
Nonsmooth optimization :
beyond first order methods.

A tutorial
focusing on

bundle methods

Claudia Sagastizábal

(IMECC-UniCamp, Campinas Brazil, adjunct researcher)

SESO 2018, Paris, May 23 and 25, 2018

Computational NSO: what do we mean?

For the unconstrained problem

minf(x),

where f : IRn→ IR is convex but not differentiable at some points
Algorithms defined according on how much information is
provided by certain oracle

Computational NSO: what do we mean?

For the unconstrained problem

minf(x),

where f : IRn→ IR is convex but not differentiable at some points,
Algorithms defined according on how much information is
provided by certain oracle
an informative oracle

x

f(x)

the full ∂f(x)

Computational NSO: what do we mean?

For the unconstrained problem

minf(x),

where f : IRn→ IR is convex but not differentiable at some points
Algorithms defined according on how much information is
provided by certain oracle
a “black box”

x

f(x)

ONE g(x) ∈ ∂f(x)

Computational NSO: what do we mean?

For the unconstrained problem

minf(x),

where f : IRn→ IR is convex but not differentiable at some points,
Algorithms defined according on how much information is
provided by certain oracle
a “black box”

x

f(x)

ONE g(x) ∈ ∂f(x)

How common are nonsmooth objective functions in optimization?

When does nonsmoothness appear?

* if the nature of the problem imposes a
nonsmooth model; or

* if sparsity of the solution is a concern; or

* in problems difficult to solve,

– because they are large scale

– because they are heterogeneous

sometimes the solution method induces
nonsmoothness

Example of NS model

Recovery of blocky images (`1-regularization of TV)

Example of sparse optimization min{‖x‖1 :Ax= b}
Basis pursuit: find least 1-norm point on the affine plane
Tends to return a sparse point (sometimes, the sparsest)

Example of sparse optimization min{‖x‖1 :Ax= b}
Basis pursuit: find least 1-norm point on the affine plane
Tends to return a sparse point (sometimes, the sparsest)

LASSO denoises basis pursuit

min
{
‖Ax−b‖22 : ‖x‖1 ≤ τ

}
or

min
{
‖x‖1+ µ

2 ‖Ax−b‖
2
2

}
or

min
{
‖x‖1 : ‖Ax−b‖22 ≤ σ

}

Example of sparse optimization min{‖x‖1 : h(x)≤ b}
Basis pursuit: find least 1-norm point on a nonlinear set
Tends to return a sparse point (sometimes, the sparsest)

LASSO denoises basis pursuit

min
{
‖
(

h(x)−b
)+
‖22 : ‖x‖1 ≤ τ

}
or

min
{
‖x‖1+ µ

2 ‖
(

h(x)x−b
)+
‖22

}
or

min
{
‖x‖1 : ‖

(
h(x)x−b

)+
‖22 ≤ σ

}

Lagrangian Relaxation Example
Real-life optimization problems

(primal)



min
∑
j∈J

Cj(pj)

for j ∈ J: pj ∈P j∑
j∈J
gj(pj) =Dem ← x

Lagrangian Relaxation Example
Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

for j ∈ J: pj ∈P j∑
j∈J
gj(pj) =Dem ← x

often exhibit separable structure after dualization

Lagrangian Relaxation Example
Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

for j ∈ J: pj ∈P j∑
j∈J
gj(pj) =Dem ← x

often exhibit separable structure passing to the (dual):

Lagrangian Relaxation Example
Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

for j ∈ J: pj ∈P j∑
j∈J
gj(pj) =Dem ← x

often exhibit separable structure passing to the (dual):

min
x

f(x) := f0(x) +
∑
j∈J

fj(x)

min
x

−〈x,Dem〉 +
∑
j∈J

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈P j

Lagrangian Relaxation Example
Real-life optimization problems

(primal)



max
∑
j∈J

−Cj(pj)

for j ∈ J: pj ∈P j∑
j∈J
gj(pj) =Dem ← x

often exhibit separable structure passing to the (dual):

min
x

f(x) := f0(x) +
∑
j∈J

fj(x)

min
x

−〈x,Dem〉 +
∑
j∈J

 max −Cj(pj)+
〈
x,gj(pj)

〉
pj ∈P j

Benders Decomposition Example
Similar situation, but now the uncoupling is done on a primal level

(primal)


min

∑
j∈J

I j(∆pj)+Cj(pj)

for j ∈ J: pj ∈P j ⇐⇒ pj ≤ p̄j +∆pj

∆p ∈D

Benders Decomposition Example
Similar situation, but now the uncoupling is done on a primal level

(primal)


min

∑
j∈J

I j(∆pj)+Cj(pj)

for j ∈ J: pj ∈P j ⇐⇒ pj ≤ p̄j +∆pj

∆p ∈D
min
∆p

∑
j∈J

I j(∆pj)+V j(∆pj)

∆p ∈D
V j(∆pj) :=

 min Cj(pj)

pj ≤ p̄j+∆pj

minf(x) :=
∑
j∈J
fj(∆pj) fj(∆pj) :=

Benders Decomposition Example
Similar situation, but now the uncoupling is done on a primal level

(primal)


min

∑
j∈J

I j(∆pj)+Cj(pj)

for j ∈ J: pj ∈P j ⇐⇒ pj ≤ p̄j +∆pj

∆p ∈D
min
∆p

∑
j∈J

I j(∆pj)+V j(∆pj)

∆p ∈D
V j(∆pj) :=

 min Cj(pj)

pj ≤ p̄j+∆pj

minf(x) :=
∑
j∈J
fj(∆pj) for fj(∆pj) := I j(∆pj)+V j(∆pj)

Computing ∂f(xk): how difficult is it?

1. f(x) = |x|, for n= 1

2. A linear Lasso function, f(x) = ‖x‖1+ µ
2 ‖Ax−b‖

2
2

3. A nonlinear Lasso function, h ∈ C1,
f(x) = ‖x‖1+ µ

2 ‖
(
h(x)−b

)+
‖22

4. One of the local subproblems in the Lagrangian example,

fj(xk) :=

 max −Cj(pj)+
〈
xk,gj(pj)

〉
pj ∈P j

5. One of the local subproblems in the Benders example,

(I j(∆pj)+V j(∆pj) =fj(xk,j) = min
{
Cj(pj) : pj ≤ p̄j+xk,j

}

But why would one want ALL of ∂f(xk)?

But why would one want ALL of ∂f(xk)?
Indispensible to calculate the proximal point

p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ ∈ ∂f(p)+ 1

t(p−x)⇐⇒ 1
t(x−p) ∈ ∂f(p)

But why would one want ALL of ∂f(xk)?
Indispensible to calculate the proximal point

p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ 0 ∈ ∂f(p)+ 1

t(p−x)⇐⇒ 1
t(x−p) ∈ ∂f(p)

But why would one want ALL of ∂f(xk)?
Indispensible to calculate the proximal point

p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ 0 ∈ ∂f(p)+ 1

t(p−x)⇐⇒ 1
t (x−p) ∈ ∂f(p)

But why would one want ALL of ∂f(xk)?
Indispensible to calculate the proximal point

p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ 0 ∈ ∂f(p)+ 1

t(p−x)⇐⇒ 1
t (x−p) ∈ ∂f(p)

Without full knowledge of the subdifferential, the
implicit inclusion cannot be solved!

