
Examples and background
Decomposition in the deterministic case

About decomposition in the stochastic case

Interface Course 2019
Stochastic Optimization for Large-Scale Systems

♦
Spatial Decomposition Methods I

P. Carpentier, J.-Ph. Chancelier, M. De Lara , V. Leclère

November 8, 2019

P. Carpentier & SOWG CIRM 2019 November 2019 1 / 72



Examples and background
Decomposition in the deterministic case
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Ultimate goal of the lecture

How to to obtain “good” strategies for a large scale stochastic
optimal control problem, for example a problem corresponding to
the optimal management over a given time horizon of a system
involving a large amount of dynamical production units.

In order to obtain decision strategies (closed-loop controls),
we have to use Dynamic Programming or related methods.

Assumption: Markovian case,
Difficulty: curse of dimensionality.

In order to to take into account the size of the system, we
have to use decomposition/coordination techniques.

Assumption: convexity,
Difficulty: information pattern of the problem.

Mixture of spatial and temporal decompositions
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Examples of interconnected systems
Convex optimization background

Decomposition and coordination

Unit 1 Unit N

Unit 2 Unit 3

Interconnected units

The (large) system to be optimized
consists of interconnected subsystems:
we want to use this structure in order
to formulate optimization subproblems
of reasonable complexity.

But the presence of interactions requires
a level of coordination.

Coordination must provide a local model
of the interactions to each subproblem:
it is an iterative process.

The ultimate goal is to obtain the solution
of the overall problem by concatenation of
the solutions of the subproblems.
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Example: the “flower model”

Unit 2

Unit 1 Unit N

Unit 3

Coupling

constraint

min
u

N∑

i=1

Ji (ui ) ,

s.t.
N∑

i=1

Θi (ui ) = θ .

Unit Commitment Problem
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Example: the “cascade model”

Unit 1

Unit 2

Coupling

constraints

Unit N

min
u,v

N∑

i=1

Ji (ui , vi ) ,

s.t. Hi (ui , vi ) = vi+1 ∀i .

Dams Management Problem

Link with the flower model: Θi  
(
0, . . . ,−vi ,Hi (ui , vi ), . . . , 0

)>
.
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A general model

Unit 1 Unit N

Unit 3

Unit i

Unit 2

Coupling

constraints

min
u,v

N∑

i=1

Ji

(
ui ,
∑

j 6=i

vj ,i

)
,

s.t. Hi

(
ui ,
∑

j 6=i

vj ,i

)
= vi .

Microgrid Management Problem
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Optimization without explicit constraint

min
u∈Uad

J(u) . (PS)

U : Hilbert space with scalar product 〈· , ·〉.
Examples: U = Rn (vectors) or U = L2

(
Ω,A,P;Rn

)
(random variables).

Uad: closed convex subset of U .
J : U → R: function satisfying some properties
(convexity, continuity, differentiability, coercivity).

Characterization of a solution u] (optimality conditions):
〈
∇J(u]) , u − u]

〉
≥ 0 ∀u ∈ Uad .

Computation of the solution u] (projected gradient algorithm):

u(k+1) = projUad

(
u(k) − ρ∇J(u(k))

)
.
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Optimization with explicit constraints I

min
u∈Uad

J(u) subject to Θ(u) ∈ −C . (PC)

U : Hilbert space.

Uad: closed convex subset of U .

V: another Hilbert space.

C : cone of V (examples: C =
{

0
}

, C =
{
v ≥ 0

}
).

J : U → R: cost function.

Θ : U → V: constraint function satisfying some properties
(convexity w.r.t. C , continuity, differentiability).

Constraint Qualification Condition, e.g. 0 ∈ int
(
Θ(Uad) + C

)
.

The dual cone of C is defined by: C? =
{
λ ∈ V, 〈λ , v〉 ≥ 0 ∀v ∈ C

}
.
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Optimization with explicit constraints II

Karush-Kuhn-Tucker Conditions

In addition to standard conditions on J and Θ, we assume that
the constraints are qualified.

Then a necessary and sufficient condition for u] ∈ Uad to be a
solution of Problem (PC) is that there exists λ] ∈ V such that:

1
〈
∇J(u]) + [Θ′(u])]?λ] , u − u]

〉
≥ 0 ∀u ∈ Uad,

2 Θ(u]) ∈ −C ,

3 λ] ∈ C ?,

4
〈
λ] ,Θ(u])

〉
= 0 (Complementary Slackness).
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Optimization with explicit constraints III

Let L : Uad × C ? → R be the Lagrangian associated to (PC):

L(u, λ) = J(u) +
〈
λ ,Θ(u)

〉
.

