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How common are nonsmooth objective functions in optimization?




When does nhonsmoothness appear?

if the nature of the problem imposes a
nonsmooth model; or
if sparsity of the solution 1s a concern; or
in problems difficult to solve,
— because they are large scale
— because they are heterogeneous

sometimes the solution method induces

nonsmoothness



Example of NS model

Recovery of blocky images ({;-regularization of TV)




Example of sparse optimization mnin{||x|;: Ax =b}
Basis pursuit: find least 1-norm point on the affine plane

Tends to return a sparse point (sometimes, the sparsest)
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Example of sparse optimization mnin{||x|; : h(x) < b}
Basis pursuit: find least 1-norm point on a nonlinear set

Tends to return a sparse point (sometimes, the sparsest)

| .\W(0 8 denoises basis pursuit
. + 2
min ()~ 0) 3+ )y <}

or

min{Hx\h + 5] (h(x)x—b)ﬂl%}

or

_|_
{1 ball touches the set min{HxH] : H (h(X)X—b) H% =< O'}
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Real-life optimization problems
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Lagrangian Relaxation Example

Real-life optimization problems

max Z—Cj (p))
j€]
(primal) < forjcJ:p € P

Y g (p)) =Dem

\ j€]

y

often exhibit separable structure passing to the (dual) :

n;in f(x):= fo(x) + Z f)(x)
€]

max _C] ] _|_ X, ] ]
min —(x,Dem) + Z < | P .) < gy )>
’ ic] p P




Benders Decomposition Example
Similar situation, but now the uncoupling is done on a primal level

( : : .
min ) Z(Ap)+C(p))
j€]
forjcJ:p € P = p <p+Ap
ApeD

(primal) A
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Benders Decomposition Example

Similar situation, but now the uncoupling is done on a primal level

( , . ..
min ) Z(Ap)+C(p))
| )€]
(primal) forjcJ:p € P = p <p+Ap
ApeD
\
( ) . 2 .
min 3T (Ap))+Vi(ap) [ min O(p)
4 je] VJ(APJ) = )- _j j
Ap e D . PEPEA

\

minf(x) := Z 1 (Ap)) for f (Ap’) := T (AP )+ V) (Ap’)
€]



Computing 9f(x"): how difficult is it?
1. f(x)=I|x|, forn=1
2. A linear Lasso function, f(x) = ||x||; + 5 ||Ax—b||3
3. A nonlinear Lasso function, h € C',
£) = ]l + 4] (h(x) ~b) |2
4. One of the local subproblems in the LLagrangian example,
max —C (p) + <xk, g (pj)>

1 (x%) == < | .
p) 6 PJ

\
5. One of the local subproblems in the Benders example,

f)(x*)) = min {Cj (pP):p) <P +xk>j}
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But why would one want ALL of 0f(x*)?
Indispensible to calculate the proximal point

p=proxi(x) &= p=argminf(y)+ zltHy —x|[5
& 0€df(p)+1(p—x)
& {(x—p) € of(p)

Without full knowledge of the subdifferential, the

implicit inclusion cannot be solved!

note: p € x—tof(p) akin to a subgradient method
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x*t =prox{ (x¥)
—
x**t1 = argminf(y) + thkHU —x |3



Proximal point algorithms (Accel. Nesterov, FISTA, AugLag)

x*t =prox{ (x¥)
—
X1 — argmin £(y) + 21 [y — x*3
e of interest if computing prox{k(xk) is much

easier than minimizing f

e stepsize t, > 0 impacts on the number of

1terations



Proximal point algorithms (Accel. Nesterov, FISTA, AugLag)

XK+ = prox{k(xk)
—
X1 = argminf(y) + zitkHy —x¥||5

e Of interest if 1S much

easier than minimizing f

e stepsize ti > O impacts on the number of

1terations



Proximal point: calculus rules

e separable sum:

f(x,y) =(g(x),h(y)) =
proxi(x) = (proxf(x),pmxl}(y))
e scalar factor (o # 0) and translation (v #= 0):

f(x)=glax+v) =

prox!(x) = %c(pmx‘tng(ocx%—v) —v)

e “perspective” (x > 0):

f(x) = ocg(%(x) — proxi(x) = ocproxf/“(g)



Proximal point: special functions

e -+ linear term (v # 0):

f(x) = g(x) + (v,x) = proxi(x) = prox{ (x —v)
e + convex quadratic term (t > 0):

f(x) = gx) 5 [ —v|> =

proxi(x) = proxi‘g(Ax—k (T—A)v) for A = %

I,

e composition with linear term such that A'A = %C

(x #0):
f(x) =g(Ax+v) =
prox{(x) — (I — OCATA)X—|— OCAT pTOXE/a(AX‘|—V) —V
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Proximal point algorithm: convergence

If argminf #~ @ then

0_ <2
) —f(x) < X
2) it

—> convergence if ) t; — 400
— rate 1/k if {t, .} bounded away from zero



Proximal point algorithm: acceleration

xR = prox{k (xk + 9k+1(elk —1)(xK— Xk_l))
for

92
g = (1—=0k41)

2
0%
(8%



Proximal point algorithm: acceleration

x K1 — prox{k (xk -+ 9k+1(elk —1)(xK— Xk_l))
for

92
g = (1—06k1)

2
0%
(8%

—> convergence if ) /t; — 400
— rate 1/k? if {t,} bounded away from zero
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What if prox! is not computable?

