
Mixing spatial and temporal decompositions
Application to dams management problems

Application to microgrids management problems

Interface Course 2019
Stochastic Optimization for Large-Scale Systems

♦
Spatial Decomposition Methods II

P. Carpentier, J.-Ph. Chancelier, M. De Lara , V. Leclère

November 8, 2019

P. Carpentier & SOWG CIRM 2019 November 2019 1 / 71



Mixing spatial and temporal decompositions
Application to dams management problems

Application to microgrids management problems

Ultimate goal of the lecture

How to to obtain “good” strategies for a large scale stochastic
optimal control problem, for example a problem corresponding to
the optimal management over a given time horizon of a system
involving a large amount of dynamical production units.

In order to obtain decision strategies (closed-loop controls),
we have to use Dynamic Programming or related methods.

Assumption: Markovian case,
Difficulty: curse of dimensionality.

In order to to take into account the size of the system, we
have to use decomposition/coordination techniques.

Assumption: convexity,
Difficulty: information pattern of the problem.

Mixture of spatial and temporal decompositions
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Lecture outline

1 Mixing spatial and temporal decompositions
Problem formulation and price decomposition
Dual approximate dynamic programming (DADP)
Upper and lower bounds for large scale SOC problems

2 Application to dams management problems
Hydro valley modeling
Numerical experiments

3 Application to microgrids management problems
Urban microgrid modeling
Numerical experiments
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Optimization problem

We recall the SOC problem under consideration:

min
U ,X

E
( N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )
))

, (P)

subject to dynamics constraints:

X i
0 = f i-1(W0) ,

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) ,

to measurability constraints:

U i
t � σ(W0, . . . ,Wt) , Decision-Hazard setting

and to instantaneous coupling constraints

N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 . Feasible constraints

P. Carpentier & SOWG CIRM 2019 November 2019 5 / 71



Mixing spatial and temporal decompositions
Application to dams management problems

Application to microgrids management problems

Problem formulation and price decomposition
Dual approximate dynamic programming (DADP)
Upper and lower bounds for large scale SOC problems

Assumptions

Assumption 1 (White noise)

Noises W0, . . . ,WT are independent over time.

We have also assumed full noise observation:

U i
t � σ(W0, . . . ,Wt) .

As a consequence of these assumptions, there is no optimality loss
to seek the control U i

t as a function of the state at time t rather
than a function of the past noises:

U i
t � σ(X 1

t , . . . ,X
N
t ) .

We are in the Markovian case, and Dynamic Programming applies.

But DP faces the curse of dimensionality when N is large. . .
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Lagrangian formulation

We dualize the coupling constraints and obtain the Lagrangian:

L
(
X ,U ,Λ

)
= E

(
N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )

+
T−1∑

t=0

Λt ·Θi
t(X

i
t ,U

i
t)

))
,

where the Λt ’s are σ(W0, . . . ,Wt)-measurable random variables.

We assume that a saddle point of L exists,1 so that

min
U ,X

max
Λ
L
(
X ,U ,Λ

)
= max

Λ
min
U ,X
L
(
X ,U ,Λ

)
.

1Such an assumption is highly non-trivial for the considered problem. . .
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Uzawa algorithm

At iteration k of the algorithm,
1 Solve subproblem i , i = 1, . . . ,N, with Λ(k) fixed:

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,Wt+1) + Λ

(k)
t ·Θi

t(X
i
t ,U

i
t)
)

+ K i (X i
T )

)
,

subject to

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) ,

U i
t � σ(W0, . . . ,Wt) ,

whose solution is denoted
(
U i ,(k+1),X i ,(k+1)

)
.

2 Update the multipliers Λt :

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

Θi
t

(
X i,(k+1)

t ,U i,(k+1)
t

))
.
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Main idea of the approximation

As already pointed out, Λ
(k)
t depends on (W0, . . . ,Wt), so that

solving a subproblem is as complex as solving the initial problem.