A point (u], λ]) ∈ Uad × C ? is a saddle point of L if, for all
(u, λ) ∈ Uad × C ?

L(u], λ) ≤ L(u], λ]) ≤ L(u, λ]) .

If (u], λ]) is a saddle point of L, then u] is a solution of (PC).

If u] is a solution of (PC) and if the KKT conditions are met
for some λ], then (u], λ]) is a saddle point of L.

Moreover we have that

J(u]) = min
u∈Uad

max
λ∈C?

L(u, λ) = max
λ∈C?

min
u∈Uad

L(u, λ) = L(u], λ]) .
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Optimization with explicit constraints IV

Define the dual function associated to the Lagrangian L as

Φ(λ) = min
u∈Uad

L(u, λ) ,

and assume that arg min L(·, λ) =
{
ûλ
}

, so that ∇Φ(λ) = Θ(ûλ).

To compute the solution u], use a gradient algorithm for Problem:

max
λ∈C?

Φ(λ)
(
⇔ max

λ∈C?
min
u∈Uad

L(u, λ)
)
.

Uzawa’s Algorithm

Choose λ(0) ∈ C ?. At each itération k ,

obtain the solution u(k+1) = arg min
u∈Uad

J(u) +
〈
λ(k) ,Θ(u)

〉
,

update the multiplier λ(k+1) = projC?
(
λ(k) + ρΘ(u(k+1))

)
.
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Optimization with explicit constraints V

Uzawa’s algorithm convergence theorem

H1 Uad is a closed convex subset of the Hilbert space U ,
C is a closed convex cone of the Hilbert space V.

H2 J is a proper l.s.c. strongly convex function with modulus a,
Gâteaux différentiable.

H3 Θ is a C -convex, Lipschitz with constant τ .

H4 L admits a saddle point (u], λ]) ∈ Uad × C ?.

H5 ρ is such that 0 < ρ < 2a/τ2.

R1 The sequence
{
u(k)

}
k∈N converges toward u].

R2 The sequence
{
λ(k)

}
k∈N is bounded, and any of its cluster

points λ is such that (u], λ) is a saddle point of L.
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Uzawa’s geometric interpretation I

For the sake of simplicity, we consider here equality constraints:

u(k+1) ∈ arg min
u∈Uad

J(u) +
〈
λ(k) ,Θ(u)

〉
,

λ(k+1) = λ(k) + ρΘ(u(k+1)) .

The minimization step is equivalent to:

min
v∈V

min
u∈Uad

J(u) +
〈
λ(k) , v

〉
s.t. Θ(u)− v = 0 .

Introducing the perturbation function G :

G (v) = min
u∈Uad

J(u) s.t. Θ(u)− v = 0 ,

this minimization step also writes:

min
v∈V

G (v) +
〈
λ(k) , v

〉
.
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Uzawa’s geometric interpretation II

With the help of G , Uzawa’s algorithm writes:

v (k+1) ∈ arg min
v∈V

G (v) +
〈
λ(k) , v

〉
,

λ(k+1) = λ(k) + ρv (k+1) .

From a (conceptual) geometric point of view, it amounts to:

Step 1: minimize the gap between G (·) et
〈
− λ(k) , ·

〉
.

Step 2: adjust the slope −λ(k) if v (k+1) 6= 0.

Recall that the initial problem consists in obtaining G (0). . .
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Uzawa’s geometric interpretation III

V

RG(·)
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V

RG(·)

−〈λ(k), ·〉
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Uzawa’s geometric interpretation III

V

RG(·)

v(k+1)

−〈λ(k), ·〉
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Uzawa’s geometric interpretation III

G(·)

v(k+1)

−〈λ(k), ·〉

v(k+2)

−〈λ(k+1), ·〉

V

R
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Uzawa’s geometric interpretation III

v(k+2)

v(k+1)

−〈λ(k), ·〉

−〈λ♯, ·〉

−〈λ(k+1), ·〉

V

RG(·)
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Uzawa’s geometric interpretation IV

G(·)

V

R

Even if {λ(k)}k∈N converges towards λ], the constraint level v (k)

oscillates between v and v , but the value v ] = 0 is never reached.
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v

V

R

v

G(·)

−〈λ♯, ·〉
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Uzawa’s geometric interpretation V

v

−〈λ♯, ·〉

R

V

v

G(·)

In the non convex case, use an augmented Lagrangian. . .
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Uzawa’s geometric interpretation V

v

−〈λ♯, ·〉

R

V

v

G(·)

−〈λ♯, ·〉 − c
2
‖ · ‖2

In the non convex case, use an augmented Lagrangian. . .
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

Additive model
Consider the following problem:

min
u∈Uad⊂U

J(u) subject to Θ(u)− θ = 0 ∈ V ,

and consider a decomposition of the space U = U1 × . . .× UN ,
so that u ∈ U writes u =

(
u1, . . . , uN

)
with ui ∈ Ui . Assume that

Uad = Uad
1 × . . .× Uad

N Uad
i ⊂ Ui ,

J(u) = J1(u1) + . . .+ JN(uN) ui ∈ Ui ,
Θ(u) = Θ1(u1) + . . .+ ΘN(uN) ui ∈ Ui .

