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High-Level Talk Goals D=

" Introduce the challenges and one solution to the
construction of probabilistic scenarios for key
quantities in power systems operations

= Discuss the rigorous evaluation of stochastic
optimization approaches to key power systems
operations

" |llustrate the relationship between probabilistic
scenarios and power system performance using a
illustrative case study




A Word From Our Sponsors... @&

" Grid Modernization Laboratory Consortium
(GMLC)

" Project 1.4.26 - Multi-Scale Production Cost Modeling

= Bonneville Power Administration (BPA)

" Funded work on high-accuracy probabilistic wind
forecasting

" Provide real-world data sets, publicly available

" Department of Energy’s ARPA-E office
" Scalable stochastic unit commitment project




Representative Key s
Collaborators

= Sandia National Laboratories
" Jean-Paul Watson
= Andrea Staid

" University of California Davis
" Roger Wets
" Dominic Yang

" Purdue University
"= Benjamin A. Rachunok
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Part 1: Counterfactual Re-Enactment Methodology




Data

Our interest is in quantifiable
results, so we view the world as a generator of data. At time t, the
world generates a vector of “observations” O(t).

Sandia
National
Laboratories




Sandia

The Objective ) .

The goal is to come up with a way to do well in the future, perhaps
by taking into account the nature of the world and observations
from the past. We quantify “doing well” using a function

E(Xa {O(7), T > t})

where x is a vector of decision values made just before time t.
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To Use A Computer To OptimiZe=-

» One common approximation is to look at parts of O(7) and
we will call these vectors £(7). This is typically done for
T > thow, Where thon is the time “now.”

» One also typically approximates f:(x, {O(7), 7 > t})) using
some function fi(x, {£(7), 7 > t})) that is easier to work with
or at least possible to write down.




The Future Matters

» Only the decisions for “now” can be implemented, but
typically the decisions impact the world in the future (i.e.,
{O(1),7 > thow} depend on x) so it is usually a good idea to
take that into account.

» At time t = tpon ONe might use a computer to find

argmin f(x, {§(7), T > t}))

and maybe explicitly require x € Q(§).
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Discrete Scenarios ) .

» Define £ = {g(t)};’zl on a discrete probability space.
» Use = to represent the full set of scenarios.

» Each scenario, £, has probability m¢.

» Write simply £ to represent the entire scenario.




Scenario Trees )

» We organize £ into a tree with the property that scenarios with
the same realization up to stage t share a node at that stage.
—t
» So & refers also to a node in the scenario tree.
» Let G; be the set of all scenario tree nodes for stage t
> Let G:(£) be the node at time t for a particular scenario, £.

» For a particular node D let D! be the set of scenarios that
define the node.



A Scenario Tree ) .

(l1,12,13)
' t=1
(a0, )
51 Ny} S3




Potential Uses for Scenarios @

» Analysis of a plan or policy (x); e.g. simulation

» Optimization




1he General Structure ot a
Stochastic Unit Commitment
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--------- First stage variables:
..... et ety * Unit On / Off
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* Renewables output
* Forced outages

¥

Second stage variables
w2~ (per time period):
T A4 ¢ Generation levels

£ ¥ e Power flows

Scenario 1 Scenario 2 ScenarioN ¢ Voltage angles



Some Ways to Get Scenarios @&

» Statistical models, perhaps obtained by data mining (e.g., in
Finance)

» Monte Carlo sampling
» Moment matching

» Simulations (e.g., in Forest Harvesting with Fire Risk)

» Forecast Error Distributions (e.g., Unit Commitment)




Evaluating Scenarios

» Analyze the statistical properties

» Analyze the solutions obtained
» Simulation

» In-sample
» Out-of-sample
» Independent

» Re-enactment
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Software Architecture for D
Counterfactual Re-Enactment

EZE
EE

Scenarios




Sketch of Counterfactual Re- e
Enactment

Laboratories

highly application specific

> f(-) = Eval(-) = f(")
» Eval(X; O(7),T = thow + Tit, T), (T is end of data)

> Toper = periods of use of the solution; Tg is first time with
data and T is needed for scenarios.