In order to overcome the difficulty, we choose at each time t and
for each i a random variable Y i

t which is measurable w.r.t. the
past noises

(
W0, . . . ,Wt

)
. We call Y i =

(
Y i

0 , . . . ,Y
i
T−1

)
the

information process for subsystem i .

The core idea of DADP is to replace the multiplier Λ
(k)
t by its

conditional expectation w.r.t. Y i
t , that is, E(Λ

(k)
t | Y i

t ). From
an intuitive point of view, this leads to a good approximation if

Y i
t is (highly) correlated to the random variable Λt .

Note that we require that the information process is not influenced by controls.
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Subproblem approximation

Following this idea, we replace subproblem i in Uzawa algorithm by:

min
U i ,X i

E
( T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,Wt+1)+E(Λ

(k)
t | Y i

t )·Θi
t(X

i
t ,U

i
t)
)

+K i (X i
T )

)
,

subject to

X i
t+1 = f it (X i

t ,U
i
t ,Wt+1) ,

U i
t � σ(W0, . . . ,Wt) .

The conditional expectation E(Λ
(k)
t | Y i

t ) corresponds to a given
function of the variable Y i

t , so that subproblem i now involves 2
exogenous random processes, that is, W and Y i .

If Y i is a short memory process, DP applies effectively.
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DADP as a spatial decomposition (price) algorithm

Λ
(k+1)
t = Λ

(k)
t + ρt

(∑
Θi

t

(
X

i,(k+1)
t ,U

i,(k+1)
t

))

( X
i,
(k
) ,
U

i,
(k
))

( X
1,
(k
) ,U

1,
(k
)
)

Scenario-wise coordination

Subproblem 1

and solve subproblem

Subproblem i

and solve subproblem

Subproblem N

and solve subproblem

(
X

N
,(k),U

N
,(k) )

Λ(k)Λ(k)
Λ(k)

Compute E
(
Λ

(k)
t | Y N

t

)
Compute E

(
Λ

(k)
t | Y i

t

)
Compute E

(
Λ

(k)
t | Y 1

t

)

Each subproblem is solved by DP: temporal decomposition.
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Mix of spatial and temporal decompositions in DADP

V 1
0 V 1

1 V 1
2 V 1

T

V 2
0 V 2

1 V 2
2 V 2

T

VN
0 VN

1 VN
2 VN

T

time

space

Λ(k)

Λ(k)

Λ(k)
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Possible choices for the information process

1 Perfect memory: Y i
t =

(
W0, . . . ,Wt

)
.

E(Λ
(k)
t | Y i

t ) = Λ
(k)
t : no approximation!

The state size of the subproblem increases with time. . .

2 Minimal information: Y i
t ≡ cste.

Λ
(k)
t is approximated by its expectation E(Λ

(k)
t ).

The information variable does not deliver any information. . .

3 Static information: Y i
t = hit

(
Wt

)
.

Such a choice is guided by the intuition that a part of Wt

mostly “explains” the optimal multiplier.

4 Dynamic information: Y i
t+1 = hit

(
Y i

t ,Wt+1

)
.

In the Dynamic Programming equation, the state vector is
augmented by embedding Y i

t , that is, the necessary memory
to compute the information variable at the next time step.
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Dynamic Programming equation

In the last case (dynamic information), the DP equation writes:

V i
T (x , y) = K i (x) ,

V i
t(x , y) = min

u
E
((

Lit(x , u,Wt+1)

+ E(Λ
(k)
t | Y i

t = y) ·Θi
t(x , u)

+ V i
t+1

(
X i

t+1,Y
i
t+1

)))
,

subject to the dynamics:

X i
t+1 = f it (x , u,Wt+1) ,

Y i
t+1 = hit(y ,Wt+1) .
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About the coordination

The task of coordination is performed in a scenario-wise manner.

A set of noise scenarios is drawn once for all. Trajectories of
the information process Y i are simulated along the scenarios.