Then the problem displays the following additive structure:

min
u1∈Uad

1...
uN∈Uad

N

N∑

i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

Note that the coupling between the i ’s only arises from the constraint Θ.
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Additive model — Price decomposition I

min
u∈Uad

N∑

i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

1 Form the Lagrangian of the problem. We assume that a
saddle point exists, so that solving the initial problem is
equivalent to:

max
λ∈V

min
u∈Uad

N∑

i=1

(
Ji (ui ) +

〈
λ ,Θi (ui )

〉)
−
〈
λ , θ

〉
,

2 Solve this problem by the Uzawa algorithm:

u
(k+1)
i ∈ arg min

ui∈Uad
i

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
, i = 1 . . . ,N ,

λ(k+1) = λ(k) + ρ

( N∑

i=1

Θi

(
u

(k+1)
i

)
− θ
)
.
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

Additive model — Price decomposition II

λ(k+1) = λ(k) + ρ

(∑
Θi

(
u
(k+1)
i

)
− θ

)

Subproblem 1 Subproblem i Subproblem N

Coordination

min J1(u1) + 〈λ(k),Θ1(u1)〉 min Ji(ui) + 〈λ(k),Θi(ui)〉 min JN(uN) + 〈λ(k),ΘN(uN)〉

λ(k) ΘN (u
(k)
N )Θ1(u

(k)
1 ) λ(k) λ(k)Θi(u

(k)
i )
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

Additive model — Resource allocation I

min
u∈Uad

N∑

i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

1 Write the constraint in a equivalent manner by introducing
new variables v = (v1, . . . , vN) (the so-called “allocation”):

N∑

i=1

Θi (ui )− θ = 0 ⇔ Θi (ui )− vi = 0 and
N∑

i=1

vi = θ ,

and minimize the criterion w.r.t. u and v :

min
v∈VN

N∑

i=1

(
min

ui∈Uad
i

Ji (ui ) s.t. Θi (ui )−vi = 0
)

s.t.
N∑

i=1

vi = θ ,
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Additive model: 3 decomposition methods
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Additive model — Resource allocation II

min
v∈VN

N∑

i=1

(
min

ui∈Uad
i

Ji (ui ) s.t. Θi (ui )− vi = 0

︸ ︷︷ ︸
Gi (vi )

)
s.t.

N∑

i=1

vi = θ ,

m
min
v∈VN

N∑

i=1

Gi (vi ) s.t.
N∑

i=1

vi = θ .

2 Solve the last problem using a projected gradient method:

Gi (v
(k)
i ) = min

ui∈Uad
i

Ji (ui ) s.t. Θi (ui )− v
(k)
i = 0  λ

(k+1)
i ,

v
(k+1)
i = v

(k)
i + ρ

(
λ

(k+1)
i − 1

N

N∑

j=1

λ
(k+1)
j

)
.
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

Additive model — Resource allocation III

v
(k)
1

Subproblem i

Coordination

min Ji(ui) s.t. Θi(ui)− v
(k)
i = 0

Subproblem 1

min J1(u1) s.t. Θ1(u1)− v
(k)
1 = 0

Subproblem N

v
(k+1)
i = v

(k)
i + ρ

(
λ
(k+1)
i − 1

N
∑

λ
(k+1)
j

)

min JN(uN) s.t. ΘN(uN)−v
(k)
N =0

v
(k)
N λ

(k)
Nλ

(k)
1 v

(k)
iλ

(k)
i
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

Additive model — Prediction I

min
u∈Uad

N∑

i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

We assume for the moment that the constraint is scalar. . .

1 Choose the unit that will drive the constraint (e.g. unit 1)
and split the constraint according to that choice:

Θ1(u1)− v = 0 ,
∑

i 6=1

Θi (ui )− θ + v = 0 .

2 Formulate the problem obtained by dualizing only the second
part of the constraint:

max
λ∈R

min
v∈V

(
min
u∈Uad

N∑

i=1

Ji (ui ) +
〈
λ ,
∑

i 6=1

Θi (ui )− θ + v
〉)

subject to Θ1(u1)− v = 0 .
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

Additive model — Prediction II

3 With v = v (k) and λ = λ(k) fixed, the problem decomposes:

min
u1∈Uad

1

J1(u1) s.t. Θ1(u1)− v (k) = 0  λ
(k+1)
1 ,

min
ui∈Uad

i

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
∀i 6= 1  Θi (u

(k+1)
i ) .