But why would one want ALL of ∂f(xk)?
Indispensible to calculate the proximal point

p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ 0 ∈ ∂f(p)+ 1

t(p−x)⇐⇒ 1
t (x−p) ∈ ∂f(p)

Without full knowledge of the subdifferential, the
implicit inclusion cannot be solved!

note: p ∈ x− t∂f(p) akin to a subgradient method

Proximal point algorithms (Accel. Nesterov, FISTA, AugLag)

xk+1 = proxftk(x
k)⇐⇒

xk+1 = argminf(y)+ 1
2tk
‖y−xk‖22

Proximal point algorithms (Accel. Nesterov, FISTA, AugLag)

xk+1 = proxftk(x
k)⇐⇒

xk+1 = argminf(y)+ 1
2tk
‖y−xk‖22

• of interest if computing proxftk(x
k) is much

easier than minimizing f

• stepsize tk > 0 impacts on the number of
iterations

Proximal point algorithms (Accel. Nesterov, FISTA, AugLag)

xk+1 = proxftk(x
k)⇐⇒

xk+1 = argminf(y)+ 1
2tk
‖y−xk‖22

• of interest if computing proxftk(x
k) is much

easier than minimizing f

• stepsize tk > 0 impacts on the number of
iterations

Proximal point: calculus rules

• separable sum:
f(x,y) = (g(x),h(y))=⇒
proxft(x) =

(
prox

g
t (x),prox

h
t (y)

)
• scalar factor (α 6= 0) and translation (v 6= 0):
f(x) = g(αx+v)=⇒
proxft(x) =

1
α

(
prox

α2g
t (αx+v)−v

)
• “perspective" (α > 0):
f(x) = αg(1αx)=⇒ proxft(x) = αprox

g/α
t (xα)

Proximal point: special functions

• + linear term (v 6= 0):
f(x) = g(x)+ 〈v,x〉=⇒ proxft(x) = prox

g
t (x−v)

• + convex quadratic term (t > 0):

f(x) = g(x)+
1

2t
‖x−v‖2 =⇒

proxft(x) = prox
λg
t (λx+(1−λ)v) for λ=

t

t+1

• composition with linear term such that A>A= 1
αI,

(α 6= 0):
f(x) = g(Ax+v)=⇒
proxft(x) = (I−αA>A)x+αA>

[
prox

g/α
t (Ax+v)−v

]

Proximal point algorithm: convergence

If argminf 6= /0 then

f(xk)− f(x̄)≤ ‖x
0− x̄‖2

2
∑k
i=1 ti

Proximal point algorithm: convergence

If argminf 6= /0 then

f(xk)− f(x̄)≤ ‖x
0− x̄‖2

2
∑k
i=1 ti

=⇒ convergence if
∑
ti→+∞

=⇒ rate 1/k if {tk} bounded away from zero

Proximal point algorithm: acceleration

xk+1 = proxftk

(
xk+θk+1(

1
θk
−1)(xk −xk−1)

)
for

θ2k+1
tk+1

= (1−θk+1)
θ2k
tk

Proximal point algorithm: acceleration

xk+1 = proxftk

(
xk+θk+1(

1
θk
−1)(xk −xk−1)

)
for

θ2k+1
tk+1

= (1−θk+1)
θ2k
tk

=⇒ convergence if
∑√

ti→+∞
=⇒ rate 1/k2 if {tk} bounded away from zero

What if proxft is not computable?

What if proxft is not computable?

Use bundle methods!

What if proxft is not computable?

Use bundle methods!

When do bundle method prove most useful?

What if proxft is not computable?

Use bundle methods!

When do bundle method prove most useful?

In situations

– when the objective function is not available explicitly

and/or

– when we do not have access to the full subdifferential

and/or

– when calculations need to be done with high precision

Bundling to approximate the prox

WANT: p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ 0 ∈ ∂f(p)+ 1

t (p−x)⇐⇒ 1
t (x−p) ∈ ∂f(p)

Bundling to approximate the prox

WANT: p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ 0 ∈ ∂f(p)+ 1

t (p−x)⇐⇒ 1
t (x−p) ∈ ∂f(p)

HAVE: q= proxM
t (x) ⇐⇒ q= argminM(y)+ 1

2t‖y−x‖
2
2⇐⇒ 0 ∈ ∂M(q)+ 1

t (q−x)⇐⇒ 1
t (x−q) ∈ ∂M(q)

Bundling to approximate the prox

WANT: p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ 0 ∈ ∂f(p)+ 1

t (p−x)⇐⇒ 1
t (x−p) ∈ ∂f(p)

HAVE: q= proxM
t (x) ⇐⇒ q= argminM(y)+ 1

2t‖y−x‖
2
2⇐⇒ 0 ∈ ∂M(q)+ 1

t (q−x)⇐⇒ 1
t (x−q) ∈ ∂M(q)

M is a model of f for which we do have full knowledge of the
subdifferential: the implicit inclusion can be solved!

Bundling to approximate the prox

WANT: p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2⇐⇒ 0 ∈ ∂f(p)+ 1

t (p−x)⇐⇒ 1
t (x−p) ∈ ∂f(p)

HAVE: q= proxM
t (x) ⇐⇒ q= argminM(y)+ 1

2t‖y−x‖
2
2⇐⇒ 0 ∈ ∂M(q)+ 1

t (q−x)⇐⇒ 1
t (x−q) ∈ ∂M(q)

M is a model of f for which we do have full knowledge of the
subdifferential: the implicit inclusion can be solved!

How is the model built?

Model built with the black box

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

{∇f(x)} = {slope of the linearization supporting f, tangent at x}

A quick overview of Convex Analysis

An example of a convex nonsmooth function

{∇f(x)} = {slope of the linearization supporting f, tangent at x}

By convexity,

f(y)≥ f(x)+
〈
∇f(x),y−x

〉
for all y

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

A quick overview of Convex Analysis

An example of a convex nonsmooth function

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉 for all y}
= {slopes of linearizations supporting f, tangent at x}

A quick overview of Convex Analysis

An example of a convex nonsmooth function

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉 for all y}
= {slopes of linearizations supporting f, tangent at x}

What can be done with the oracle output?

An example of a convex nonsmooth function

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉 for all y}
= {slopes of linearizations supporting f, tangent at x}

What can be done with the oracle output?

An example of a convex nonsmooth function

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉 for all y}
= {slopes of linearizations supporting f, tangent at x}

1 oracle call
xk

f(xk)

g(xk) ∈ ∂f(xk)

=
1 linearization

BEWARE:
xk

f(xk)

g(xk) ∈ ∂f(xk)

if oracle output is not accurate,

linearization can be wrong!

∂f(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉 for all y}
wrong g(xk) gives bad linearization at xk

(similarly if wrong f(xk), more on this later)

How is the oracle information used?

Putting together linearizations

creates a cutting-plane model M for f

xi
fi = f(xi)

gi = g(xi)
=⇒M(y) = max

i
{fi+

〈
gi,x−xi

〉
}

How is the oracle information used?

Putting together linearizations

1

creates a cutting-plane model M for f

xi
fi = f(xi)

gi = g(xi)
=⇒M(y) = max

i

{
fi+

〈
gi,x−xi

〉}

How is the oracle information used?

Putting together linearizations

1

creates a cutting-plane model M for f

xi
fi = f(xi)

gi = g(xi)
=⇒M(y) = max

i

{
fi+

〈
gi,x−xi

〉}

How is the oracle information used?

Putting together linearizations

1

creates a cutting-plane model M for f

xi
fi = f(xi)

gi = g(xi)
=⇒M(y) = max

i

{
fi+

〈
gi,y−xi

〉}
(just one type of model, many others are possible)

How is the oracle information used?