Initialization:

Scenario Creation:

Optimization:

Evaluation and Record Keeping: Compute and store the
results of Eval(x; O(7),T = thow + T, T)

Iterate:

6: Termination:

S A

<

This is a platinum standard rolling horizon simulation —
sounds easy, but the devil is in the details
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Part 2: Constructing Probabilistic (Mainly Wind)
Scenarios




Probabilistic Wind Power .
Scenarios

Laboratories
" There are several ways to represent the uncertainty
associated with wind in planning problems

" One approach is modeling this variable generation
stochastically, using scenarios

" Each scenario represents a possible trajectory of
wind power over time and has an associated
probability

= We rely on the availability of a point forecast and
evaluate historical forecast errors to build up non-
parametric distributions of expected future errors

" Epi-spline basis functions are used to allow a user to
target specific partitions of the error distribution, thus
controlling for scenarios that reach into the tails




Wind Power Error Distribution

Estimation

Sandia
National
Laboratories

Aggregate power forecast errors are not well-represented by
standard parametric (e.g., Gaussian) distributions ...

... and the qualitative nature of the distribution varies by
aggregate power level

wind power (MW) segmented errors, FH:17 OH=02:00




Epi-Spline Scenario Creation @&

= For a subset of hours in day (i.e., hours 1, 12, 24), calculate
empirical forecast error CDF from relevant* historical

forecast/actual pairs

* Correlations in forecast error drop off quickly with time, allowing for independent
calculations

= Divide distribution at cut points, and calculate the weighted
average of the distribution between each cut point pair

power power power

" Apply e[ror value to next:day forecast to obtain scenario value
JRRSTR—— UB SR UB fmreeneensnseaneanss UB
. : 1 ° Skeleton points
pewssmmemaazaes CDF of errors
| 1 T applied to forecast
] ----- ------ Quantiles
I ! | ¢y, c2  Cutpoints
: UB  Upper Bound
- o e ————— 20 --—— 0 - — 070

For full details: Staid A, Watson JP, Wets RJB, Woodruff DL. Generating short-term probabilistic wind power scenarios
via nonparametric forecast error density estimators. Wind Energy. 2017. DOI: 10.1002/we.2129




Assessing Scenario Quality @

* Visual comparisons only get you so far...

= There are a number of proper scoring rules used
to evaluate probabilistic forecasts and scenarios
" Energy Score (has known discrimination issues)

" Brier Score (event-based, need to know what you care
about upfront)

" Variogram Score (improved discrimination using pairwise
differences)
" However, ultimate test of quality is performance
In a real-world system
= More on this in Part 4 of this talk

" But we can say:

= Scenarios should represent a wide enough range of
plausible wind power realizations to ensure a feasible
solution as the future unfolds
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RESEARCH ARTICLE

Generating Short-Term Probabilistic Wind Power Scenarios
via Non-Parametric Forecast Error Density Estimators

Andrea Staid!, Jean-Paul Watson!, Roger J.-B. Wets?, and David L. Woodruff?

! Sandia National Laboratories, Albuguerque, New Mexico, USA
2 University of California Davis, Davis, California, USA

ABSTRACT

Forecasts of available wind power are critical in key electric power systems operations planning problems, including
economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost-
effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach
to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of
wind power production, with associated probability. We present and analyze a novel method for generating probabilistic
wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed
wind power time series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions,
allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then

describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to

el e f i i m el 5 B 4 3 S SR D PO SN R . R S ) T ) T S P DR LD TP i D . g U S

In Wind Energy (2017)




Probabilistic (Bulk) Solar

Srenarincg

12

—=—  Actual
—=— Forecast
Scenarios

10

0.6

Solar Power

04
1

02

12

—®—  Actual
—e— Forecast
Scenarios

Hour

(a) 2013-05-09

Hour

(b) 2013-05-09

—=—  Actual
—=— Forecast
Scenarios

10

08
]

Solar Power

0.6

0.4

02

—e—  Actual
—e— Forecast
—e— Scenarios

Hour

(c) 2013-05-15

Hour

(d) 2013-05-15

0.170

0.153

0.136

0.119

0.102

0.085

0.068

0.051

0.034

0.017

0.000

0.180

0.162

0.144

0.126

0.108

0.090

0.072

0.054

0.036

0.018

0.000

Scenario !ro!a!llltv Scenario !ro!a!llrtv

Sandia
National _
Laboratories



Sandia
’I" National
Laboratories

Constructing Probabilistic Scenarios for Wide-Area
Solar Power Generation

David L. Woodruff
Graduate School of Management, University of California, Davis, CA 95616-8609, USA
Julio Deride, Andrea Staid, Jean-Paul Watson

Discrete Math and Optimization Department, Sandia National Laboratories, Albugquergue,
NM 87185, USA