4 Update v and λ by solving the optimality conditions
in λ and v of the global problem:

v (k+1) = θ −
∑

i 6=1

Θi (u
(k+1)
i ) ,

λ(k+1) = λ
(k+1)
1 .

In case of multiple constraints, incorporate them one by one.
A choice has to be done for each constraint. The constraints
are thus distributed among the units.
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General model: Auxiliary Problem Principle

Additive model — Prediction III

Θi(u
(k)
i )

Subproblem i Subproblem N

min Ji(ui) + 〈λ(k),Θi(ui)〉 min JN(uN) + 〈λ(k),ΘN(uN)〉

λ(k)

Subproblem 2

Subproblem 1

min J2(u2) + 〈λ(k),Θ2(u2)〉

min J1(u1) s.t. Θ1(u1)− v(k) = 0

ΘN (u
(k)
N )λ(k)λ(k)Θ2(u

(k)
2 )
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

Additive model: conclusions

1 Price decomposition
Pros: “non-destructive” method.
Cons: admissible solution once convergence achieved.

2 Resource allocation
Pros: admissible solution at each iteration.
Cons: potential existence of unfeasible subproblems.

3 Prediction
Pros and Cons: depending on the constraints distribution. . .

Straightforward extension to inequality constraints. . .
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Decomposition in the deterministic case

About decomposition in the stochastic case

Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

1 Examples and background
Examples of interconnected systems
Convex optimization background

2 Decomposition in the deterministic case
Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

3 About decomposition in the stochastic case
Dynamic Programming and decomposition
Couplings in stochastic optimization
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General model — Auxiliary Problem Principle

The 3 decomposition schemes we have presented seem to depend
crucially on the additive structure of the underlying problems. . .
In fact they can be extended to general problems:

min
u∈Uad

J(u1, . . . , uN) s.t. Θ(u1, . . . , uN)− θ = 0 .

This generalization is achieved by the Auxiliary Problem Principle
(APP), whose aim is to recover additivity by replacing the two
functions J and Θ by their first-order approximation around the
current point u(k):

J(u) 
N∑

i=1

〈
∇ui J(u(k)) , ui

〉
, Θ(u) 

N∑

i=1

Θ′
ui (u

(k)).ui .

The solution u(k+1) of the auxiliary problem built around u(k) is
used to formulate the next auxiliary problem (iterative process).
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

APP without explicit constraint I

min
u∈Uad

J(u) .

1 Replace J(u) by its first order approximation around u(k):

J(u(k)) +
〈
∇J(u(k)) , u − u(k)

〉
.

2 Choose a strongly convex function K , some ε > 0 and form:

1

ε

(
K (u)− K (u(k))−

〈
∇K (u(k)) , u − u(k)

〉)
.

Add these two terms to obtain the auxiliary problem at iteration k :

min
u∈Uad

K (u) +
〈
ε∇J(u(k))−∇K (u(k)) , u

〉
,

whose unique solution is denoted by u(k+1).
P. Carpentier & SOWG CIRM 2019 November 2019 34 / 72



Examples and background
Decomposition in the deterministic case

About decomposition in the stochastic case
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General model: Auxiliary Problem Principle

APP without explicit constraint II

Convergence theorem

H1 Uad is a closed convex subset of the Hilbert space U .

H2 J is a proper l.s.c. convex function, coercive over Uad,
and its derivative J ′ is Lipschitz with constant A.

H3 K is a proper l.s.c. strongly convex function with modulus b,
and its derivative K ′ is Lipschitz with constant B.

H4 ε is a coefficient such that 0 < ε < 2b/A.

R1
{
J(u(k))

}
k∈N is a strictly decreasing real sequence which

converges towards J(u]).

R2
{
u(k)

}
k∈N is a bounded sequence, and each of its cluster

points is a solution of the initial problem.

Moreover, if J is strongly convex, then
{
u(k)

}
k∈N converges to u].
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APP without explicit constraint III

Consider the auxiliary problem obtained at iteration k :

min
u∈Uad

K (u) +
〈
ε∇J(u(k))−∇K (u(k)) , u

〉
.

Assume that there exists a decomposition U1 × . . .× UN of U ,
that is, u ∈ U writes u =

(
u1, . . . , uN

)
with ui ∈ Ui , such that:

Uad = Uad
1 × . . .× Uad

N with Uad
i ⊂ Ui .