At iteration k, the optimal trajectories of the state process
X i ,(k+1) and of the control process U i ,(k+1) are simulated
along the noise scenarios, for all subsystems.

The dual multipliers are updated along the noise scenarios
according to the formula:

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑

i=1

Θi
t

(
X i ,(k+1)

t ,U i ,(k+1)
t

))
.

The conditional expectations E(Λ
(k+1)
t | Y i

t ) are obtained by

regression of the trajectories of Λ
(k+1)
t on those of Y i

t .
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DADP flowchart (based on scenarios)

initialisation

solve the

subproblems

simulate the

trajectories

estimate the

constraint gradient

update the conditional expectations estimation

of the multipliers w.r.t. the information variable

E
( ΛΛ Λ

(k
)

t

∣ ∣ ∣Y
i t

)

U
i ,(k+1)
t

(
X

i ,(k+1)
t , U

i ,(k+1)
t , Wt , Y

i
t

)
`

(∑
i Θi

t(X
i ,(k+1)
t , U

i ,(k+1)
t )

)
`
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Interpretation of DADP I

The approximation made on the dual process allows to obtain a
tractable way for solving the subsystems. It also provides an
interpretation of what has been made in terms of constraints.

From now on, assume that the information variable Yt is the same
for all subsystems. We consider a new problem derived from (P):

min
U ,X

E
( N∑

i=1

( T−1∑

t=0

Lit(X
i
t ,U

i
t ,Wt+1) + K i (X i

T )
))

, (Pr )

subject to the modified coupling constraints:

E
( N∑

i=1

Θi
t(X

i
t ,U

i
t)
∣∣∣ Yt

)
= 0 .
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Interpretation of DADP II

Proposition 1

Assume that the Lagrangian associated with Problem (Pr ) has
a saddle point. Then the DADP algorithm can be interpreted
as the Uzawa algorithm applied to Problem (Pr ).

Proof. Since the term E
(
E(Λ

(k)
t | Yt) ·Θi

t(X i
t ,U i

t )
)

which appears in the cost
function of subproblem i in DADP can be written:

E
(
E(Λ

(k)
t | Yt) ·Θi

t(X
i
t ,U

i
t )
)

= E
(
Λ

(k)
t · E(Θi

t(X
i
t ,U

i
t ) | Yt)

)
,

the global constraint really handled by DADP is:

E
( N∑

i=1

Θi
t(X

i
t ,U

i
t )
∣∣∣ Yt

)
= 0 . 2

DADP thus consists in replacing an almost-sure constraint by
its conditional expectation w.r.t. the information variable Yt .
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Summary

To summarize, DADP leads to solve the approximated problem:

min
U ,X

E
( N∑

i=1

T−1∑
t=0

(
Li
t(X

i
t ,U

i
t ,Wt)+K i (X i

T )
))

s.t. E
( N∑

i=1

Θi
t(X

i
t ,U

i
t )
∣∣∣ Yt

)
= 0 ,

whereas the true problem is:

min
U ,X

E
( N∑

i=1

T−1∑

t=0

(
Lit(X

i
t ,U

i
t ,Wt) + K i (X i

T )
))

s.t.
N∑

i=1

Θi
t(X

i
t ,U

i
t) = 0 .

The conditional expectation constraint handled by DADP is a
relaxed version of the almost sure constraint of the true problem.

An immediate consequence is that the DADP optimal value
is an exact lower bound of the true problem optimal value.
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Some questions

? What is the suitable theoretical framework of the algorithm?

The convergence of Uzawa’s algorithm is granted provided that:

the problem is posed in Hilbert spaces,
and it exists a saddle point.

It thus seems natural to place ourselves in a Hilbert space. But it is
known (works by Rockafellar and Wets) that a saddle point doesn’t
exist in Hilbert spaces for such problems. . .

? Does the approximate solution converge to the true solution?