Putting together linearizations

1

creates a cutting-plane model M for f

xi
fi = f(xi)

gi = g(xi)
=⇒Mk(y) = max

i≤k

{
fi+

〈
gi,y−xi

〉}
(just one type of model, many others are possible)

Infinite bundling yields proxft
WANT: p= proxft(x) ⇐⇒ p= argminf(y)+ 1

2t‖y−x‖
2
2

HAVE: qk = proxMktk (x) ⇐⇒ qk = argminMk(y)+
1
2tk
‖y−xk‖22⇐⇒ 0=Gk+ 1

tk
(qk−xk)

for Gk ∈ ∂Mk(q
k)Theorem [CL93] Suppose the models satisfy

• Mk(y)≤ f(y) for all k and y
• Mk+1(y)≥ f(qk)+

〈
g(qk),y−xk

〉
• Mk+1(y)≥Mk(q

k)+
〈
Gk,y−xk

〉
If 0 < tmin ≤ tk+1 ≤ tk, then

lim
k→∞qk = p and lim

k→∞Mk(q
k) = f(p)

Infinite bundling yields proxft
WANT: p= proxft(x) ⇐⇒ p= argminf(y)+ 1

2t‖y−x‖
2
2

HAVE: qk = proxMktk (x) ⇐⇒ qk = argminMk(y)+
1
2tk
‖y−xk‖22⇐⇒ 0=Gk+ 1

tk
(qk−xk)

for Gk ∈ ∂Mk(q
k)

Theorem [CL93] Suppose the models satisfy

• Mk(y)≤ f(y) for all k and y

• Mk+1(y)≥ f(qk)+
〈
g(qk),y−xk

〉
• Mk+1(y)≥Mk(q

k)+
〈
Gk,y−xk

〉
If 0 < tmin ≤ tk+1 ≤ tk, then

lim
k→∞qk = p and lim

k→∞Mk(q
k) = f(p)

Models for the half-and-half function

STRUCTURE f(x)

none √
x>Ax+x>Bx

sum f1(x)+ f2(x)

f1(x) =
√
x>Ax

f2(x) = x
>Bx

f2 is smooth

compo

sition
(h◦c)(x)

c(x) = (x,x>Bx) ∈ IRn+1

c is smooth

h(C) =
√
C>1:nAC1:n+Cn+1

h is sublinear

Models for the half-and-half function

STRUCTURE f(x)

none √
x>Ax+x>Bx

sum f1(x)+ f2(x)

f1(x) =
√
x>Ax

f2(x) = x
>Bx

f2 is smooth

compo

sition
(h◦c)(x)

c(x) = (x,x>Bx) ∈ IRn+1

c is smooth

h(C) =
√
C>1:nAC1:n+Cn+1

h is sublinear

Models for the half-and-half function

STRUCTURE f(x)

none √
x>Ax+x>Bx

fk := f(xk), gk ∈ ∂f(xk)

sum f1(x)+ f2(x)

f1(x) =
√
x>Ax

f2(x) = x
>Bx

fk1 ,g
k
1 , f

k
2 ,∇f2(x

k)

compo

sition
(h◦c)(x)

c(x) = (x,x>Bx) ∈ IRn+1

ck = c(xk),c ′(xk)

h(C) =
√
C>1:nAC1:n+Cn+1

hk,gk ∈ ∂h(ck)

Models for the half-and-half function

STRUCTURE f(x)

none √
x>Ax+x>Bx

fk := f(xk), gk ∈ ∂f(xk)

sum f1(x)+ f2(x)

f1(x) =
√
x>Ax

f2(x) = x
>Bx

fk1 ,g
k
1 , f

k
2 ,∇f2(x

k)

compo

sition
(h◦c)(x)

c(x) = (x,x>Bx) ∈ IRn+1

ck = c(xk),c ′(xk)

h(C) =
√
C>1:nAC1:n+Cn+1

hk,gk ∈ ∂h(ck)

Models for the half-and-half function

STRUCTURE f(x)

none √
x>Ax+x>Bx

fk := f(xk), gk ∈ ∂f(xk)

sum f1(x)+ f2(x)

f1(x) =
√
x>Ax

f2(x) = x
>Bx

fk1 ,g
k
1 , f

k
2 ,∇f2(x

k)

compo

sition
(h◦c)(x)

c(x) = (x,x>Bx) ∈ IRn+1

ck = c(xk),c ′(xk)

h(C) =
√
C>1:nAC1:n+Cn+1

hk,gk ∈ ∂h(ck)

NSO pitfa
lls

NSO pitfalls

NSO pitfa
lls

NSO pitfa
lls

Stopping test in smooth optimization

Algorithms for unconstrained smooth optimization use as
optimality certificate Fermat’s rule

0= ∇f(x̄)

and generate a minimizing sequence:

{xk}→ x̄ such that ∇f(xk)→ 0.

If f ∈ C1, then ∇f(x̄) = 0

Stopping test in smooth optimization

Algorithms for unconstrained smooth optimization use as
optimality certificate Fermat’s rule

0= ∇f(x̄)

and generate a minimizing sequence:

{xk}→ x̄ such that ∇f(xk)→ 0.

If f ∈ C1, then ∇f(x̄) = 0 things are less straightforward if f is
nonsmooth. . .

What happens with the stopping test in NSO?
Algorithms for unconstrained NSO use as optimality
certificate the inclusion

0 ∈ ∂f(x̄)
• As a set-valued mapping ∂f(x) is osc:(
xk,g(xk) ∈ ∂f(xk)

)
:

 xk→ x̄

g(xk)→ ḡ
=⇒ ḡ ∈ ∂f(x̄)

What happens with the stopping test in NSO?
Algorithms for unconstrained NSO use as optimality
certificate the inclusion

0 ∈ ∂f(x̄)
• As a set-valued mapping ∂f(x) is osc:(
xk,g(xk) ∈ ∂f(xk)

)
:

 xk→ x̄

g(xk)→ ḡ
=⇒ ḡ ∈ ∂f(x̄)

• As a set-valued mapping, ∂f(x) is not isc:
Given ḡ ∈ ∂f(x̄)

∃
(
xk,g(xk) ∈ ∂f(xk)

)
:

 xk→ x̄

g(xk)→ ḡ
/

What happens with the stopping test in NSO?
Algorithms for unconstrained NSO use as optimality
certificate the inclusion

0 ∈ ∂f(x̄)
• As a set-valued mapping ∂f(x) is osc:(
xk,g(xk) ∈ ∂f(xk)

)
:

 xk→ x̄

g(xk)→ ḡ
=⇒ ḡ ∈ ∂f(x̄)

• As a set-valued mapping, ∂f(x) is not isc:
Given ḡ ∈ ∂f(x̄)

∃
(
xk,g(xk) ∈ ∂f(xk)

)
:

 xk→ x̄

g(xk)→ ḡ
///

The subdifferential
∂f(x) =


−1 x < 0

[−1,1] x= 0

1 x > 0

For the absolute value function, f(x) = |x|

∂εf(x) =


[−1,−1−ε/x] x <−ε/2,

[−1,1] −ε/2≤ x1≤ ε1/2,
[1−ε/x,1] x > ε/2.

What happens with the stopping test in NSO?

We need to design a sound stopping test that does
not rely on the straightforward extension of
Fermat’s rule.

What happens with the stopping test in NSO?