A additive choice of K leads to decomposition. Indeed, using

K (u) =
N∑

i=1

Ki (ui ) ,

the k-th auxiliary problem can be decomposed in N subproblems:

min
ui∈Uad

i

Ki (ui ) +
〈
ε∇ui J(u(k))−∇uiK (u(k)) , ui

〉
, i = 1, . . . ,N .
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Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

APP without explicit constraint IV

Variants of the algorithm

Take into account an additional cost function JΣ:

min
u∈Uad

K (u) +
〈
ε∇J(u(k))−∇K (u(k)) , u

〉
+ εJΣ(u) .

K and ε may depend on the iteration index k :

min
u∈Uad

K (k)(u) +
〈
ε(k)∇J(u(k))−∇K (k)(u(k)) , u

〉
.

Use ε ≡ 1 by adding an under-relaxation step in the algorithm:

u(k+ 1
2

) = arg min
u∈Uad

K (u) +
〈
∇J(u(k))−∇K (u(k)) , u

〉
,

u(k+1) =ρ u(k+ 1
2

) + (1− ρ) u(k) , 0 < ρ < 1 .
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APP with explicit constraints I

min
u∈Uad

J(u) s.t. Θ(u) ∈ −C ,

Denote by L(u, λ) = J(u) +
〈
λ ,Θ(u)

〉
the associated Lagrangian.

1 Replace L by its first order approximation around (u(k), λ(k)):

L(u(k), λ(k)) +
〈
∇uL(u(k), λ(k)) , u − u(k)〉 +

〈
∇λL(u(k), λ(k)) , λ− λ(k)〉 .

2 Choose a convex-concave operator M(u, λ) and some ε > 0.

Use these elements to form the auxiliary Lagrangian at iteration k:

M(u, λ) +
〈
(ε∇uL−∇uM)(u(k), λ(k)) , u

〉
+

〈
(ε∇λL−∇λM)(u(k), λ(k)) , λ

〉
,

and obtain a point (u(k+1), λ(k+1)) satisfying optimality conditions.
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APP with explicit constraints II

We denote by L(k) the auxiliary Lagrangian at iteration k :

L(k)(u, λ) = M(u, λ) +
〈
ε∇uL(u(k), λ(k))−∇uM(u(k), λ(k)) , u

〉
+

〈
ε∇λL(u(k), λ(k))−∇λM(u(k), λ(k)) , λ

〉
.

We have two possible algorithms to solve the auxiliary problem.

1 sim: solve simultaneously the optimality conditions:

u(k+1) = arg min
u∈Uad

L(k)(u, λ(k+1)) ,

λ(k+1) = arg max
λ∈C?

L(k)(u(k+1), λ) .

2 seq: solve sequentially the optimality conditions:

u(k+1) = arg min
u∈Uad

L(k)(u, λ(k)) ,

λ(k+1) = arg max
λ∈C?

L(k)(u(k+1), λ) .
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APP with explicit constraints: one-level algorithm I

Possible choice: M(u, λ) = K (u) +
〈
λ ,Ω(u)

〉
and Algorithm sim.

The expression of the auxiliary Lagrangian is as follows:

L(k)(u, λ) = M(u, λ) +
〈
ε∇uL(u(k), λ(k))−∇uM(u(k), λ(k)) , u

〉

+
〈
ε∇λL(u(k), λ(k))−∇λM(u(k), λ(k)) , λ

〉

= K (u) +
〈
ε∇J(u(k))−∇K (u(k)) , u

〉

+
〈
λ(k) ,

(
εΘ′(u(k))− Ω′(u(k))

)
.u
〉

+
〈
λ ,Ω(u) + εΘ(u(k))− Ω(u(k))

〉
.
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APP with explicit constraints: one-level algorithm II

The saddle point (u(k+1), λ(k+1)) of L(k) is obtained by solving the
associated constrained optimization problem:

min
u∈Uad

K (u) +
〈
ε∇J(u(k))−∇K (u(k)) , u

〉
+

〈
λ(k) ,

(
εΘ′(u(k))− Ω′(u(k))

)
.u
〉
,

subject to Ω(u)− Ω(u(k)) + εΘ(u(k)) ∈ −C .

The convergence proof of this algorithm is available for problems
involving a quadratic cost function and linear equality constraints.
Moreover, a geometric condition, namely ΘJ−1Ω? + ΩJ−1Θ? > 0
(weak coupling through the constraints) has to be met.
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APP with explicit constraints: one-level algorithm III

With regard to decomposition, consider the following choices:

K (u) =
N∑

i=1

Ki (ui ) , Ω(u) =




Ω1(u1) · · · 0
...

. . .
...