Gerrit Slevogt
Department of Mathematics, University of Duisburg-Essen, Germany

César Silva-Monroy

Demand Energy, Liberty Lake, WA 99019, USA

Abstract

Optimizing thermal generation commitments and dispatch in the presence of
high penetrations of renewable resources such as solar energy requires a charac-
terization of their stochastic properties. In this paper, we describe novel meth-
ods designed to create day-ahead, wide-area probabilistic solar power scenarios
based only on historical forecasts and associated observations of solar power
production. Scenarios are created by segmentation of historic data, fitting non-
parametric error distributions using epi-splines, and then computing specific
quantiles from these distributions. Additionally, we address the challenge of
establishing an upper bound on solar power output. Our specific application
driver is for use in stochastic variants of core power systems operations optimiza-

In Press at Solar Energy



Probabilistic Load Scenarios @

| e—e Expected load e—e Actual load e Scenariosl

If the historical data

indicates no variability,
then the scenarios will
reflect that consistency

e—e Expected load eo—e Actual load e—e Scenarios

3500 |-

3000 |-

2500+

4000

(0] 5 10 15 20
Time [hours]

3500 |-

Captures variability in
load when present —
but predictions are not
perfect!

3000 |-

2500 |-
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Toward Scalable Stochastic Unit Commitment

Part 1: Load Scenario Generation

Yonghan Feng - Ignacio Rios - Sarah M.
Ryan - Kai Spurkel - Jean-Paul Watson -
Roger J-B Wets - David L. Woodruff

Revised: November 15, 2014

Abstract Unit commitment decisions made in the day-ahead market and during
subsequent reliability assessments are critically based on forecasts of load. Tra-
ditional, deterministic unit commitment is based on point or expectation-based
load forecasts. In contrast, stochastic unit commitment relies on multiple load sce-
narios, with associated probabilities, that in aggregate capture the range of likely
load time-series. The shift from point-based to scenario-based forecasting necessi-
tates a shift in forecasting technologies, to provide accurate inputs to stochastic
unit commitment. In this paper, we discuss a novel scenario generation method-
ology for load forecasting in stochastic unit commitment, with application to real
data associated with the Independent System Operator for New England (ISO-
NE). The accuracy of the expected scenario generated using our methodology is
consistent with that of point forecasting methods. The resulting sets of realistic
scenarios serve as input to rigorously test the scalability of stochastic unit com-
mitment solvers, as described in the companion paper. The scenarios generated

In Energy Systems (2015)
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Part 3: On Solving Stochastic Unit Commitment




Our Software Environment. Pyomo

William E. Hart

Carl D. Laird
Jean-Paul Watson
David L. Woodruff
Gabriel A. Hackebeil
Bethany L. Nicholson

" Project homepage Pyomo —
" WWW.pyomo.org Optimization

Modelin

| g
= “The Book” — in Python

Second Edition

@ Springer

" Mathematical Programming Computation papers
* Pyomo: Modeling and Solving Mathematical Programs in Python (Vol. 3, No. 3, 2011)
* PySP: Modeling and Solving Stochastic Programs in Python (Vol. 4, No. 2, 2012)
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Toward Scalable Stochastic Unit Commitment

Part 2: Solver Configuration and Performance Assessment

Kwok Cheung - Dinakar Gade - César
Silva-Monroy : Sarah M. Ryan - Jean-Paul
Watson - Roger J.-B. Wets - David L.
Woodruff

Received: April 30, 2014

Abstract In this second portion of a two-part analysis of a scalable computa-
tional approach to stochastic unit commitment, we focus on solving stochastic
mixed-integer programs in tractable run-times. Our solution technique is based on
Rockafellar and Wets’ progressive hedging algorithm, a scenario-based decomposi-
tion strategy for solving stochastic programs. To achieve high-quality solutions in
tractable run-times, we describe critical, novel customizations of the progressive
hedging algorithm for stochastic unit commitment. Using a variant of the WECC-
240 test case with 85 thermal generation units, we demonstrate the ability of our
approach to solve realistic, moderate-scale stochastic unit commitment problems
with reasonable numbers of scenarios in no more than 15 minutes of wall clock
time on commodity compute platforms. Further, we demonstrate that the result-
ing solutions are high-quality, with costs typically within 1-2.5% of optimal. For

In Energy Systems (2015)
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Part 4: The Impact of the Nature of Probabilistic
Scenarios on Stochastic Power Systems Operations




Scenario Set Comparison ) .

Current state-of-the-art method for scenario
generation proposed by Pinson et al. uses
quantile regression to produce a probabilistic
forecast and samples from a Gaussian
multivariate random variable

We compare this to Epi-Spline scenarios using a

range of cut point sets-with inceeasing f%cus Q
" tail” events o
= Cut points: 0 - 0.33 - 0.66 - ~

" Cutpoints:0-0.1-0.9-1
* Cut points: 0-0.05-0.5-0.95 3%
" Cut points: 0-0.01-0.5-0.9 1

S

Q
o




Sandia

Application and Data ..