Use bundle methods!

When do bundle method prove most useful?

In situations

— when the objective function 1s not available explicitly

— when we do not have access to the full subdifferential

— when calculations need to be done with high precision



Bundling to approximate the prox

WANT: :pmx{(x) — P :argminf(y)+2ltHy—x||%
& 0€df(p)+(p—x)
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Bundling to approximate the prox

WANT: :pmx{(x) — pzargminf(yH%Hy—Xllﬁ
— 0edf(p)+Lp—x)
& 1(x—p)€df(p)

HAVE: q =proxM(x) &= q=argminM(y)+ zltHU —x|3

& 0e€dM(q)+1(g—x)
= t(x—q)edM(q)



Bundling to approximate the prox

NIVl = proxf(x) <= p=argminf(y)+ x|y —x|
— 0edf(p)+Lp—x)
& 1(x—p)€df(p)

HAVE: q = proxM(x) <= q=argminM(y)+ ~|ly —x||3
& 0e€dM(q)+1(g—x)
— 1(x—q) € M(q)

M 1s a model of f for which we do have full knowledge of the
subdifferential: the implicit inclusion can be solved!
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subdifferential: the implicit inclusion can be solved!
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Model built with the black box
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An example of a convex nonsmooth function
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{Vf(x)} = {slope of the linearization supporting f, tangent at x}
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A quick overview of Convex Analysis

An example of a convex nonsmooth function




A quick overview of Convex Analysis

An example of a convex nonsmooth function




A quick overview of Convex Analysis

An example of a convex nonsmooth function




A quick overview of Convex Analysis

An example of a convex nonsmooth function




A quick overview of Convex Analysis

An example of a convex nonsmooth function




A quick overview of Convex Analysis

An example of a convex nonsmooth function

of(x) {geR": f(y) > f(x)+ (g,y —x) for all y}

{slopes of linearizations supporting f, tangent at x}



What can be done with the oracle output?

An example of a convex nonsmooth function

of(x) {geR": f(y) > f(x)+ (g,y —x) for all y}

{slopes of linearizations supporting f, tangent at x}



What can be done with the oracle output?

An example of a convex nonsmooth function

of(x) = {geIR"™:f(y)>f(x)+(g,y—x) forall y}
= {slopes of linearizations supporting f, tangent at x}

k
1 oracle call g§ 4< £(x¥) E
el 1 linearization



BEWARE M) if oracle output is not accurate,

{ linearization can be wrong!
g(xk) € oTtX

wrong g(x*) gives bad linearization at x*
of(x) = {geIR™:f(y)>f(x)+{(g,y—x) forall y}

(similarly if wrong f(x"), more on this later)



How is the oracle information used?

Putting together linearizations
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How is the oracle information used?

Putting together linearizations

creates a cutting-plane for f

f = f(x") . | |
— ———>Mk(y) :max{fl+<gl,y—xl>}
g =g(x') 1=k

(Just one type of model, many others are possible)



Infinite bundling yields prox!

WANT: p :proxf(x) — P :argminf(y)—l—zltﬂy—xH%
HAVE: ¢* =prox; *(x) <= q*=argminMy(y)+ 7 |[y —x*|}
= 0=GC*+(q"—xN)
for Gk - aMk(qk)



Infinite bundling yields prox!

WANT: p = prox}(x) — Pzafgminf(U)Jrzlt”U—XH%
HAVE: q —proxzcvlk(x) — qk:argmian(y)—le—kHy—ka%
= 0=G*+(q"—x")

for G¥ € aMk(qk)
Theorem [CL93] Suppose the models satisty

e My(y) < f(y) forall k and y
o Mici(y) > (q%)+(g(q¥),y —x¥)

o Mig1(y) > Mic(q¥) + ( G4,y —x)
If 0 < thin < tka1 < 1y, then

lim q =p and lim Mk(qk):f(p)

k—o0 k— o0



Models for the half-and-half function

STRUCTURE f(x)
. VXxTAXx+x'Bx
f1(x) = vVxTAx
sum f1(x) +f2(x) f5(x) = x Bx
c(x) = (x,x"Bx) € R™
compo
(hoc)(x)
sition

h(C) =+/C{ ACin+Cnp




Models for the half-and-half function

STRUCTURE f(x)
f1(x) = VxTAx
sum f1(x) +f2(x) f2(x) = x"Bx
f; 1s smooth
C(X) = (X,XTBX) c R
compo c 1S smooth
- (hoc)(x)
sition h(C) =+/C{ ACin+Cnp
h 1s sublinear
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Models for the half-and-half function