0 · · · ΩN(uN)


 ,

that is,

an additive auxiliary cost function K ,

a block diagonal auxiliary constraint Ω,

and assume that Uad = Uad
1 × . . .× Uad

N .

Then the auxiliary problem can be decomposed in N subproblems.

This algorithm is in fact a generalization of the decomposition by
prediction that has been studied for additive models. The choice
of Ω as a block-diagonal operator corresponds to the distribution
of the constraints among the units.
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APP with explicit constraints: two-level algorithm I

Alternative choice: M(u, λ) = K (u)− ‖λ‖
2

2α
and Algorithm seq.

The expression of the auxiliary Lagrangian is as follows:

L(k)(u, λ) = M(u, λ) +
〈
ε∇uL(u(k), λ(k))−∇uM(u(k), λ(k)) , u

〉

+
〈
ε∇λL(u(k), λ(k))−∇λM(u(k), λ(k)) , λ

〉
,

so that

L(k)(u, λ(k)) ↔ K (u) +
〈
ε∇J(u(k))−∇K (u(k)) , u

〉

+ ε
〈
λ(k) ,Θ′(u(k)).u

〉
,

L(k)(u(k+1), λ) ↔ −1

2
‖λ‖2 +

〈
αεΘ(u(k+1)) + λ(k) , λ

〉
.
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APP with explicit constraints: two-level algorithm II

The optimization problems are solved sequentially. Solving the first
problem min

u∈Uad
L(k)(u, λ(k)) leads to

min
u∈Uad

K (u) +
〈
ε∇J(u(k))−∇K (u(k)) , u

〉
+ ε
〈
λ(k) ,Θ′(u(k)).u

〉
,

whose solution is denoted u(k+1), and solving the second problem
max
λ∈C?

L(k)(u(k+1), λ) is equivalent to

λ(k+1) = projC?
(
λ(k) + α ε︸︷︷︸

ρ

Θ(u(k+1))
)
,

that is, an update of the multiplier λ.

The convergence proof of this algorithm can be established under
standard assumptions in the convex (sub)differentiable framework.
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APP with explicit constraints: two-level algorithm III
Convergence theorem

H1 Uad is a closed convex subset of the Hilbert space U , and
C is a closed convex cone of the Hilbert space V.

H2 J is a proper l.s.c. strongly convex function with modulus a,
and its derivative J ′ is Lipschitz with constant A.

H3 Θ is a C -convex, Lipschitz with constant τ , differentiable.

H4 A saddle point (u], λ]) of L exists.

H5 K is a proper l.s.c. strongly convex function with modulus b,
and its derivative K ′ is Lipschitz with constant B.

H6 ε and ρ are such that 0 < ε < b/A and 0 < ρ < a/τ2.

R1 The sequence
{
u(k)

}
k∈N converges toward u].

R2 The sequence
{
λ(k)

}
k∈N is bounded, and any of its cluster

points λ is such that (u], λ) is a saddle point of L.
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APP with explicit constraints: two-level algorithm IV

This algorithm corresponds to a generalization of both Uzawa and
Arrow-Hurwicz algorithms. Roughly speaking,

K (u) = J(u) and ε = 1  Uzawa.

K (u) =
1

2
‖u‖2  Arrow-Hurwicz.

Choosing an additive auxiliary function K :

K (u) =
N∑

i=1

Ki (ui ) ,

and assuming that Uad = Uad
1 × . . .× Uad

N , the minimization step
in the previous algorithm splits into N independent subproblems:

min
ui∈Uad

i

Ki (ui )+
〈
ε∇ui J(u(k))−∇uiK (u(k)), ui

〉
+ε
〈
λ(k),Θ′ui (u

(k)).ui
〉
.
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APP with explicit constraints: augmented Lagrangian I

For the sake of simplicity, consider an optimization problem under
equality constraints:

min
u∈Uad

J(u) s.t. Θ(u) = 0 ,

The two-level APP algorithm writes in the following equivalent form:

u(k+1) ∈ arg min
u∈Uad

K (u) +
〈
ε∇uL(u(k), λ(k))−∇K (u(k)) , u

〉
,

λ(k+1) = λ(k) + ρ∇λL(u(k+1), λ(k)) ,

L being the standard Lagrangian: L(u, λ) = J(u) +
〈
λ ,Θ(u)

〉
.
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APP with explicit constraints: augmented Lagrangian II

Introduce now the augmented Lagrangian Lc , whose expression in
the case of equality constraints is given by

Lc(u, λ) = L(u, λ) +
c

2
‖Θ(u)‖2 .