" Generate wind power scenarios using data from
Bonneville Power Administration (BPA)
" BPA has 33 wind farms, with a total capacity of 4782 MW

" Using vendor-issued forecast data and actual power
measurements from November 2015 through May 2017

BPA Wind Farm
Locations

" Create day-ahead
scenarios of aggregated ¢
wind power for balancing ﬁ%
area using forecasts teWA
issued at 11am on
previous day

" Rolling horizon scenario e
creation, starting
February 1, 2017 (with
previous data used for




Counterfactual Re-Enactmentgg:
Methodology (Some) Detalls

Stochastic day-ahead unit commitment optimization
model applied to small, five-generator network (Max
demand ~1400 MW)

Copper plate model, ignoring network flows

" Hourly, rolling-horizon simulation with economic dispatch on the
hour

" Not carrying additional reserves, as scenarios should capture
required flexibility
" Stochastic wind power scenarios use real data from
BPA

" Scale wind power to assess different wind penetration levels

" Create day-ahead scenarios based on vendor-issued forecast,
determine generator commitments, simulate system performance
on realized actual wind power values

" Evaluate different scenario sets and wind penetration
levels




Sandia

Unit Commitment Performandcg::.

" Costs are comparable in deterministic and stochastic
solutions

" However, we do not account for the cost of procuring
additional generation in real-time to serve the out-of-market

load (Qgﬁsmtc&& day-ahead market) Out-of-Market Load

Wind Penetration 0.2, Cut Wind Penetration 0.2, Cut
- Point 0.1 - 0.9
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|
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|

'
—_—

O_

I I I I I
Deterministic Stochastic 0 50 100 150 200 250 300

Out of Market Load ‘MWI — Deterministic



Stochastic vs Deterministic = @.

Deterministic: 2017-03-18 Stochastic: 2017-03-
CP:0-0.01-05-0.99-1 18
CP:0-0.01-0.5-

7 e 0.99-1
Large reduction in load-not-

met and elimination of
reserve shortfall in
stochastic case

1500

1250 1

1000

Power (MW)
Power (MW)
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Geothermal WM Reserve Shortfall
B Required Reserve
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Geothermal Wind
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Renewables penetration rate: 33.03% Renewables penetration rate: 32.88%



Stochastic vs Deterministic @&
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Compare Scenario Sets: Cost @&

Average Cost by Cutpoint set

0.01/0.5/0.99 0.05/0.5/0.95  0.1/0.9 0.3/0.7 QR
Scenario Sets

= Slight generation
cost variation
among scenario sets

= Wider sets have

higher costs, to deal
with the increased

Costi Typo variability

.C:j:;;‘;ts * However, this
doesn’t account for
the cost of procuring
additional
generation that isn’t
met in day-ahead
scheduling

40000-

Cost (USD)

20000~




Compare Scenario Sets: .
Curtailment

Laboratories
Renewable curtailment by cutpoint set
note log scaling on y-axis

7.5 °

" More curtailment
with quantile
regression

‘ ‘ ‘ scenarios

* Thermal
generation often
cannot respond
fast enough for
extreme ramps

log(Renewables Curtailed)
(MWh)

in wind
[ ]
° [ ]
[ ] [ ] @
[ ) [ ) @ [ ] [ )
[ ]
[ ]
25- .
0.01/0f5/0.99 0.05/0?5/0.95 0.1}0.9 0.3;0.7 QIR

Scenario Sets



Power (MW)

Variable costs: 298129.21
Fixed costs:
Renewables penetration rate: 38.83%
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Single Day Commitments

2017-04-02 2017-04-02
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Reduction in load-not-
met with wider cut
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39.05%

point sets




Future Work ) ek,

= Evaluation of additional scenario sets

" Assess value of scenarios that explicitly incorporate wind
power ramp events

" Look at performance of simple methods used in
literature, compare to methods presented here
" Run re-enactment on larger test cases
" Have started on WECC 240 case

" Increase wind penetration levels to assess scenario
performance at high renewable levels

= Assess performance over a longer date range

" |Incorporate more variability, both in seasonal wind and
load

" Different wind dataset, if possible
" Evaluate scenario creation methodology on additional

wind sites, as rami behavior and wind variabilitﬁ varﬁ b%
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Questions? )

= Contact:
* DLWoodruff@UCDavis.edu
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