We need to design a sound stopping test that does
not rely on the straightforward extension of
Fermat’s rule. We use instead

ḡ ∈ ∂ε̄f(x̄) for ‖ḡ‖ and ε̄ small

where the ε-subdifferential contains the slopes of
linearizations supporting f up to ε, tangent at x:

∂εf(x)= {g∈ IRn : f(y)≥ f(x)+〈g,y−x〉−ε for all y}

The ε-subdifferential
∂εf(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉−ε for all y}

linearization
Subgradient

f

ε

f+ε

The ε-subdifferential
∂εf(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉−ε for all y}

linearization
Subgradient
Epsilon

f

ε

f

ε

f+ε

The ε-subdifferential
∂εf(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉−ε for all y}

linearization
Subgradient
Epsilon

f

ε

f

ε

f+ε

The ε-subdifferential
∂εf(x) = {g ∈ IRn : f(y)≥ f(x)+ 〈g,y−x〉−ε for all y}

linearization
Subgradient
Epsilon

f

ε

f

ε

f+ε

The ε-subdifferential
∂f(x) =


−1 x < 0

[−1,1] x= 0

1 x > 0

For the absolute value function, f(x) = |x|

∂εf(x) =


[−1,−1−ε/x] x <−ε/2,

[−1,1] −ε/2≤ x1≤ ε1/2,
[1−ε/x,1] x > ε/2.

The ε-subdifferential
∂f(x) =


−1 x < 0

[−1,1] x= 0

1 x > 0

For the absolute value function, f(x) = |x|

∂εf(x) =


[−1,−1−ε/x] if x <−ε/2,

[−1,1] if −ε/2≤ x1≤ ε1/2,
[1−ε/x,1] if x > ε/2.

−
ε

2

ε

2

The ε-subdifferential
−
ε

2

ε

2

• As a set-valued mapping ∂εf(x) is osc:

(
εk,xk,G(xk)∈∂εkf(x

k)
)
:


εk→ ε

xk→ x̄

G(xk)→ ḡ

=⇒ ḡ∈∂ε̄f(x̄)
• As a set-valued mapping, ∂εf(x) is isc:

Given ḡ ∈ ∂ε̄f(x̄)

∃
(
εk,xk,G(xk) ∈ ∂εkf(x

k)
)
:


εk→ ε̄

xk→ x̄

G(xk)→ ḡ

The ε-subdifferential and bundle methods

Generate iterates so that for a subsequence {x̂k}

• As a set-valued mapping ∂εf(x) is osc:

(
εk, x̂k,G(x̂k)∈∂εkf(x̂

k)
)
:


εk→ ε̄

xk→ x̄

G(x̂k)→ ḡ

=⇒ ḡ∈∂ε̄f(x̄)
with ε̄= 0 and ḡ= 0

• As a set-valued mapping, ∂εf(x) is isc:Given ḡ ∈ ∂ε̄f(x̄) :

∃
(
εk, x̂k,G(x̂k) ∈ ∂εkf(x̂k)

)
:


εk→ ε̄

xk→ x̄

G(xk)→ ḡ

The ε-subdifferential and bundle methods
You told us

we were going to use subgradient information provided by an
oracle or a black box, and now you want to use ε-subgradients!

The transportation formula
How to express subgradients at xi as ε-subgradients at x̂k?

gi ∈ ∂f(xi) if and only if, for all y ∈ IRn

f(y) ≥ f(xi)+
〈
gi,y−xi

〉
= f(xi)+

〈
gi,y−x

〉
pmf(x̂k)

= f(x̂k)+
〈
gi,y−x

〉
−Bigl(f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y−x± x̂k

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y− x̂k

〉
−
(
f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉)
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

The transportation formula
How to express subgradients at xi as ε-subgradients at x̂k?

gi ∈ ∂f(xi) if and only if, for all y ∈ IRn

f(y) ≥ f(xi)+
〈
gi,y−xi

〉
= f(xi)+

〈
gi,y−x

〉
± f(x̂k)

= f(x̂k)+gi>(y−x)−
(
f(x̂k)− f(xi)

)
= f(x̂k)+gi>(y−x± x̂k)−

(
f(x̂k)− f(xi)

)
= f(x̂k)+gi>(y− x̂k)−

(
f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉)
= f(x̂k)+gi>(y− x̂k)−ei(x̂k)

=⇒ gi ∈ ∂ei(x̂k)f(x̂k)

ei(x̂k) := f(x̂k)− f(xi)−
〈
gi, x̂k−xi

〉
≥ 0

The transportation formula
How to express subgradients at xi as ε-subgradients at x̂k?

gi ∈ ∂f(xi) if and only if, for all y ∈ IRn

f(y) ≥ f(xi)+
〈
gi,y−xi

〉
= f(xi)+

〈
gi,y−x

〉
± f(x̂k)

= f(x̂k)+
〈
gi,y−x

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
giy−x± x̂k

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
giy− x̂k

〉
−
(
f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉)
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

=⇒ gi ∈ ∂ei(x̂k)f(x̂k)
ei(x̂k) := f(x̂k)− f(xi)−gi,,x̂k−xi)≥ 0

The transportation formula
How to express subgradients at xi as ε-subgradients at x̂k?

gi ∈ ∂f(xi) if and only if, for all y ∈ IRn

f(y) ≥ f(xi)+
〈
gi,y−xi

〉
= f(xi)+

〈
gi,y−x

〉
± f(x̂k)

= f(x̂k)+
〈
gi,y−x

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y−x± x̂k

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y− x̂k

〉
−
(
f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉)
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

=⇒ gi ∈ ∂ei(x̂k)f(x̂k)
ei(x̂k) := f(x̂k)− f(xi)−gi,,x̂k−xi)≥ 0

The transportation formula
How to express subgradients at xi as ε-subgradients at x̂k?

gi ∈ ∂f(xi) if and only if, for all y ∈ IRn

f(y) ≥ f(xi)+
〈
gi,y−xi

〉
= f(xi)+

〈
gi,y−x

〉
± f(x̂k)

= f(x̂k)+
〈
gi,y−x

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y−x± x̂k

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y− x̂k

〉
−
(
f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉)
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

=⇒ gi ∈ ∂ei(x̂k)f(x̂k)
ei(x̂k) := f(x̂k)− f(xi)−gi,,x̂k−xi)≥ 0

The transportation formula
How to express subgradients at xi as ε-subgradients at x̂k?

gi ∈ ∂f(xi) if and only if, for all y ∈ IRn

f(y) ≥ f(xi)+
〈
gi,y−xi

〉
= f(xi)+

〈
gi,y−x

〉
± f(x̂k)

= f(x̂k)+
〈
gi,y−x

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y−x± x̂k

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y− x̂k

〉
−
(
f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉)
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

=⇒ gi ∈ ∂ei(x̂k)f(x̂k)
ei(x̂k) := f(x̂k)− f(xi)−gi,,x̂k−xi)≥ 0

The transportation formula
How to express subgradients at xi as ε-subgradients at x̂k?

gi ∈ ∂f(xi) if and only if, for all y ∈ IRn

f(y) ≥ f(xi)+
〈
gi,y−xi

〉
= f(xi)+

〈
gi,y−x

〉
± f(x̂k)

= f(x̂k)+
〈
gi,y−x

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y−x± x̂k

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y− x̂k

〉
−
(
f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉)
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

=⇒ gi ∈ ∂ei(x̂k)f(x̂k)
ei(x̂k) := f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉
≥ 0

The transportation formula
How to express subgradients at xi as ε-subgradients at x̂k?

