainty could for instance represent stochastic loadings or
environmental stress conditions

by considering the Karhunen-Loève expansion of this uncertainty (e.g.,
stochastic field), one can argue that uncertainty is caused by a “finite
dimensional random vector" (the uncertain coefficients in this expansion).

However, the dynamics of the system are best described by a PDE.

We refer to [Farshbaf-Shaker et al.(2017)] for details
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Motivating applications

PDE constrained II

This gives for instance problems of the form :

min
x,u

E (L(y(x , ω), u(x)))

s.t .y(x , ω) is solution to:

−∇x · (κ(x)∇x y(x , ω)) = r(x , ω), (x , ω) ∈ D × Ω

n · (κ(x)∇x y(x , ω)) + αy(x , ω) = u(x), (x , ω) ∈ ∂D × Ω,

p ≤ P[ω ∈ Ω : y(x , ω) ≤ ȳ(x) ∀x ∈ C],

where C ⊆ D ⊆ R3,

x , u belong to appropriate Sobolev spaces (u being some Boundary con-
trol)

ȳ is some reference state behaviour.
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Generalized (sub-)differentiation

Generalized sub-differentials - Motivation

Even with smooth data g and a finite index set T , ϕ need not be smooth.

ϕ itself is never concave (on the whole space). However some transform
of ϕ might be concave (e.g., taking the log), or ϕ might be concave on
some portion of the space.

That ϕ might fail to be smooth is not a problem. However it requires the
use of “sub-differentials".

As a potentially non-smooth, non-convex object, the sub-differential needs
to differ from the usual sub-differential of convex analysis.
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Generalized (sub-)differentiation

Generalized sub-differentials - Definitions

Let f : X → R ∪ {∞} be a map and consider x̄ such that f (x̄) <∞, then

∂Ff (x̄) =

{
x∗ ∈ X∗ : lim inf

u→x̄

f (u)− f (x̄)− 〈x∗, u − x̄〉
‖u − x̄‖ ≥ 0

}
. (7)

is the Fréchet subdifferential of f at x̄ ,

We also introduce

∂Mf (x̄) := {w∗- lim x∗n : x∗n ∈ ∂Ff (xn), and xn
f→ x̄},

∂∞f (x̄) := {w∗- limλnx∗n : x∗n ∈ ∂Ff (xn), xn
f→ x̄ and λn → 0+},

are the Mordukhovich and singular Mordukhovich subdifferential respec-
tively.
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Elliptically symmetric random vectors

Elliptical distributions

Definition

We say that the random vector ξ ∈ Rm is elliptically symmetrically distributed
with mean µ, covariance matrix Σ and generator θ : R+ → R+, notation ξ ∼
E(µ,Σ, θ) if and only if its density f : Rn → R+ is given by:

f (x) = (det Σ)−
1
2 θ((x − µ)TΣ−1(x − µ)). (8)
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Elliptically symmetric random vectors

Variance Reducing representation of ϕ

When ξ ∼ E(µ,Σ, θ) and Σ = LLT is the Cholesky decomposition of Σ, ξ
admits a spherical radial decomposition

ξ = µ+RLζ, where ζ is uniformly distributed on Sm−1 = {z ∈ Rm : ‖z‖ = 1},
R a radial distribution independent of ζ.

R possesses a density given by:

fR(r) =
2π

m
2

Γ( m
2 )

rm−1θ(r 2). (9)

For any Lebesgue measurable set M ⊆ Rm its probability may be repre-
sented as

P(ξ ∈ M) =

∫
v∈Sm−1

µR ({r ≥ 0 : µ+ rLv ∩M 6= ∅}) dµζ(v), (10)

where µR and µζ are the laws of R and ζ, respectively.
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Elliptically symmetric random vectors

Illustration of the decomposition
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Elliptically symmetric random vectors

Hypothesis in this work

We assume that z 7→ gt (x , z) is convex for each t ,

We also assume that each gt is continuously differentiable in both argu-
ments.
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Elliptically symmetric random vectors