STRUCTURE f(x)
none VX Ax L xTBx = £(x¥), g* € of(x*)
f1(x) = vVxTAx
sum fq (X) + 15 (X) fz(X) — x"Bx
f]]{> 9]]<>f]2<> VfZ(Xk)
c(x) = (x,x"Bx) € R™
compo ck = c(x"),c/(x)
(hoc)(x)
sition

h(C) =+/C{ ACin+Cnp

h*, gk € 9h(c*)







Stopping test in smooth optimization

Algorithms for unconstrained smooth optimization use as

optimality certificate Fermat’s rule
0 = V£(x)
and generate a minimizing sequence:
(x¥} = % such that Vf(x*) — 0.

If f € C!, then Vf(%) =0



Stopping test in smooth optimization

Algorithms for unconstrained smooth optimization use as

optimality certificate Fermat’s rule
0 = V£(x)
and generate a minimizing sequence:
{x*1 — % such that Vf(x*) — 0.

If f € C, then Vf(x) = O things are less straightforward if f is

nonsmooth. ..



What happens with the stopping test in NSO?

Algorithms for unconstrained NSO use as optimality
certificate the inclusion

0 € of(x)

e As a set-valued mapping 0f(x) is osc:
(

KA

(xk,g(xk) c af(xk)) YT e
| 9(x) =g




What happens with the stopping test in NSO?

Algorithms for unconstrained NSO use as optimality
certificate the inclusion

0 € of(X)
e As a set-valued mapping 0f(x) is osc:
(
k

(xk,g(xk) c af(xk)) D A
| 9(x) =g

e As a set-valued mapping, 0f(x) is jili4 isc:
Given g € 0f(x)

H(Xk,g(xk) E af(xk)) ;<




What happens with the stopping test in NSO?

Algorithms for unconstrained NSO use as optimality
certificate the inclusion

0 € of(X)
e As a set-valued mapping 0f(x) is osc:
(
k

(xk,g(xk) c af(xk)) D A
| 9(x) =g

e As a set-valued mapping, 0f(x) is jili4 isc:
Given g € 0f(x)

7 (xk,g(xk) E af(xk)) ;<




The subdifferential
For the absolute value function, f(x) = |x|

of(x) = ¢

—1 x <0
[—1,1] x=0
1 x>0




What happens with the stopping test in NSO?
We need to design a sound stopping test that does

not rely on the straightforward extension of

Fermat’s rule.



What happens with the stopping test in NSO?
We need to design a sound stopping test that does
not rely on the straightforward extension of

Fermat’s rule. We use instead
g € 0:f(x) for ||g|| and € small

where the e-subdifferential contains the slopes of

linearizations supporting f up to ¢, tangent at x:

0.f(x)={geR™:f(y) > f(x)+(g,y —x) —e for all y}



The ¢-subdifferential
0.f(x) ={g e R": f(y) > f(x)+ (g,y —x) —e for all y}

O

_~"Subgradient
IR linearization
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0.f(x) ={g € R": f(y) > f(x)+ (g,y — x) —¢ for all y}

d

S f+e¢
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Subgradient
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The e-subdifferential
For the absolute value function, f(x) = |x|

of(x) = ¢

—1 x <0
[—1,1] x=0
1 x>0




The e-subdifferential 1 x<0
For the absolute value function, f(x) = |x|  f(x)=<[-1,11 x=0
(L1 —1—e/x] ifx<—¢e/2, % x>0
0:f(x) = { [—1,1] if —e/2<x1<el/2,
[1—¢/x,1] if x >¢/2.

\




The e-subdifferential J E

[
—

e As a set-valued mapping 0.f(x) is osc:
(

ek ¢

(ek,xk, G(x") e aekf(xk)) ! Xk % = §edf(R)

G(x*)—g
\

e As a set-valued mapping, 0.f(x) is isc:
Given § € 0:f(X) )

‘

H
El(ek,xk, G(x¥) agkf(xk)) Xk

i

XU

o
X
<
1

QI



The ¢-subdifferential and bundle methods

Generate iterates so that for a subsequence {X*}

e As a set-valued mapping 0.f(x) is osc:

/

Ekﬁi

(ekfck, G(RY) e agkf(Qk)) Xk % = ged:f(x)
G(X*)— g
\

withé =0and g=0

® As a set-valued mapping, 0.f(x) is isc:Given g € 0:f(X) :

2

ek—>f';

H(ak,?ck, G(R¥) € 6£kf(Qk)> {0 Xk

G(x*)— g

\



The ¢-subdifferential and bundle methods
You told us

we were going to use subgradient information provided by an
oracle or a black box, and now you want to use e-subgradients!