gi ∈ ∂f(xi) if and only if, for all y ∈ IRn

f(y) ≥ f(xi)+
〈
gi,y−xi

〉
= f(xi)+

〈
gi,y−x

〉
± f(x̂k)

= f(x̂k)+
〈
gi,y−x

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y−x± x̂k

〉
−
(
f(x̂k)− f(xi)

)
= f(x̂k)+

〈
gi,y− x̂k

〉
−
(
f(x̂k)− f(xi)−

〈
gi, x̂k−xi

〉)
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

=⇒ gi ∈ ∂ei(x̂k)f(x̂k)

ei(x̂k) := f(x̂k)− f(xi)−
〈
gi, x̂k−xi

〉
≥ 0

Linearization errors

x̂k

Mk(·)

f(x̂k)

f(xj)

xj

ej(x̂
k)

f

f(x j)+
〈
g j, ·−x j 〉

The ε-subdifferential and bundle methods

We collect the black-box
output at past iterations

xi, i= 1,2, . . . ,k, so that at iteration k we can define a
bundle of information, centered at a special iterate x̂k ∈ {xi}

Bk :=

 ei(x̂k) = f(x̂k)− f(xi)−
〈
gi, x̂k−xi

〉
gi ∈ ∂ei(x̂k)f(x̂k)



The ε-subdifferential and bundle methods

We collect the black-box
output at past iterations

xi, i= 1,2, . . . ,k, so that at iteration k we can define a
bundle of information, centered at a special iterate x̂k ∈ {xi}

Bk :=

 ei(x̂k) = f(x̂k)− f(xi)−
〈
gi, x̂k−xi

〉
gi ∈ ∂ei(x̂k)f(x̂k)


A suitable convex combination

εk :=
∑
i∈Bk

αiei(x̂k) and Gk :=
∑
i∈Bk

αigi

will eventually satisfy the optimality condition!

Why special NSO methods?

Smooth optimization techniques do not work

0

abs

f(x) = |x|

|∇f(xk)| = 1, ∀xk 6= 0 ∂f(0) = [−1,1]

Smooth stopping test fails:

|∇f(xk)|≤TOL (↔ |g(xk)|≤TOL)

Why special NSO methods?

Smooth optimization techniques do not work

Smooth approximations of derivatives by finite
differences fail

For f : IR3→ IR defined by f(x) = max(x1,x2,x3)
∂f(0) = ?

Forward finite difference f(x+∆x)−f(x)∆x = (1,1,1)

Central finite difference f(x+∆x)−f(x−∆)2∆x = (12 ,
1
2 ,
1
21

none of them in the subdifferential!

Why special NSO methods?

Smooth optimization techniques do not work

Smooth approximations of derivatives by finite
differences fail

For f : IR3→ IR defined by f(x) = max(x1,x2,x3)
∂f(0) = ?

Forward finite difference f(x+∆x)−f(x)∆x = (1,1,1)

Central finite difference f(x+∆x)−f(x−∆)2∆x = (1
2 ,

1
2 ,

1
2

none of them in the subdifferential!

Why special NSO methods?

Smooth optimization techniques do not work

Linesearches get trapped in kinks and fail

Why special NSO methods?

Smooth optimization techniques do not work

Linesearches get trapped in kinks and fail

Example 9.1 “Instability of steepest

descent"

Why special NSO methods?

Smooth optimization techniques do not work

−g(xk) may not provide descent

Why special NSO methods?

Smooth optimization techniques do not work

−g(xk) may not provide descent

Why special NSO methods?

Smooth optimization techniques do not work

Smooth stopping test fails

Finite difference approximations fail

Linesearches get trapped in kinks and fail
Direction opposite to a subgradient may increase
the functional values

Bundle Methods

WANT: p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2

HAVE: qk = proxMktk (x) ⇐⇒ qk = argminMk(y)+
1
2tk
‖y−xk‖22⇐⇒ 0=Gk+ 1

tk
(qk−xk)

for Gk ∈ ∂Mk(q
k)⇐⇒ Gk ∈ ∂εkf(x)

for εk = f(x)−Mk(q
k)− tk‖Gk‖22

Bundle Methods

WANT: p= proxft(x) ⇐⇒ p= argminf(y)+ 1
2t‖y−x‖

2
2

HAVE: qk = proxMktk (x) ⇐⇒ qk = argminMk(y)+
1
2tk
‖y−xk‖22⇐⇒ 0=Gk+ 1

tk
(qk−xk)

for Gk ∈ ∂Mk(q
k)⇐⇒ Gk ∈ ∂εkf(x)

for εk = f(x)−Mk(q
k)− tk‖Gk‖22

Two subsequences

• Iterates giving sufficiently good approximal points

• Iterates just helping the optimization process CL93
eventually applies null

Bundle Methods

HAVE: qk = proxMktk (x) = xk+ tkG
k Gk ∈ ∂εkf(x)

for εk = f(x)−Mk(q
k)− tk‖Gk‖22

Two subsequences

• Iterates giving sufficiently good approximal points
moving towards minimum

in a manner that makes δk := εk+ tk‖Gk‖22→ 0

(serious)

• Iterates just helping the optimization process
CL93 eventually applies (null)

Bundle Methods

Bundle Methods

M1(·)+ 1
2t1

| ·−x̂1|2

Bundle Methods

M2(·)+ 1
2t2

| ·−x̂2|2

x̂1 x2

Bundle Methods

x̂1 x̂3 x2

Bundle Methods

x̂1 x̂4 x̂3 x2

Bundle Methods

0 Choose x1, set k= 1, and let x̂1 = x1.
1 Compute xk+1 = argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk :=f(x̂k)−Mk(x
k+1)≤ tol STOP

3 Call the oracle at xk+1. If
f(xk+1)≤ f(x̂k)−mδk, set x̂k+1 = xk+1 •
(Serious Step) Otherwise, maintain x̂k+1 = x̂k
(Null Step)

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.

Bundle Methods: selection mechanism

Mk+1(·) = max
(

Mk(·), fk+
〈
gk, ·−xk

〉)
,

now the choice of the new model is more flexible:

xk+1 ∈ argminMk(x)+
1
2tk

|x− x̂k|2

with Mk(x) = maxi≤k{fi+
〈
gi,x−xi

〉
} is equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥ fi+
〈
gi,x−xi

〉
for i≤ k

A posteriori, the solution remains the same if . . .

Bundle Methods: selection mechanism

Mk+1(·) = max
(

Mk(·), fk+
〈
gk, ·−xk

〉)
,

now the choice of the new model is more flexible:

xk+1 ∈ argminMk(x)+
1
2tk

|x− x̂k|2

with Mk(x) = maxi≤k{fi+
〈
gi,x−xi

〉
} is equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥ fi+
〈
gi,x−xi

〉
for i≤ k

A posteriori, the solution remains the same if all, or
. . .

Bundle Methods: selection mechanism

Mk+1(·) = max
(

Mk(·), fk+
〈
gk, ·−xk

〉)
,

now the choice of the new model is more flexible:

xk+1 ∈ argminMk(x)+
1
2tk

|x− x̂k|2

with Mk(x) = maxi≤k{fi+
〈
gi,x−xi

〉
} is equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥ fi+
〈
gi,x−xi

〉
for active i’s

A posteriori, the solution remains the same if all, or
active, or . . .