Applying the APP methodology to this new Lagrangian leads to
the following two-level algorithm:

u(k+1) ∈ arg min
u∈Uad

K (u) +
〈
ε∇uLc(u(k), λ(k))−∇K (u(k)) , u

〉
,

λ(k+1) = λ(k) + ρ∇λLc(u(k+1), λ(k)) ,

that is, APP allows to decompose augmented Lagrangians!
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APP with explicit constraints: augmented Lagrangian III

Convergence theorem

H1 Uad is a closed convex subset of the Hilbert space U , and
C is a closed convex cone of the Hilbert space V.

H2 J is a proper l.s.c convex function,
and its derivative J ′ is Lipschitz with constant A.

H3 Θ is a C -convex, Lipschitz with constant τ , differentiable.

H4 A saddle point (u], λ]) exists.

H5 K is a proper l.s.c strongly convex function with modulus b,
and its derivative K ′ is Lipschitz with constant B.

H6 ε and ρ are such that 0 < ε < b/(A + cτ2) and 0 < ρ < 2c .

R1 The sequence
{

(u(k), λ(k))
}
k∈N is bounded, and any of its

cluster points is a saddle point.
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Final remarks on decomposition methods I

The theory is available for general (infinite dimensional) Hilbert
spaces, and thus applies in the stochastic framework, that is, the
case where U is a space of random variables.

The minimization algorithm used for solving the subproblems is not
specified in the decomposition process and is left to the user! It is
however assumed that the user is able to solve the subproblem, for
example in the price decomposition case:

min
ui∈Uad

i

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
,

and to send the requested information, namely Θi (u
(k+1)
i ), to the

coordination level.

Question: what methods are suitable in the stochastic case?
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Final remarks on decomposition methods II

Whatever the decomposition/coordination scheme used (price,
allocation, prediction, APP), new variables (depending on u(k)

and/or λ(k)) appear in the subproblems arising at iteration k
of the optimization process.
Example: subproblem i in price decomposition:

min
ui∈Uad

i

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
.

All these new variables are considered as fixed when solving the
subproblems (they only depend on the iteration index k). They
are nothing but constants, and therefore do not cause any trouble
in the deterministic case.

Question: what happens in the stochastic case?
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1 Examples and background
Examples of interconnected systems
Convex optimization background

2 Decomposition in the deterministic case
Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

3 About decomposition in the stochastic case
Dynamic Programming and decomposition
Couplings in stochastic optimization
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Dynamic Programming and decomposition
Couplings in stochastic optimization

Reminder of our ultimate goal

How to to obtain “good” strategies for a large scale stochastic
optimal control problem, for example a problem corresponding to
the optimal management over a given time horizon of a system
involving a large amount of dynamical production units.

In order to obtain decision strategies (closed-loop controls),
we have to use Dynamic Programming or related methods.

Assumption: Markovian case,
Difficulty: curse of dimensionality.

In order to to take into account the size of the system, we
have to use decomposition/coordination techniques.

Assumption: convexity,
Difficulty: information pattern of the problem.
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Stochastic optimal control problems

We consider a SOC problem (in the Decision-Hazard setting):

min
U ,X

E
( N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )
))

,

subject to the constraints:

X i
0 = f i-1(W0) , i = 1 . . .N ,

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) , t = 0 . . .T−1 , i = 1 . . .N ,

U i
t � σ(W0, . . . ,Wt) , t = 0 . . .T−1 , i = 1 . . .N ,

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 , t = 0 . . .T−1 .
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Dynamic Programming yields centralized controls

Remember that we want to solve this SOC problem using Dynamic
Programming (DP) or related methods (such as SDDP).

The system is made of N interconnected subsystems, and we have
denoted the control and the state of subsystem i at time t by U i

t

and X i
t . Recall that the optimal control of subsystem i when using

DP is a function of the whole system state:

U i
t = γ it

(
X 1

t , . . . ,X
N
t

)
,

but a straightforward use of DP is prohibited for N large. . .

Moreover, decomposition should lead to decentralized feedbacks:

U i
t = γ̂ it(X

i
t ) ,

which are, in most cases, far from being optimal!
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Straightforward decomposition of Dynamic Programming?

The crucial point is that the optimal feedback of a subsystem a
priori depends on the state of all other subsystems, so that using a
decomposition scheme by subsystems is far from being obvious. . .

As far as we have to deal with Dynamic Programming, the central
concern for decomposition/coordination purpose is resumed as:

?

?

?

?

??

how to decompose a feedback γt w.r.t.
its domain Xt rather than its range Ut?

And the answer is:

impossible in the general case!
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Remark on the approximation of a SOC problem

Optimize

Optimize

D
isc

r
e
t
ize

OCorig

OCdisc

Porig

Pdisc

D
isc

r
e
t
ize

Path 2

Path 1

1 Following Path 1 (discretize, then
optimize), we solve a deterministic
approximation of the SOC problem.
 Scenario tree approximation.
All the decomposition/coordination
methods are available.