The transportation formula
How to express subgradients at x' as e-subgradients at K*

g- € Of(x') if and only if, for all y € IR™
fly) > () +(gy—x)



The transportation formula

How to express subgradients at x* as e-subgradients at

gt € 0f(x') ifand only if, for all y € R"

f(y)

>

f(x') + (g y—x)
f(x') +( g%y —X> + f

Qk

)

K9



The transportation formula
How to express subgradlents at x' as e-subgradients at QK

gt € of(x Y if and only if, for all y € IR™
fly) > f(xi) < 93y~ x>

= (%) <9 Y—x) - ((&k) f(x")

X
/\
(@
vc-‘
t:‘
X
|_|_
—h
5
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The transportation formula | ;
How to express subgradients at x* as e-subgradients at X7

gt € 0f(x') ifand only if, for all y € R"
fly) > f

(
= f(x) + (gly—x) £ (RN
= R+ (ghy—x) — (FR) —f(x)
= R+ (ghy —x£R%) — (FR) —f(x))
= 1R+ (ghy —%°) — (89— f(x) - (g', %"~ x
= (%9 + (gly— &%) —el(=9)



The transportation formula

How to express subgradients at x* as e-subgradients at

f(y)

gt € 0f(x') ifand only if, for all y € R"

—xE£X >— (R
)|
_Qk> —ei(Qk)

K9



The transportation formula
How to express subgradlents at x' as e-subgradients at K<

gt € of(x ) if and only if, for all y € IR"™
fly) = f(x)+ gi,y—xi>

(
= (85 + (ghy—x) — (8K — ()
= F(R) 4+ (ghy—x 8% — (FR) —f(x))
= (8% + (gly— &%) — (R4 — F(x) — (g1,
= %)+ gy —R°) — el (&Y)

— g € Qi1 T(RY)



Linearization errors

:\'




The ¢-subdifferential and bundle methods

We collect the black-box

x'i=1,2,...,k, so that at iteration k we can define a
m of information, centered at a special iterate R* € {x'}

el (%) = (&%) — f(x1) — (g, 85 —x})



The ¢-subdifferential and bundle methods

We collect the black-box

x'i=1,2,...,k, so that at iteration k we can define a
m of information, centered at a special iterate R* € {x'}

el (%) = (&%) — f(x1) — (g, 85 —x})

A suitable convex combination
Z ate!(R¥) and G* := Z x'gt
ieBk ieBk

will eventually satisfy the optimality condition!



Why special NSO methods?

Smooth optimization techniques

(x)— =[x|

VE(x®)| =1, wx*£0 0of(0) =[-1,1]

Smooth stopping test fails:
VE(x*)| <TOL (¢ ]g(x*)| <TOL)



Why special NSO methods?

Smooth optimization techniques

Smooth approximations of derivatives by finite

differences fail

For f : IR> — IR defined by f(x) = max(x7,%2,%3)
of(0) =7

Forward finite difference f(XJFAAXi_f(X)

Central finite difference f(XJrA’;)A_Xf(X_A)




Why special NSO methods?

Smooth optimization techniques

Smooth approximations of derivatives by finite

differences fail

For f : IR> — IR defined by f(x) = max(x7,%2,%3)
of(0) =7

Forward finite difference f(XJFAAXi_f(X) = (1,1,1)
Central finite difference {25 T0—2) _ (1711

none of them in the subdifferential!
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Why special NSO methods?

Smooth optimization techniques

Linesearches get trapped in kinks and fail

Example 9.1 “Instability of steepest

e 2B & m

| Fréderic Bonnans
Claude Lemaréchal
Claudia A Sagastindbal
Numerical
||||||||||||

descent” =



Why special NSO methods?

Smooth optimization techniques

—g(x*) may not provide descent



Why special NSO methods?

Smooth optimization techniques
)

may not provide descent

—g(x




Why special NSO methods?

Smooth optimization techniques

Smooth stopping test fails
Finite difference approximations fail

Linesearches get trapped in kinks and fail

Direction opposite to a subgradient may increase
the functional values









In NSO
the skier
Is blind



Bundle Methods

WANT: p = prox}(x)
HAVE: g = prox* (x)

9%

p =argminf(y) + 7[ly — x|
q* = argmin My (y) + zl_kHU — x5
0=G*+¢(q*—x¥)

for G* € d9My.(g¥)

I 111

Gk E askf(x)
for £} = f(x) — My (q*) —t||G*||3



Bundle Methods

WANT: p = prox}(x)
HAVE: q* = proka (x)

9%

p =argminf(y) + 7[ly — x|
q* = argmin My (y) + zl_kHU — x5
0=G*+¢(q*—x¥)

for G* € d9My.(g¥)

I 111

Gk E askf(x)
for £} = f(x) — My (q*) —t||G*||3
Two subsequences

e Iterates giving sufficiently good approximal points

e Iterates just helping the optimization process



Bundle Methods
HAVE: g* :pmx]t\ik(x) = XX+t Gk Gk e J¢, f(x)
for ey = f(x) — My (q*) —t || G¥||3
Two subsequences

e Iterates giving sufficiently good approximal points
moving towards minimum

in a manner that makes &y := ¢y +t,||G¥||5 — 0

(serious)

e Iterates just helping the optimization process

CL93 eventually applies | (null)
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Bundle Methods

0 Choose x', setk =1, and let X' = x'.
1 Compute x**! = arg min My (x) + Zitk|x—7/€k|2
2 If &y :=fF(R¥) — M (x**1) < tol STOP

3 Call the oracle at x*t!. If

f(x*) < £(RK) — mbdy, set KT =xk+1 o

k+1 k

(Serious Step) Otherwise, maintain X' =X

(Null Step)
4 Define My 1, tx+1, make k =k+ 1, and 100p to 1.