Bundle Methods: selection mechanism

Mk+1(·) = max
(

Mk(·), fk+
〈
gk, ·−xk

〉)
,

now the choice of the new model is more flexible:

xk+1 ∈ argminMk(x)+
1
2tk

|x− x̂k|2

with Mk(x) = maxi≤k{fi+
〈
gi,x−xi

〉
} is equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥
∑

i ᾱ
i
(
fi+

〈
gi,x−xi

〉) A

posteriori, the solution remains the same if all, or
active, or the optimal convex combination

Bundle Methods: selection mechanism

Mk+1(·) = max
(

Mk(·), fk+
〈
gk, ·−xk

〉)
,

now the choice of the new model is more flexible:

xk+1 ∈ argminMk(x)+
1
2tk

|x− x̂k|2

with Mk(x) = maxi≤k{fi+
〈
gi,x−xi

〉
} is equivalent to a QP: minr∈IR ,x∈IRn r+ 1

2tk
|x− x̂k|2

s.t. r≥
∑
i ᾱ
i
(
fi+

〈
gi,x−xi

〉)
A posteriori, the solution remains the same if all, or
active, or the optimal convex combination are kept

Bundle Methods: next model options

Mk+1(·) = max
(

Mk(·), fk+
〈
gk, ·−xk

〉)
or

Mk+1(·) = max
(

max
active

, fk+
〈
gk, ·−xk

〉)
or

Mk+1(·) = max
(
aggregate,fk+

〈
gk, ·−xk

〉)
Same QP solution if all, or active, or the optimal convex combination

aggregate=full Bundle Compression: QP with only 2 constraints
(but slows down the overall process)

The cutting-plane model
You told us

we were going to use a bundle Bk composed by
linearization errors and ε-subgradients at x̂k, but
the model uses fi and gi ∈ ∂f(xi)

Rewriting the cutting-plane model

The transportation formula centers the ith linearization in the
serious iterate
f(y) ≥ f(xi)+

〈
gi,y−xi

〉
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

x̂k

Mk(·)

f(x̂k)

f(xj)

xj

ej(x̂
k)

f

f(x j)+
〈
g j, ·−x j 〉

Rewriting the cutting-plane model

The transportation formula centers the ith linearization in the
serious iterate
f(y) ≥ f(xi)+

〈
gi,y−xi

〉
= f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k)

x̂k

Mk(·)

f(x̂k)

f(xj)

xj

ej(x̂
k)

f

f(x j)+
〈
g j, ·−x j 〉

this translates into the model as follows

Mk(y) = max
{
f(xi)+

〈
gi,y−xi

〉
: i ∈Bk

}
= max

{
f(x̂k)+

〈
gi,y− x̂k

〉
−ei(x̂k) : i ∈Bk

}
= f(x̂k)+max

{〈
gi,y− x̂k

〉
−ei(x̂k) : i ∈Bk

}

Bundle Method

0 Choose x1, set k= 1, and let x̂1 = x1.
1 Compute xk+1 = argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk :=f(x̂k)−Mk(x
k+1)≤ tol STOP

3 Call the oracle at xk+1. If
f(xk+1)≤ f(x̂k)−mδk, set x̂k+1 = xk+1

Otherwise, maintain x̂k+1 = x̂k

4 Define Mk+1, tk+1, make k= k+1, and loop to 1.

Bundle Method

0 Choose x1, set k= 1, and let x̂1 = x1.
1 Compute xk+1 = argminMk(x)+

1
2tk

|x− x̂k|2

2 If δk :=f(x̂k)−Mk(x
k+1)≤ tol STOP

3 Call the oracle at xk+1. If
f(xk+1)≤ f(x̂k)−mδk, set x̂k+1 = xk+1

(Serious Step) k ∈KS

Otherwise, maintain x̂k+1 = x̂k

(Null Step) k ∈ KN
4 Define Mk+1, tk+1, make k= k+1, and loop to 1.

Bundle Method

When k→∞, the algorithm generates two subsequences.
Convergence analysis addresses the mutually exclusive
situations

• either the SS subsequence is infinite
K∞ := {k ∈KS} (limit point minimizes f)

• or there is a last SS, followed by infinitely
many null steps
K∞ := {k ∈KN : k≥ lastSS} (last SS
minimizes f and nullto last SS)

Bundle Method

When k→∞, the algorithm generates two subsequences.
Convergence analysis addresses the mutually exclusive
situations

• either the SS subsequence is infinite
K∞ := {k ∈KS} (limit point minimizes f)

• or there is a last SS, followed by infinitely
many null steps
K∞ := {k ∈KN : k≥ last SS} (last SS

minimizes f and nullto last SS)

Bundle Method

When k→∞, the algorithm generates two subsequences.
Convergence analysis addresses the mutually exclusive
situations

• either the SS subsequence is infinite
K∞ := {k ∈KS} (limit point minimizes f)

• or there is a last SS, followed by infinitely
many null steps
K∞ := {k ∈KN : k≥ last SS}

(last SS minimizes f and null→ last SS)

Equivalent QPs

1. Given tk, the stepsize parameter of the proximal bundle
method, with QP subproblem given by

(PB)k minMk(x)+
1

2tk
|x− x̂k|2

2. Given ∆k, the radius parameter of the trust-region bundle
method, with QP subproblem given by

(TRB)k

 min Mk(x)

s.t. |x− x̂k|2 ≤ ∆k

3. Given `k, the level parameter of the level bundle method,

with QP subproblem given by

(LB)k

 min 1
2 |x− x̂

k|2

s.t. Mk(x)≤ `k

Show that

1. given tk, there exists ∆k such that if xk+1 solves (PB)k,
then xk+1 solves (TRB)k.

2. given ∆k, there exists `k such that if xk+1 solves (TRB)k,
then xk+1 solves (LB)k.

3. given
ellk, there exists tk such that if xk+1 solves (LB)k, then
xk+1 solves (PB)k.

Theorem K∞ := {k ∈KS}

Suppose the bundle method loops forever and there are
infinitely many serious steps. Either the solution set of minf
is empty and f(x̂k)↘−∞ or the following holds
(i) lim

k∈KS
δk = 0 and lim

k∈KS
εk = 0.

(ii) If the stepsizes are chosen so that
∑
k∈KS

tk =+∞ then

{x̂k} is a minimizing sequence.

(iii) If, in addition, tk ≤ tup for all k ∈ KS, then the
subsequence {x̂k} is bounded. In this case, any limit point
x∞ minimizes f and the whole sequence converges to x∞

Theorem K∞ :=
{

k ∈KN ≥ k̂
}

Suppose the bundle method loops forever and there are
infinitely many null steps after a last serious one, denoted by
x̂ and generated at iteration k̂. Suppose stepsizes are chosen
so that

tlo ≤ tk+1 ≤ tk for all k ∈ K∞
The following holds
1. The sequence {xk+1} is bounded

2. lim
k∈K∞ Mk(x

k+1) = f(x̂)

3. x̂ minimizes f

4. lim
k∈K∞x

k+1 = x̂

Model requirements

1. Mk ≤ f

2. If k was declared a null step

a) Mk+1(x)≥ fk+1+
〈
gk+1,x−xk+1

〉
b) Mk+1(x)≥Ak(x)= Mk(x

k+1)+
〈
Gk,x−xk+1

〉

Model requirements

1. Mk ≤ f

2. If k was declared a null step

a) Mk+1(x)≥ fk+1+
〈
gk+1,x−xk+1

〉
b) Mk+1(x)≥Ak(x)= Mk(x

k+1)+
〈
Gk,x−xk+1

〉
Any model satisfying these conditions
that is used in the QP
maintains the convergence results