Epiconvergence results are available w.r.t. the information delivered
by Yt . But epiconvergence raises difficult technical problems when
addressed to stochastic optimization problems.

? How to obtain a feasible solution from the approximate solution?

Use an appropriate heuristic (to be explained later on)!
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Progress status

First, we have obtained a lower bound for a global optimization
problem with coupling constraints thanks to a price decomposition
and coordination scheme (spatial decomposition).

Second, we have computed the lower bound by dynamic
programming (temporal decomposition)

Using the price Bellman value functions, we have an heuristic
procedure to devise an online policy for the global problem

We will apply this decomposition scheme
to dams management problems

We now investigate two decomposition schemes (price and resource)
to obtain lower and upper bounds for a global optimization problem.
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An abstract optimization problem
We consider the following optimization problem

V ]
0 = min

u1∈U1
ad,··· ,uN∈U

N
ad

N∑

i=1

J i (ui )

s.t.
(
Θ1(u1), · · · ,ΘN(uN)

)
∈ −S︸ ︷︷ ︸

coupling constraint
with

ui ∈ U i be a local decision variable

J i : U i → R, i ∈ J1,NK be a local objective

U i
ad be a subset of U i

Θi : U i → C i be a local constraint mapping

S be a subset of C = C1 × · · · × CN

We denote by S? the dual cone of S

S? =
{
λ ∈ C? |

〈
λ , r

〉
≥ 0 ∀r ∈ S

}
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Price and resource value functions

For each i ∈ J1,NK,

for any price λi ∈ (C i )?, we define the local price value

V i
0[λi ] = min

ui∈U i
ad

J i (ui ) +
〈
λi ,Θi (ui )

〉

for any resource r i ∈ C i , we define the local resource value

V
i
0[r i ] = min

ui∈U i
ad

J i (ui ) s.t. Θi (ui ) = r i

Theorem 1 (Upper and lower bounds for optimal value)

For any admissible price λ = (λ1, · · · , λN) ∈ S?

For any admissible resource r = (r1, · · · , rN) ∈ −S
N∑

i=1

V i
0[λi ] ≤ V ]

0 ≤
N∑

i=1

V
i
0[r i ]
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The case of multistage stochastic optimization I

Assume that the local price value

V i
0[λi ] = min

ui∈U i
ad

J i (ui ) +
〈
λi ,Θi (ui )

〉
,

corresponds to a stochastic optimal control problem

V i
0[Λi ](x i

0) = min
X i ,U i

E
( T−1∑

t=0

Li
t(X

i
t ,U

i
t ,Wt+1) +

〈
Λi

t ,Θ
i
t(X

i
t ,U

i
t )
〉

+ K i (X i
T )

)
s.t. X i

t+1 = f it (X i
t ,U

i
t ,Wt+1) , X i

0 = f i-1(W0)

σ(U i
t ) ⊂ σ(W0, · · · ,Wt)

This local control problem can be solved by Dynamic Programming (DP)
under restrictive assumptions:

the noise process W is a white noise process

the price process Λi follows a dynamics in small dimension

DP leads to a collection
{
V i

t [Λ
i ]
}
t∈J0,TK of local price value functions
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The case of multistage stochastic optimization II

Similar considerations hold true for the local resource value

V
i
0[r i ] = min

ui∈U i
ad

J i (ui ) s.t. Θi (ui ) = r i

considered as a stochastic optimal control problem

V
i
0[R i ](x i

0) = min
X i ,U i

E
( T−1∑

t=0

Li
t(X

i
t ,U

i
t ,Wt+1) + K i (X i

T )

)
s.t. X i

t+1 = f it (X i
t ,U

i
t ,Wt+1) , X i

0 = f i-1(W0)

σ(U i
t ) ⊂ σ(W0, · · · ,Wt)