Hypothesis: Consequences

Let Dt := {x ∈ X : gt (x , 0) < 0}

We can entail from gt (x , 0) < 0 the existence of a map ρt : Dt × Rm →
R+ ∪ {∞}, continuously differentiable on its domain such that

gt (x , rLv) = 0 if and only if r = ρt (x , v) (11)
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Representation of the probability function

Variance Reducing representation of ϕ

Proposition (vA, Perez-Aros (2018))

Let D be defined as D :=
⋂

t∈T Dt . Then we define the map ρ : D×Sm−1 → R+

as
ρ(x , v) := inf

t∈T
ρt (x , v), (12)

where ρt : Dt×Sm−1 → R+ and Dt is as before. Then for any x ∈ D, v ∈ Sm−1,
it holds that

{r ≥ 0 : g(x , rLv) ≤ 0} = [0, ρ(x , v)], (13)

where [0,∞] = [0,∞) is intended. Hence, for x ∈ D,

ϕ(x) =

∫
v∈Sm−1

FR(ρ(x , v))dµζ(v) (14)
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Representation of the probability function

Some difficulties

The map ρ need not be solution to g(x , rLv) = 0 with g the supremum
function!

Example

Consider the functions gn : R× R2 → R given by

gn(x , z) =
x2 − 1 if z2

1 + z2
2 ≤ 1

x2 + n(z2
1 + z2

2 − 1)2 − 1 if z2
1 + z2

2 > 1,

the supremum of this family is

g(x , z) =

{
x2 − 1 if z2

1 + z2
2 ≤ 1,

+∞ if z2
1 + z2

2 > 1.

Consequently, for any v ∈ Sm−1, {r : g(0, rv) ≤ 0} = [0, 1] and there is no
r > 0 such that g(0, rv) = 0. Moreover for any x ∈ [0, 1) and v ∈ Sm−1, we

can compute ρn(x , v) =

√
1 +

√
1−x2

n and establish ρ(x , v) = 1.
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Representation of the probability function

Some difficulties II

Although ρ is automatically u.s.c. (as the inf over a family of C1 maps), it
may fail to be l.s.c. - additional assumptions will be needed.

Corollary

Moreover, for x ∈ D◦ := {x ∈ X : g(x , 0) < 0}, one has that, if there exists
r > 0 such that g(x , rLv) = 0, then r = ρ(x , v). In particular, if g|D◦×Rm is finite
valued the function ρ has the following alternative representation

ρ(x , v) =

{
r such that g(x , rLv) = 0

+∞ otherwise (15)
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Subdifferential estimates for the resolvant map

Continuity of the resolvant map

Proposition

Let x0 be a point in X such that there exists a neighbourhood U of x0 such
that:

The function ρ is solution to g(., rL.) = 0.

g(x , 0) < 0 for all x ∈ U.

The set K := {(x , z) ∈ U × Rm : g(x , z) = 0} is closed.

Then ρ(xn, vn) → ρ(x , v) for every sequence U × Sm−1 3 (xn, vn) → (x , v) ∈
U × Sm−1.
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Subdifferential estimates for the resolvant map

Subdifferential estimates

Proposition (vA, Perez-Aros (2018))

Under the previous assumptions for every x ∈ U the (regular) partial Mor-
dukhovich sub-differential of ρ satisfies:

∂Mx ρ(x̄ , v) ⊆

x∗ ∈ X∗ :

∃εn → 0+, xn → x̄, ∃tn ∈ Tεn (xn, v),
s.t. ρtn (xn, v)→ ρ(x̄, v),

x∗ = w∗- lim
n→∞

−
∇x gtn (xn,ρtn (xn,v)Lv)〈
∇z gtn (xn,ρtn (xn,v)Lv),Lv

〉

 (16a)

and the (singular) (partial) Mordukhovich sub-differential satisfies:

∂∞x ρ(x̄ , v) ⊆

x∗ ∈ X∗ :

∃εn, λn → 0+, xn → x̄, ∃tn ∈ Tεn (xn, v),
s.t. ρtn (xn, v)→ ρ(x̄, v),

x∗ = w∗- lim
n→∞

−λn
∇x gtn (xn,ρtn (xn,v)Lv)〈
∇z gtn (xn,ρtn (xn,v)Lv),Lv

〉

 (16b)
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Subdifferential estimates for the probability function

An example

Already when T =
{

t̄
}

is a singleton, g can not be entirely arbitrary.

Example

Consider g(x , z1, z2) = α(x)eh(z1) + z2 − 1 as a map g : R× R2 → R. with
α(x) = x2, x ≥ 0 and 0 otherwise. Moreover h(t) = −1− 4 log(1−Φ(t)), with
Φ the c.d.f of a standard Gaussian r.v. Now with ξ ∼ N (0, I), it follows that

g is continuously differentiable, convex in (z1, z2)

g(0, 0, 0) < 0

ϕ(x) := P[g(x , ξ1, ξ2) ≤ 0] is not locally Lipschitzian at x = 0.
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Subdifferential estimates for the probability function

Restricted growth

This example makes it clear that some care should be taken with “un-
bounded directions". Hence we introduce:

Definition
For any x ∈ X and l > 0, we define

Cl (x) :=

h ∈ X : 〈∇x gt (x′, z), h〉 ≤ l
∥∥∥L−1z

∥∥∥−m
θ
−1
( ∥∥∥L−1z

∥∥∥2
)
‖h‖

∀x ′ ∈ B1/l (x)∥∥L−1z
∥∥ ≥ l

, ∀t ∈ T

 (17)

as the uniform l-cone of nice directions at x. Here θ−1 is defined as

θ−1(t) =

{ 1
θ(t) if θ(t) 6= 0,

+∞ if θ(t) = 0.
. (18)

Moreover, we recall that its polar cone is denoted as C∗l (x).
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Subdifferential estimates for the probability function

Main result - I

Theorem (vA, Perez-Aros (2018))

Let ξ ∈ Rm be an elliptically symmetrically distributed random vector with mean
0, correlation matrix R = LLT and continuous generator. Consider the proba-
bility function ϕ : X → [0, 1], where X is a (separable) reflexive Banach space
defined as

ϕ(x) = P[gt (x , ξ) ≤ 0, ∀t ∈ T ], (19)

where gt : X × Rm → R are continuously differentiable maps convex in the
second argument and T is an arbitrary index set.
Let x̄ ∈ X be such that ...
Then the following formulæ hold true: ...
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Subdifferential estimates for the probability function

Main result - I

Theorem (vA, Perez-Aros (2018))

Let ξ ∈ Rm be an elliptically ... Let x̄ ∈ X be such that

1 a neighbourhood U of x̄ can be found such that g|U×Rm is finite valued and
supt∈T gt (x ′, 0) < 0 for all x ′ ∈ U.

2 the set {(x , z) : g(x , z) = 0} is closed in U × Rm

3 the outer-estimate S of ∂Mx ρ(x , v) is locally bounded at x̄ , v ∈ Sm−1 such
that ρ(x̄ , v) <∞.

4 Either there exists l > 0 such that Cl (x̄) has non-empty interior, or M(x̄) :=
{z ∈ Rm : g(x̄ , z) ≤ 0} is bounded.

Then the following formulæ hold true: ...
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Subdifferential estimates for the probability function

Main result - I

Theorem (vA, Perez-Aros (2018))
Let ξ ∈ Rm be an elliptically ...

Let x̄ ∈ X be such that ...
Then the following formulæ hold true:

[(i)] ∂Mϕ(x̄) ⊆ cl∗


∫

v∈Sm−1

∂
M
x e(x̄, v)dµζ (v) − C∗l (x̄)


[(ii)] Provided that X is finite-dimensional,

∂
M
ϕ(x̄) ⊆

∫
v∈Sm−1

∂
M
x e(x̄, v)dµζ (v) − C∗l (x̄).