Bundle Methods: selection mechanism

M () = max (M (), 754 (g, —x<) ),
now the choice of the new model is more flexible:

x**t1 € argmin M (x) - Z]Cka RK|2

with My (x) = max;<i{f' + <gi,x—xi>} is equivalent to a QP:
(

~ | Sk |2
MiN;cR xeR™ T+ Z_tk|x — K

S.t. r2f1+<gi,x—xi> for1 <k

\
A posteriori, the solution remains the same if ...
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x**t1 € argmin M (x) - Z]Cka RK|2

with My (x) = max;<i{f' + <gi,x—xi>} is equivalent to a QP:
(

~ | Sk |2
MiN;cR xeR™ T+ Z_tk|x — K

s.t. r>f 4 <gi,x —xi> for active i’s
\
A posteriori, the solution remains the same 1f all, or

active, or ...



Bundle Methods: selection mechanism

M () = max (M (), 754 (g, —x<) ),
now the choice of the new model is more flexible:

x**t1 € argmin M (x) - Z]Cka RK|2

with My (x) = max;<i{f' + <gi,x—xi>} is equivalent to a QP:
(

~ | Sk |2
MiN;cR xeR™ T+ Z_tk|x — K

s.t. r>y . &l (fi+<gi,x—xi>)
\

posteriori, the solution remains the same 1f all, or

A

active, or the optimal convex combination



Bundle Methods: selection mechanism

M () = max (M (), 754 (g, —x<) ),
now the choice of the new model is more flexible:

x**t1 € argmin M (x) - Z]Cka RK|2

with My (x) = max;<i{f' + <gi,x—xi>} is equivalent to a QP:
(

: | Sk |2
MiN;cR xeR™ T+ Z_tk|x — K

s.t. r>) . ai(fi+<gi,x—xi>)
\

A posteriori, the solution remains the same 1f all, or

active, or the optimal convex combination are kept



Bundle Methods: next model options

Myt1(+) = max(Mk(-),kar <gk),_xk>)

or

Mk—H () — maX( max ,fk—l— <gk). —Xk>)

active

or

Mii1(-) = max(aggreg ate, £k + <9k) : —xk>)

Same QP solution if all, or active, or the optimal convex combination

aggregate=full Bundle Compression: QP with only 2 constraints
(but slows down the overall process)



The cutting-plane model
You told us

we were going to use a bundle By composed by
linearization errors and e-subgradients at K%, but
the model uses f' and g* € 0f(x')




Rewriting the cutting-plane model

The transportation formula centers the ith linearization in the
serious iterate

fly) > fx)+{ghy—x\)
= (89 +(ghy—%F) — (%)




Rewriting the cutting-plane model

The transportation formula centers the 1th linearization in the
serious iterate

fly) = )+ (ghy—x)
= (%9 + (gly—&F) —el(=Y)

this translates into the model as follows
My(y) = max{f(xi)—|—<gi,y—xi> :iEBk}
— max{f(?ck) +{gtyy—R") —e'(8%) :ie By

k) 1€ By

x>

— f(%k)—kmax{ gl y—x<)—elf



Bundle Method

0 Choose x', setk =1, and let X' = x'.
1 Compute x**! = arg min My (x) + ZitKIX — RK|2
2 If & :=f(RK) = M (x**1) < tol STOP

3 Call the oracle at x*t!. If

f(x ) < £(85) —mby, set R = XK1

K+1 k

Otherwise, maintain X< ' =%

4 Define My 1, txr1, make k =k+ 1, and 1oop to 1.



Bundle Method

0 Choose x', setk=1,and let ' =x'.
1 Compute x*t! = arge min M (x) + zitklx — %2
2 If &y :=F (%) — M (x*T1) < tol STOP
3 Call the oracle at x*t!. If
f(x 1) < £(8%) —mby, set RKFT = xk+1
(Serious Step) k € Kg

k+1 k

Otherwise, maintain X< ' =%
(Null Step) k € Ky

4 Define My 1, tx1, make k =k+ 1, and 1oop to 1.



Bundle Method

When k — oo, the algorithm generates two subsequences.
Convergence analysis addresses the mutually exclusive

situations

e cither the SS subsequence is infinite

e or there 1s a last SS, followed by infinitely

many null steps
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When k — oo, the algorithm generates two subsequences.
Convergence analysis addresses the mutually exclusive

situations

e cither the SS subsequence is infinite
Ky =1k € Ks}
e or there 1s a last SS, followed by infinitely

many null steps
K :={k € Ky : k > last SS}



Bundle Method

When k — oo, the algorithm generates two subsequences.
Convergence analysis addresses the mutually exclusive
situations

e cither the SS subsequence is infinite

Ky :={k € Kg} (limit point minimizes f)

e or there 1s a last SS, followed by infinitely
many null steps
K :={k € Ky : k > last SS}
(last SS minimizes f and null— last SS)



Equivalent QPs

.