Θi
t(X

i
t ,U

i
t ) = R i

t

Provided that the dynamics of the resource process R i is small,

DP leads to a collection
{
V

i

t [R i ]
}
t∈J0,TK of local resource value functions
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Mix of spatial and temporal decompositions I

For any admissible price process Λ ∈ S? and any admissible resource

process R ∈ −S , we have bounds of the optimal value V ]
0

N∑

i=1

V i
0[Λi ](x i0) ≤ V ]

0 ≤
N∑

i=1

V
i

0[R i ](x i0)

1 To obtain the bounds, we perform spatial decompositions giving

a collection
{
V i

0[Λi ](x i0)
}
i∈J1,NK of price local values

a collection
{
V

i

0[R i ](x i0)
}
i∈J1,NK of resource local values

The computation of these local values can be performed in parallel

2 To compute each local value, we perform temporal decomposition
based on Dynamic Programming. For each i , we obtain

a sequence
{
V i

t [Λ
i ]
}
t∈J0,TK of price local value functions

a sequence
{
V

i

t [R i ]
}
t∈J0,TK of resource local value functions

The computation of these local values functions is done sequentially
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Mix of spatial and temporal decompositions II

V
1
0 V

1
1 V

1
2 V

1
T

V
2
0 V

2
1 V

2
2 V

2
T

V
N
0 V

N
1 V

N
2 V

N
T

time

space

R1

R2

RN

Figure: The case of resource decomposition
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The case of deterministic price and resource processes

We assume that W is a white noise process, and we restrict
ourselves to deterministic admissible processes r ∈ −S , λ ∈ S?

The local value functions V i
t [λ

i ] and V
i
t [r

i ] are easy to
compute because they only depend on the local state
variable x i

It is easy to obtain tighter bounds by maximizing the lower
bound w.r.t. prices and minimizing the upper bound w.r.t.
resources

sup
λ∈S?

N∑

i=1

V i
0[λi ](x i0) ≤ V ]

0 ≤ inf
r∈−S

N∑

i=1

V
i

0[r i ](x i0)
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Heuristic procedure to produce online admissible policies

The local value functions V i
t [λ

i ] and V
i

t [r
i ] allow the computation of

global policies by solving static optimization problems

In the case of local price value functions, the policy is obtained as

γ
t
(x1

t , · · · , xN
t ) ∈ arg min

u1
t ,··· ,uNt

E
( N∑

i=1

Li
t(x

i
t , u

i
t ,Wt+1) +

N∑
i=1

V i
t+1[λi ]

(
X i

t+1

))
s.t. X i

t+1 = f it (x i
t , u

i
t ,Wt+1) , ∀i ∈ J1,NK(

Θt(x
1
t , u

1
t ), · · · ,Θt(x

N
t , u

N
t )
)
∈ −St

A global policy based on resource value functions is also available

Estimating the expected cost of such policies by Monte Carlo simulation

leads to a statistical upper bound of the optimal cost of the problem
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Progress status

First, we have obtained lower and upper bounds
for a global optimization problem with coupling constraints
thanks to two spatial decomposition schemes

– price decomposition
– resource decomposition

Second, we have computed the lower and upper bounds
by dynamic programming (temporal decomposition)

Using the price and resource Bellman value functions,
we have devised two online policies for the global problem

We will apply these decomposition schemes
to large-scale network problems

HOUSE 

SOLAR PANEL

HOUSE 

HOUSE 

HOUSE 

BATTERY

HOUSE 

BATTERY

HOUSE 

SOLAR PANEL
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The Durance cascade
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Motivation

Electricity production management for hydro valleys

1 year time horizon:
compute each month

the “values of water”

(Bellman functions)

stochastic framework:
rain, market prices

large-scale valley:
5 dams and more

We wish to remain within the scope of Dynamic Programming.
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Operating scheme

x3t

Dam 1

Dam 2

Dam 3

a1t

x1t
u1t a2t

u2tx2t a3t

u3t

uit : water turbinated by dam i at time t,
x it : water volume of dam i at time t,
ait : water inflow at dam i at time t,
pit : market price at dam i at time t,