2 Following Path 2 (optimize, then
discretize) we directly make use
of a decomposition/coordination
method on the SOC problem and
then discretize the subproblems.
 Stochastic decomposition.

In this lecture, we are following path 2!
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1 Examples and background
Examples of interconnected systems
Convex optimization background

2 Decomposition in the deterministic case
Additive model: 3 decomposition methods
General model: Auxiliary Problem Principle

3 About decomposition in the stochastic case
Dynamic Programming and decomposition
Couplings in stochastic optimization
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Couplings and decompositions for SOC problems I

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � σ(W0, . . . ,Wt)

∑

i

Θi
t(X

i
t ,U

i
t) = 0

3 additive structures!
Multiple decompositions
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Couplings and decompositions for SOC problems II

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � σ(W0, . . . ,Wt)

∑

i

Θi
t(X

i
t ,U

i
t) = 0

3 additive structures!
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Couplings and decompositions for SOC problems III

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � σ(W0, . . . ,Wt)

∑

i

Θi
t(X

i
t ,U

i
t) = 0

3 additive structures!
Multiple decompositions
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Couplings and decompositions for SOC problems IV

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � σ(W0, . . . ,Wt)

∑

i

Θi
t(X

i
t ,U

i
t) = 0

3 additive structures!
Multiple decompositions
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Couplings and decompositions for SOC problems V

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � σ(W0, . . . ,Wt)

∑

i

Θi
t(X

i
t ,U

i
t) = 0

3 additive structures!
Multiple decompositions. . .
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Couplings and decompositions for SOC problems VI

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � σ(W0, . . . ,Wt)

∑

i

Θi
t(X

i
t ,U

i
t) = 0

Time decomposition
Dynamic Programming
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Couplings and decompositions for SOC problems VII

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � σ(W0, . . . ,Wt)

∑

i

Θi
t(X

i
t ,U

i
t) = 0

Scenario decomposition
Progressive Hedging
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Couplings and decompositions for SOC problems VIII

unit

time

uncertainty

min
∑

ω

∑

i

∑

t

πωL
i
t(X

i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f it (X i

t ,U
i
t ,Wt+1)

U i
t � σ(W0, . . . ,Wt)

∑

i

Θi
t(X

i
t ,U

i
t) = 0

Spatial decomposition
Purpose of the lecture
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Price decomposition in the stochastic case I

Dualize the spatial coupling constraints in the SOC problem:

min
U ,X

N∑

i=1

(
E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )
))

,

subject to the constraints:

X i
0 = f i-1(W0) , i = 1 . . .N ,

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) , t = 0 . . .T−1 , i = 1 . . .N ,

U i
t � σ(W0, . . . ,Wt) , t = 0 . . .T−1 , i = 1 . . .N ,

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 , t = 0 . . .T−1  Λt .
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Price decomposition in the stochastic case II

Applying price decomposition to the previous SOC problem leads
to a collection of local stochastic optimal control subproblems
indexed by i ∈ J1,NK:

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,Wt+1) + Λ

(k)
t ·Θi

t(X
i
t ,U

i
t)
)

+ K i (X i
T )
)
,

subject to the constraints:

X i
0 = f i-1(W0) ,

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) , t = 0 . . .T−1 ,

U i
t � σ(W0, . . . ,Wt) , t = 0 . . .T−1 .
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Price decomposition in the stochastic case III

As pointed out in the deterministic case, new variables, that

is, dual multipliers Λ
(k)
t , appear in the subproblems arising at

iteration k : these variables, fixed at this stage of calculation,
corresponds to random variables.

min
U i ,X i

E
(∑

t

Lit(X
i
t ,U

i
t ,Wt+1) + Λ

(k)
t ·Θi

t(X
i
t ,U

i
t)
)
.

The process Λ(k) acts as an additional input (data) in the
subproblems, but the structure of this process is a priori
unknown: it may be correlated in time, so that the white
noise assumption, crucial for the optimality of Dynamic
Programming, has no reason to be fulfilled in that context!
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Summary

On the one hand, it seems that Dynamic Programming
cannot be decomposed in a straightforward manner.

On the other hand, applying a decomposition scheme to a
SOC problem introduces coordination instruments in the

subproblems, e.g. the multipliers Λ
(k)
t in the case of price

decomposition, which correspond to additional fixed random
variables whose time structure is unknown.

Question: how to handle the coordination instruments (random

variables Λ
(k)
t in the case of price decomposition) in order to obtain

an approximation of the overall optimum of the SOC problem?
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BREAK
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