Given ty, the stepsize parameter of the proximal bundle
method, with QP subproblem given by

1
(PB)y  minMy(x) 4+ —x — %"
2ty
Given Ay, the radius parameter of the trust-region bundle

method, with QP subproblem given by

)
min M (x)

(TRB)x <
s.t. |X—7/2k|2§Ak

\

. Given {y, the level parameter of the level bundle method,



with QP subproblem given by

( k,Z
(LB)x <

min zlx X
) <

s.t.  My(x o

\
Show that

1. given ty, there exists Ay such that if xt1 solves (PB)y,
then x**! solves (TRB)y..

2. given Ay, there exists {y such that if Xt solves (TRB)y,
then x*1 solves (LB)y.

3. given
elly, there exists t, such that if x*T1 solves (LB)y, then
x*t1 solves (PB)y.



Theorem K :={k e Kg}

Suppose the bundle method loops forever and there are
infinitely many serious steps. Either the solution set of minf
is empty and f(&*) \, —oo or the following holds

1) lim 0 =0 and i = 0.

Dl 8= 0and i e

(11) If the stepsizes are chosen so that Z t = +oo then
keKg
&%} is a minimizing sequence.

(111) If, in addition, t;, < t"P for all k € Kg, then the
subsequence {%*} is bounded. In this case, any limit point
x°° minimizes f and the whole sequence converges to x*>°



Theorem K, := {k c Ky > ﬁ}

Suppose the bundle method loops forever and there are
infinitely many null steps after a last serious one, denoted by
X and generated at iteration K. Suppose stepsizes are chosen
so that

to Sty <t forall k € Ky
The following holds

1. The sequence {x*"'} is bounded

2. lim My (x*) = f(%
S k(X)) =1(R)

3. X minimizes f

K—+1

4., lim x*7' =X

keKso



Model requirements
1. My <f
2. If k was declared a null step
2) My, 1(x) > <1+ <gk+1)X_Xk+1>

b) Mici1(x) > Ag(x)=Milx 1)+ (G5 x—x<+1)



Model requirements
1. My <f
2. If k was declared a null step
2) My, 1(x) > <1+ <gk+1)X_Xk+1>
b) M y1(x) 2> Ay (x)=Mi (x5 1)+ (GF,x—xk+T)

Any model satisfying these conditions
that is used in the QP
maintains the convergence results



Comparing the methods: bundle and SG

Typical performance on a battery of Unit Commitment

problems
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Bundle Methods with on-demand accuracy
the new generation




Oracle types: exact and upper

o f1(x)/g'(x) € 3f!(x) is easy:
o 2(x)/g2(x) € df2(x) is difficult:

Oracle f2/g2 NOT of lower type



Oracle types: exact and lower

¢ 05100 01 iy
o f2(x)/g%(x) € 3f%(x) is less difficult:

’/Xﬁ
i *Téracle fz 2 /g2 of lower type



For the EM problem fJ (x) = max{—C’(q’) + <x, g (q )> :q) € P}
By computing .« and g,k satisfying

fox = f(x*)—n* and gk € ankf(xk)
we can build

e A lower oracle

e An asymptotically exact oracle

n“—0 as k— oo

e A partly asymptotically exact oracle

>0 as Ksdk— oo

e An on-demand accuracy oracle

T]k < ﬁk when T < fox —moy



BM with lower inexact oracles
o M (x)=max{f .+ <9X1,X—Xi> 1€ By}
o 58 =g+t |GK?
e SStest: Toki1 < F —mok
o X:=max {ka,maX (Mj(Qk),j > ﬁ) }

+ Oracle 1naccuracy 1s locally bounded:
VR > 04n(R) > 0:|x| < R =1 <n(R) convergence as
before, up to the accuracy on SS



BM with lower inexact oracles
[ Mk(x) = maX{in + <9X1,X—Xi> 1E Bk}

o 5K = 8k+tk|Gk|2

o SStest: fup1 < f¥—msk
o fX:= max{ka,maX(Mj(Qk),j > T%) }

+ Oracle 1naccuracy 1s locally bounded:

VR > 04n(R) > 0:|x| < R =1 <n(R) convergence as
before, up to the accuracy on SS Convex proximal bundle
methods 1n depth: a unified analysis for inexact oracles W. de
Oliverra, C. Sagastizabal, C. Lemaréchal MathProg 148, pp
241-277, 2014