Comparing the methods: bundle and SG

Typical performance on a battery of Unit Commitment
problems

Bundle Methods with on-demand accuracy
the new generation

Oracle types: exact and upper

• f1(x)/g1(x) ∈ ∂f1(x) is easy: exact f1(x)/g1(x)

• f2(x)/g2(x) ∈ ∂f2(x) is difficult: inexact f2x/g2x

f
1 (x

)+
〈 g1 (x

),
·−
x
〉f1

f2

f
2
x
+

〈
g
2
x
, ·−x

〉

Oracle f2x/g2x NOT of lower type

Oracle types: exact and lower

• f1(x)/g1(x) ∈ ∂f1(x) is easy: exact f1(x)/g1(x)

• f2(x)/g2(x) ∈ ∂f2(x) is less difficult: inexact f2x/g2x

f
1 (x

)+
〈 g1 (x

),
·−
x
〉f1

f2

f
2
x
+

〈
g
2
x
, ·−x

〉
Oracle f2x/g2x of lower type

For the EM problem fj(x) = max{−Cj(qj)+
〈
x,gj(qj)

〉
: qj ∈Pj}

By computing fxk and gxk satisfying

fxk = f(x
k)−ηk and gxk ∈ ∂ηkf(x

k)

we can build

• A lower oracle

• An asymptotically exact oracle

ηk→ 0 as k→∞
• A partly asymptotically exact oracle

ηk→ 0 as Ks 3 k→∞
• An on-demand accuracy oracle

ηk ≤ η̄k when fxk ≤ fx̂k −mδk

BM with lower inexact oracles

• Mk(x) = max{fxi+
〈
gxi ,x−x

i
〉
: i ∈Bk}

• δk = εk+ tk|Gk|2

• SS test: fxk+1 ≤ f̂k−mδk

• f̂k := max
{
fx̂k ,max

(
Mj(x̂

k), j≥ k̂
)}

+ Oracle inaccuracy is locally bounded:
∀R≥ 0∃η(R)≥ 0 : |x|≤ R=⇒ η≤ η(R) convergence as
before, up to the accuracy on SS

BM with lower inexact oracles

• Mk(x) = max{fxi+
〈
gxi ,x−x

i
〉
: i ∈Bk}

• δk = εk+ tk|Gk|2

• SS test: fxk+1 ≤ f̂k−mδk

• f̂k := max
{
fx̂k ,max

(
Mj(x̂

k), j≥ k̂
)}

+ Oracle inaccuracy is locally bounded:
∀R≥ 0∃η(R)≥ 0 : |x|≤ R=⇒ η≤ η(R) convergence as
before, up to the accuracy on SS Convex proximal bundle
methods in depth: a unified analysis for inexact oracles W. de
Oliveira, C. Sagastizábal, C. Lemaréchal MathProg 148, pp
241-277, 2014

General comments

Bundle methods are

• robust (do not oscillate, as CP methods do)

• reliable (have a stopping test, unlike SG
methods)

• can deal with inaccuracy in a reasonable
manner

Extending bundle methods

Constrained NSO problems: an example

Optimal management of the hydrovalley
max λ>Eη

(
ρ(u)

)
s.t. (x,u) ∈P

Pη
(
Au+amin ≤Mη≤Au+amax

)
≥ p

Optimal management of the hydrovalley
max λ>Eη

(
ρ(u)

)
s.t. (x,u) ∈P

Pη
(
Au+amin ≤Mη≤Au+amax

)
≥ p

Is this a convex program?

Optimal management of the hydrovalley
max λ>Eη

(
ρ(u)

)
s.t. (x,u) ∈P

Pη
(
Au+amin ≤Mη≤Au+amax

)
≥ p

Is this a convex program? YES: the function

u 7→ log

(
Pη
(
Au+amin ≤Mη≤Au+amax

))
is convex.

We need to solve


min f(u)

s.t. (x,u) ∈P
c(u)≤ 0

for linear f and with

c(u) := log

(
Pη
(
Au+amin ≤Mη≤Au+amax

))
− logp

Optimal management of the hydrovalley
max λ>Eη

(
ρ(u)

)
s.t. (x,u) ∈P

Pη
(
Au+amin ≤Mη≤Au+amax

)
≥ p

Is this a convex program? YES: the function

u 7→ log

(
Pη
(
Au+amin ≤Mη≤Au+amax

))
is convex.

We need to solve


min f(u)

s.t. (x,u) ∈P
c(u)≤ 0

for linear f and with

c(u) := log

(
Pη
(
Au+amin ≤Mη≤Au+amax

))
− logp

difficult to compute!

Need to solve the constrained problem

(P)


min f(u)

s.t. (x,u) ∈P

c(u)≤ 0

for linear f and with inexact evaluation of c and its
gradient, via a black box with controllable
inaccuracy (bounded by a given tolerance ε, with confidence level

99%, noting that evaluation errors can be positive or negative)

Handling constraints in NSO

For nonsmooth constrained problems

minf(u) s.t. c(u)≤ 0

use the Improvement Function

max
u

{f(u)− f(û),c(u)}

(changes with each serious point û and supposes exact f/c
values available) [SagSol SiOPT, 2005 and

KarasRibSagSol MPB, 2009]

Improvement function

Let (x̄, ū) be a solution to (P). The function

Hū(u) := max
(x,u)∈P

{f(u)− f(ū), c(u)}

has perfect theoretical properties:
If Slater condition (∃(x,u) ∈P s.t. c(u)< 0) holds, then

ū solves min
(x,u)∈P

f(u) s.t. c(u)≤ 0 (P)

m
min

(x,u)∈P
Hū(u) =Hū(ū) = 0m

0 ∈ ∂H(ū) for H(·) :=Hū(·)

Improvement function

Let (x̄, ū) be a solution to (P). The function

Hū(u) := max
(x,u)∈P

{f(u)− f(ū), c(u)}

has perfect theoretical properties:
Without Slater condition

ū solves min
(x,u)∈P

f(u) s.t. c(u)≤ 0 (P)

⇓ BUT 6⇑
min

(x,u)∈P
Hū(u) =Hū(ū) = 0⇓ and also ⇑

0 ∈ ∂H(ū) for H(·) :=Hū(·)

Improvement function

Let (x̄, ū) be a solution to (P). The function

Hū(u) := max
(x,u)∈P

{f(u)− f(ū), c(u)}

has perfect theoretical properties:
Without Slater condition

ū solves min
(x,u)∈P

f(u) s.t. c(u)≤ 0 (P)

⇑: when c(ū)≤ 0 ū solves (P), otherwise it minimizes infeasibility over P
min

(x,u)∈P
Hū(u) =Hū(ū) = 0m

0 ∈ ∂H(ū) for H(·) :=Hū(·)

Handling nonconvex

problems

• Nonconvex proximal point mapping [PR96]

pRf(x) := argminy∈IRN

{
f(y)+ R

2 |y−x|
2
}

x is the prox-center and R > Rx is the prox-parameter

Theorem If f is convex

– pRf is well defined for any R > 0.

– pRf is single valued and loc. Lip.

– p= pRf(x) ⇐⇒ R(x−p) ∈ ∂f(p)

– x∗ minimizes f ⇐⇒ x∗ = pRf(x
∗) for any R > 0.

– xk+1 = pRf(xk) converges to a minimizer x∗.

What is f is nonconvex?

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle)
methods for convex minimization. Their success relies heavily on
convexity. If f is convex:

– xk+1 = pRf(xk) converges to a minimizer x∗.

– f̌k lies entirely below f.
May no longer be true for nonconvex f

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle)
methods for convex minimization. Their success relies heavily on
convexity. If f is convex

– xk+1 = pRf(xk) converges to a minimizer x∗.