[(iii)] ∂∞ϕ(x̄) ⊆ −C∗l (x̄).

[(vi)] ∂Cϕ(x̄) ⊆ co


∫

v∈Sm−1

∂
M
x e(x̄, v)dµζ (v) − C∗l (x̄)

,

where ∂M , ∂C and ∂∞ refer respectively to the limiting (or Mordukhovich), the Clarke and (limiting) singular sub-differential sets of a map.

Moreover, the set C∗l (x̄) can be replaced by {0} if M(x̄) is bounded.
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Subdifferential estimates for the probability function

Main result - I

Theorem (vA, Perez-Aros (2018))

Finally, for every v ∈ F (x̄) = Dom(ρ(x , .))

∂Mx e(x̄ , v) ⊆ fR(ρ(x̄ , v))SM(x̄ , v)

with

SM(x̄ , v) ⊆

x∗ ∈ X∗ :

∃εn → 0+, xn → x̄, ∃tn ∈ Tεn (xn, v),
s.t. ρtn (xn, v)→ ρ(x̄, v),

x∗ = w∗- lim
n→∞

−
∇x gtn (xn,ρtn (xn,v)Lv)〈
∇z gtn (xn,ρtn (xn,v)Lv),Lv

〉

 (19)
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Subdifferential estimates for the probability function

Discussion of the assumptions

When the family {gt}t∈T is uniformly locally Lipschitzian at x̄ , i.e., iff at every
z̄ ∈ Rm:

lim sup
z→z̄

sup{‖∇gt (x , z)‖ | x ∈ U, t ∈ T} <∞. (20)

Then

if g(x̄ , 0) is finite, then on some neighbourhood U : gU×Rm is finite valued

if g(x̄ , 0) < 0 then this holds on a neighbourhood

the set S is locally bounded
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through equicontinuous subdifferentiability

Motivation

The previous Theorem has given us already a first formula: an outer-
estimate of the various subdifferentials.

The outer estimate involves S, related to special limits

If S, can be replaced by a smaller set, better formulæ may result.

This will require some additional assumptions
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through equicontinuous subdifferentiability

Equicontinuous subdifferentiability

Definition

Let ft : X → R ∪ {∞} be a family of l.s.c. functions indexed by t ∈ T . The
family is called strongly equicontinuously subdifferentiable at x̄ ∈ X if for any
weak-* neighbourhood V ∗ of the origin in X∗ there is some ε > 0 such that

∂Mft (x) ⊆ ∂Mft (x̄) + V ∗, (21)

for all t ∈ Tε(x) x ∈ Bε(x̄), with |ft (x) − f (x̄)| ≤ ε where Tε(x) refers to the
ε-active index set related to the supremum function of the family ft .
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through equicontinuous subdifferentiability

Main Result - II

Theorem (vA, Perez-Aros (2018))
Let ξ ∈ Rm be an elliptically symmetrically distributed random vector with mean 0, correlation matrix R = LLT and continuous generator.
Consider the probability function ϕ : X → [0, 1], where X is a reflexive Banach space defined as

ϕ(x) = P[gt (x, ξ) ≤ 0, ∀t ∈ T ], (22)

where gt : X × Rm → R are continuously differentiable maps convex in the second argument and T is an arbitrary index set.
Then let x̄ ∈ X be such that the assumptions 1-4 as before hold and in addition:

1 that at any v ∈ Sm−1 , the family of resolvant mappings
{
ρt (., v)

}
t∈T is strongly equicontinuously subdifferentiable at x̄ .