General comments

Bundle methods are
e robust (do not oscillate, as CP methods do)

e reliable (have a stopping test, unlike SG
methods)

e can deal with inaccuracy in a reasonable

manner



Extending bundle methods



Constrained NSO problems: an example

21.m

v =417 8hm
v, =277.5m’
V.. =1505m’

min

65Mw ; 72,5mis @ i :TL

On’ /s
Sty i =1.5hm’
35€/MW; 3
™ \/ ¥, =1.0115m
SAUT MORTIER
Vi =0.96 2’
22Mw ; 100m3/s
La BIENNE S /s — ¥ =438}’
' MOUX V, =1.84m’
30{;-/WVM =35.12hnt V. =0.88/m’

¥, =34.38bun’

V. =33.27 hy 1MW 15m3ss

COISELET

20Mw ; 120m3s € 3 { ]

Vo =13.59 bt
V, =12.9 fm’

BOLOZON Ve =10.81hm°

IMw ; 60m3/s
Om’ /s

V.. =1821m’
v, =18.1 /w7
V.. =17.6km



Optimal management of the hydrovalley

( max A'E, (p(u))

{ st. (x,u)eP
Pn (Au—|— Amin < Mn < Au+ amax) >p
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( max A'E, (p(u))

{ st. (x,u)eP
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\
Is this a convex program?



Optimal management of the hydrovalley

( max A'E, (p(u))

{ st. (x,u)eP
Pn (Au—|— Amin < Mn < Au+ amax) > p

\
Is this a convex program? YES: the function

u — log <IP’n (Au—l— Amin < Mn < Au+ amax)) 1S convex.

)
min f(u)
We need to solve ¢ s.t. (x,u) € P forlinear f and with

c(u) <0

\

c(u):=log (IP’n (Au+ Amin < Mn < Au+ amax>> —logp



Optimal management of the hydrovalley

( max A'E, (p(u))

{ st. (x,u)eP
IP>1’] (Au‘l" Amin < Mn < Au+ amax) > P

\
Is this a convex program? YES: the function

u— log (IP’n (Au—l— Amin < Mn < Au+ amax)) 1S convex.

)
min f(u)
We need to solve ¢ s.t. (x,u) e P forlinear f and with

clu) <0

\

c(u) :=log (IP)T] (Aqu Amin < Mn < Au+ amax>) —logp
difficult to compute!



Need to solve the constrained problem

/

min f(u)
(P) ¢ s.t. (x,u)eP
c(u) <0

\
for linear f and with 1nexact evaluation of ¢ and its
gradient, via a black box with controllable
inaccuracy (bounded by a given tolerance ¢, with confidence level

99%, noting that evaluation errors can be positive or negative)



Handling constraints in NSO
For nonsmooth constrained problems

minf(u) s.t. clu) <0

use the Improvement Function

max{f(u)—f({1),c(u)}

u

(changes with each serious point {l and supposes exact f/c
values available) [SagSol SiOPT, 2005 and
KarasRibSagSol MPB, 2009]



Improvement function
Let (X,1t) be a solution to (P). The function

Hg(u) == (Xrﬁ?gp{f (u) — (), c(u)}

has perfect theoretical properties:
If Slater condition (3 (x,u) € P s.t. c(u) < 0) holds, then

tsolves min f(u) s.t. c(u) <0 (P)
(x,u)eP
()
min Hg(u) =Hg() =0
(x,u)eP



Improvement function
Let (X,1t) be a solution to (P). The function

Hg(u) := (Xrﬁ?gp{f (u) — (), c(u)}

has perfect theoretical properties:
Without Slater condition

tsolves min f(u) s.t. c(u) <0 (P)
(x,u)eP
J BUT Y
min Hg(uw) =Hg() =0
(x,u)eP
J and also

0 € OH(11) for H(-) := Hy (")



Improvement function
Let (X,1t) be a solution to (P). The function

Ha(u) :== max {f(u)—f(a), c(u)}
(x,u)eP
has perfect theoretical properties:
Without Slater condition
tsolves min f(u) s.t. c(u) <0 (P)
(x,u)eP

. when c(i1) < 0 1t solves (P), otherwise it minimizes infeasibility over P

min Hg(u) =Hg(w) =0
(x,u)eP
)

0 € OH(11) for H(-) := Hya (")



Handling nonconvex

problems



e Nonconvex proximal point mapping [PR96]

prf(x) := argminyelRN {f(y) + %\y —x\z}

x 1s the prox-center and R > Ry 1s the prox-parameter

Theorem If f is convex
— prf is well defined for any R > 0.
— prf 1s single valued and loc. Lip.
- p=prf(x) &= R(x—7p) € of(p)
— x* minimizes f < x* = prf(x*) for any R > 0.
— X1 = prf(xk) converges to a minimizer x*.

What is f is nonconvex?



Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle)
methods for convex minimization. Their success relies heavily on

convexity. If f 1s convex:
— Xk41 =Pprf(xK) converges to a minimizer x*.