– f̌k lies entirely below f.
May no longer be true for nonconvex f

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle)
methods for convex minimization. Their success relies heavily on
convexity. If f is convex

– xk+1 = pRf(xk) converges to a minimizer x∗.

– f̌k lies entirely below f.
May no longer be true for nonconvex f

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle)
methods for convex minimization. Their success relies heavily on
convexity. If f is convex

– xk+1 = pRf(xk) converges to a minimizer x∗.

– f̌k lies entirely below f.
May no longer be true for nonconvex f

Nonconvex difficulties

Proximal Bundle Methods are the most robust and reliable (oracle)
methods for convex minimization. Their success relies heavily on
convexity. If f is convex

– xk+1 = pRf(xk) converges to a minimizer x∗.

– f̌k lies entirely below f.
May no longer be true for nonconvex f

How this difficulty has been addressed?

Take each plane in the model: fi+ 〈gi, ·−yi〉 and rewrite it,
centered at xk:

f(xk)−
[
f(xk)−

(
fi+ 〈gi,xk−yi〉

)]
+〈gi, ·−xk〉

f(xk)− efk,i +〈gi, ·−xk〉

⇒ f̌k(y) = max
{
f(xk)−e

f
k,i+ 〈gi,y−xk〉

}
Good: efk,i positive⇒ convergence Good: If f convex⇒ efk,i
positive. BAD: If f nonconvex, efk,i may be negative

Nonconvex bundle methods
fix negative linearization errors, replacing f̌k by:

f̌FIX
k (y) = max

{
f(xk)− |ef

k,i|+ 〈gi,y−xk〉
}

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods
fix negative linearization errors, replacing f̌k by:

f̌FIX
k (y) = max

{
f(xk)− |ef

k,i|+ 〈gi,y−xk〉
}

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods
fix negative linearization errors, replacing f̌k by:

f̌FIX
k (y) = max

{
f(xk)− |ef

k,i|+ 〈gi,y−xk〉
}

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods
fix negative linearization errors, replacing f̌k by:

f̌FIX
k (y) = max

{
f(xk)− |ef

k,i|+ 〈gi,y−xk〉
}

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods
fix negative linearization errors, replacing f̌k by:

f̌FIX
k (y) = max

{
f(xk)− |ef

k,i|+ 〈gi,y−xk〉
}

[Mif77, Lem80, Kiw85, Luk98]

Nonconvex bundle methods
fix negative linearization errors, replacing f̌k by:

f̌FIX
k (y) = max

{
f(xk)− |ef

k,i|+ 〈gi,y−xk〉
}

[Mif77, Lem80, Kiw85, Luk98]

A new method

A different approach (ours) is based on the following trick

Take η,µ > 0 : R= η+µ and note

pRf(xk) = min
w

{ f(w) + R 1
2 |w−xk|

2
}

= min
w

{ f(w) + (η+µ) 1
2 |w−xk|

2
}

= min
w

{ f(w)+η12 |w−xk|
2 + µ 1

2 |w−xk|
2
}

= min
w

{ Fη(w) + µ 1
2 |w−xk|

2
}

= pµ(Fη) (xk)

⇒ pRf= pµ(Fη)

Redistributed Proximal Bundle Method

At `th-iteration, for k= k(`), given Rk, xk and a bundle
B = {yi, fi,gi , i ∈ I`}

0. Split Rk into η` and µ`.

1. Model Fη` F̌η`,`(y) = maxi∈B{Fη`i+
〈
gη`i,y−yi

〉
}

2. Minimize the penalized model
y`+1 = argmin{F̌η`,`(y)+

µ`
2 |y−xk|

2}

3. Descent test If y`+1 good: xk+1← y`+1, define Rk+1 serious step

If y`+1 bad: null step

4. Update bundle B←B∪ {y`+1, f`+1,g`+1}

VU quasi-Newton bundle

For x ∈ IRn, given matrices A� 0, B� 0, f(x) =
√
x>Ax+x>Bx has a

unique minimizer at x̄= 0. On N (A) the function is not differentiable,
and the first term vanishes: f|N (A) looks smooth.

R(A) N (A)

V U
parallel to ∂f(x̄) U perpendicular to V

V is parallel to N (A) , the “ridge" of nonsmoothness

VU -Algorithm:

(Mifflin&Sagastizábal, MathProg 05) Recall that
f|V‖N (A) is nice: the key is the two QP-solves

R(A) N (A)

V U
2 bundle QPs Newton-move

Two successive bundle QPs identify the “ridge” of nonsmoothness

Solve a 2nd QP to create an approximation of V based on ∂f̌(p̂k)

VU -Algorithm:
superlinear “serious” subsequence (Mifflin&Sag, MathProg 05)m

To learn more
Bundle methods history
R. MIFFLIN, C. SAGASTIZÁBAL, Documenta Math, 2012. A Science
Fiction Story in Nonsmooth Optimization Originating at IIASA
https://www.math.uni-bielefeld.de/documenta/

vol-ismp/44_mifflin-robert.pdf

(exact) Bundle books
J.F. BONNANS, J.C. GILBERT, C. LEMARÉCHAL, AND

C. SAGASTIZÁBAL, Numerical Optimization: Theoretical and Practical
Aspects, Springer, 2nd ed., 2006.
J.B. HIRIART-URRUTY AND C. LEMARÉCHAL, Convex Analysis and
Minimization Algorithms II, no. 306 in Grund. der math. Wissenschaften,
Springer, 2nd ed., 1996.
Inexact Bundle theory
(next page)

Inexact Bundle theory
M. HINTERMÜLLER, A proximal bundle method based on approximate
subgradients, COAp 20 (2001), pp. 245–266.
M. V. SOLODOV, On Approximations with Finite Precision in Bundle
Methods for Nonsmooth Optimization. JoTA 119.1 (2003), pp. 151–165
K.C. KIWIEL, A proximal bundle method with approximate subgradient
linearizations, SiOpt 16 (2006), pp. 1007–1023.
W. DE OLIVEIRA, C. SAGASTIZÁBAL, AND C. LEMARÉCHAL, Convex
proximal bundle methods in depth: a unified analysis for inexact oracles,
MathProg 148 (2014), pp. 241–277.
Inexact Bundle variants with applications
G. EMIEL AND C. SAGASTIZÁBAL, Incremental-like bundle methods
with application to energy planning, COAp 46 (2010), pp. 305–332.
W. DE OLIVEIRA, C. SAGASTIZÁBAL, AND S. SCHEIMBERG, Inexact
bundle methods for two-stage stochastic programming, SiOpt 21 (2011),
pp. 517–544. (next page)

W. VAN ACKOOIJ AND C. SAGASTIZÁBAL, Constrained bundle methods
for upper inexact oracles with application to joint chance constrained
energy problems, SiOpt 24 (2014), pp. 733–765.
W. DE OLIVEIRA AND C. SAGASTIZÁBAL, Level bundle methods for
oracles with on-demand accuracy, OMS 29 (2014), pp. 1180 –1209
W. DE OLIVEIRA AND C. SAGASTIZÁBAL, Bundle methods in the xxi
century: A birds’-eye view, Pesquisa Operacional 34 (2014), pp. 647 –
670.
W. DE OLIVEIRA AND M. SOLODOV, A doubly stabilized bundle
method for nonsmooth convex optimization, MathProg 156(1), pp.
126–159, 2016.

Any doubts or questions?
Just e-mail me