Then in the previous formulæ we may consider

∂
M
x e(x̄, v) ⊆ fR(ρ(x̄, v))

⋂
ε>0

clw
∗
{
−

∇x gt (x̄, ρt (x̄, v)Lv)〈
∇z gt (x̄, ρt (x̄, v)Lv), Lv

〉 :
x ∈ B(x̄, v), t ∈ Tρε (x, v)

with |ρt (x, v) − ρ(x̄, v)| ≤ ε

}
.

at v ∈ F (x̄) = Dom(ρ(x̄, v)).
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through some degree of compactness

Some compactness assumptions

Assumption

Let T be a metric space and there exists a neighbourhood U of x̄ such that:

1 g|U×Rm is finite valued.

2 g(x , 0) < 0 for all x ∈ U.

3 The function G : T × U × Rm → X × X∗ × Rm given by G(t , x , z) =
(gt (x , v),∇x gt (x , z),∇zgt (x , z)) is continuous.

4 The active index set T g(x , z) is non-empty for every (x , z) ∈ K = {(x , z) ∈
U × Rm : g(x , z) = 0}.

5 The set
⋃

(x,z)∈K
T g(x , z) is relatively compact.
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through some degree of compactness

Implications of these assumptions

Lemma

Under the compactness Assumptions one has that:

1 the set K is closed.

2 for every T × U × Sm−1 3 (tn, xn, vn) → (t , x , v) ∈ T × U × Sm−1,
ρtn (xn, vn)→ ρt (x , v).

3 the set T ρε (x , v) is closed for every (x , v) ∈ U × Sm−1.
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through some degree of compactness

Explicit growth condition

Definition

Let θR : R+ → R+ be an increasing mapping such

lim
r→+∞

rfR(r)θR(r) = 0. (23)

We say that {gt : t ∈ T} satisfies the θR-growth condition uniformly on T at x̄
if for some l > 0

‖∇x gt (x , z)‖ ≤ lθR(
‖z‖
‖L‖ ) for all x ∈ B1/l (x̄) ∀z : ‖z‖ ≥ l; ∀t ∈ T . (24)
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through some degree of compactness

Main Result - III

Theorem (vA, Perez-Aros (2018))
Let ξ ∈ Rm be an elliptically symmetrically distributed random vector with mean 0, correlation matrix R = LLT and continuous generator.
Consider the probability function ϕ : X → [0, 1], where X is a reflexive Banach space defined as

ϕ(x) = P[gt (x, ξ) ≤ 0, ∀t ∈ T ], (25)

where gt : X × Rm → R are continuously differentiable maps convex in the second argument and T is a metric space.
Then let x̄ ∈ X be such that

1 the compactness assumptions hold

2 Either {gt : t ∈ T} satisfies the θR -growth condition uniformly on T at x̄ , or M(x̄) := {z ∈ Rm : g(x̄, z) ≤ 0} is bounded.

Then ϕ is locally Lipschitz at x̄ and the following formulæ hold true:

∂
M
ϕ(x̄) ⊆ clw

∗ ∫
v∈F (x̄)

{
−fR(ρ(x, v))

∇x gt (x, ρ(x, v)Lv)〈
∇z gt (x, ρ(x, v)Lv), Lv

〉 : t ∈ Tρ(x, v)

}
dµζ (v) (26a)

∂
C
ϕ(x̄) ⊆

∫
v∈F (x̄)

Co

{
−fR(ρ(x, v))

∇x gt (x, ρ(x, v)Lv)〈
∇z gt (x, ρ(x, v)Lv), Lv

〉 : t ∈ Tρ(x, v)

}
dµζ (v), (26b)

where ∂M refers to the limiting (or Mordukhovich) sub-differential and ∂C to the Clarke-subdifferential.
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Summary

In this talk we have discussed recent results on differentiation for probability
functions acting on infinite systems. The results have been taken from:

W. van Ackooij and P. Pérez-Aros. Generalized differentiation of probabil-
ity functions acting on an infinite system of constraints.
Submitted draft - available soon on arxiv, pages 1–24, 2018
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