— fy lies entirely below f.
May no longer be true for nonconvex f
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Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle)
methods for convex minimization. Their success relies heavily on

convexity. If f 1s convex
— Xk41 =Pprf(xk) converges to a minimizer x*.

— fy lies entirely below f.
May no longer be true for nonconvex f




Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle)
methods for convex minimization. Their success relies heavily on

convexity. If f 1s convex
— X1 =Pprf(xk) converges to a minimizer x*.

— fy lies entirely below f.
May no longer be true for nonconvex f

How this difficulty has been addressed?



Take each plane in the model: f; + (gi,- —y;) and rewrite it,
centered at xy:

fxd— [f0a) = (fit {guxc—ud) |+ (g1 —x)
fxK)— el + (giy* —Xk)

= fi(y) = max {f(xk) — 6% + (90 Y _Xk>}

Good: e]‘i . positive = convergence Good: If f convex = e]’i :
) )

positive. BAD: If f nonconvex, e]f( . may be negative



Nonconvex bundle methods
fix negative linearization errors, replacing fy by:

fi % (y) = max {f(xk) —lelil + {9,y _Xk>}

[Mit77, Lem80, Kiw85, Luk98]
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Nonconvex bundle methods
fix negative linearization errors, replacing fy by:

fi % (y) = max {f(xk) —lejil + {91,y — Xk>}

[Mit77, Lem80, Kiw85, Luk98]




Nonconvex bundle methods
fix negative linearization errors, replacing fy by:

fi % (y) = max {f(xk) — |ef<,i‘ +{95,y _Xk>}

[Mit77, Lem80, Kiw85, Luk98]




A new method

A different approach (ours) is based on the following trick

Take n, it > 0: R =1+ u and note

prf(xk) =

min{ f(w) -+
w

min { f(w) +
w

min{  f(w)+nzw—xl> +

min{ Frn (W) -
w

PulFn) (x)

(M+u)

N= N[= N[= N[=—=

W — Xk
W — Xk
W — Xk

W — Xk

N

N

N

N
—— —— —— —



Redistributed Proximal Bundle Method
At £tMjteration, for k = k({), given Ry, Xy and a bundle

B ={yi,fi,9i,1 € L}

0. Split Rk 1nto ny and py.

1. Model F,, ]\fne’g(y) = maxicpin,; + <gmi,y _Ui>}

2. Minimize the penalized model
Yer1 = argmin{Fy, o (y) + Bty —xx [}

3. Descent test If yp11 good: X1 ¢ Yer1,define R, 7  serious step
If ye 1 bad: null step
4. Update bundle B+ BU{ygs1,fer1,90+1}



YU quasi-Newton bundle

For x € IR™, given matrices A = 0, B = 0, f(x) = vVx"Ax+x'Bx has a
unique minimizer at X = 0. On V (A) the function is not differentiable,

and the first term vanishes: f|5r( 4 looks smooth.

L
L1 v
.

parallel to 0f(X) U perpendicular to V
V is parallel to N (A) , the “ridge" of nonsmoothness






YU-Algorithm:

(Mifflin&Sagastizabal, MathProg 05) Recall that
f |VH N(A) 1s nice: the key is the two QP-solves

R(A)
\ % U
2 bundle QPs Newton-move

Two successive bundle QPs identify the *‘ridge” of nonsmoothness

Solve a [l to create an approximation of ) based on a?(ﬁk)




YU-Algorithm:

superlinear ““serious” subsequence (Miffiin&Sag, MathProg 05)

qNewton VU Burdle
BEGS+-linesearch

Proximal Bundle
Composite Bundle

o0+ =




To learn more

Bundle methods history

R. MIFFLIN, C. SAGASTIZABAL, Documenta Math, 2012. A Science
Fiction Story in Nonsmooth Optimization Originating at IIASA
https://www.math.uni-bielefeld.de/documenta/
vol—-ismp/44_mifflin-robert.pdf

(exact) Bundle books

J.F. BONNANS, J.C. GILBERT, C. LEMARECHAL, AND

C. SAGASTIZABAL, Numerical Optimization: Theoretical and Practical
Aspects, Springer, 2nd ed., 2006.

J.B. HIRIART-URRUTY AND C. LEMARECHAL, Convex Analysis and
Minimization Algorithms II, no. 306 in Grund. der math. Wissenschaften,
Springer, 2nd ed., 1996.

Inexact Bundle theory

(next page)



Inexact Bundle theory
M. HINTERMULLER, A proximal bundle method based on approximate

subgradients, COAp 20 (2001), pp. 245-266.

M. V. SoLOoDOV, On Approximations with Finite Precision in Bundle
Methods for Nonsmooth Optimization. JoTA 119.1 (2003), pp. 151-165
K.C. KIWIEL, A proximal bundle method with approximate subgradient
linearizations, SiOpt 16 (2006), pp. 1007-1023.
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