Randomness: w i
t = (ait , p

i
t) and wt = (w1

t , . . . ,w
N
t ).
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Dynamics and costs functions

zit

Dam i

xit

sit

ait

uit

Dam dynamics:

x it+1 = f it (x it , u
i
t ,w

i
t , z

i
t) ,

= x it−uit+ait+z it−s it ,
z i+1
t being the outflow of dam i :

z i+1
t = g i

t (x it , u
i
t ,w

i
t , z

i
t) ,

= uit+ max
{

0,x it−uit+ait+z it−x i
}

︸ ︷︷ ︸
s it

.

We assume the Hazard-Decision information structure (uit is chosen
once w i

t is observed), so that ui ≤ uit ≤ min
{
ui , x it + ait + z it − x i

}
.

Gain at time t < T : Lit(x
i
t , u

i
t ,w

i
t , z

i
t) = pitu

i
t−ε(uit)2.

Final gain at time T : K i
(
x iT
)

= −ai min{0,x iT−x̂
i}2.
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Stochastic optimization problem

The global optimization problem reads:

max
(X ,U ,Z )

E
( N∑

i=1

( T−1∑

t=0

Lit
(
X i

t ,U
i
t ,W

i
t ,Z

i
t

)
+ K i

(
X i

T

)))
,

subject to:

X i
t+1 = f it (X i

t ,U
i
t ,W

i
t ,Z

i
t ) , ∀i , ∀t ,

U i
t � σ

(
W0, . . . ,Wt

)
, ∀i , ∀t ,

Z i+1
t = g i

t (X i
t ,U

i
t ,W

i
t ,Z

i
t ) , ∀i , ∀t .

Assumption. Noises W0, . . . ,WT−1 are independent over time.
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Standard price decomposition

Dualize the coupling constraints Z i+1
t = g i

t (X i
t ,U

i
t ,W

i
t ,Z

i
t ).

Note that the associated multiplier Λi+1
t is a random variable.

Minimize the dual problem (using a gradient-like algorithm).

Dam i

xit

ait

sit

zit

uit

zi+1t

Dam i + 1

At iteration k , the duality term:

Λ
i+1,(k)
t ·

(
Z i+1
t −g i

t (X i
t ,U

i
t ,W

i
t ,Z

i
t )
)
,

is the difference of two terms:

Λ
i+1,(k)
t · Z i+1

t  dam i+1,
Λ

i+1,(k)
t · g i

t

(
· · ·
)
 dam i .

Dam by dam decomposition for
the maximization in (X ,U ,Z )

at Λ
i+1,(k)
t fixed.
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Application of DADP

The i-th subproblem writes:

max
U i ,Z i ,X i

E
( T−1∑

t=0

(
Lit
(
X i

t ,U
i
t ,W

i
t ,Z

i
t

)
+ Λ

i,(k)
t · Z i

t

− Λ
i+1,(k)
t · g i

t

(
X i

t ,U
i
t ,W

i
t ,Z

i
t

))
+ K i

(
X i

T

))
,

but Λ
i,(k)
t depends on the whole past of noises (W0, . . . ,Wt). . .

We recall that the core idea of DADP is

to replace the constraint Z i+1
t − g i

t (X i
t ,U

i
t ,W

i
t ,Z

i
t ) = 0 by its

conditional expectation with respect to Y i
t :

E
(
Z i+1
t − g i

t (X i
t ,U

i
t ,W

i
t ,Z

i
t )
∣∣ Y i

t

)
= 0 ,

where (Y i
0 , . . . ,Y

i
T−1) is a “well-chosen” information process.
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Subproblems in DADP

DADP thus consists of a constraint relaxation, which is equivalent
to replace the multiplier Λ

i,(k)
t by its conditional expectation

E
(
Λ
i,(k)
t

∣∣ Y i−1
t

)
.

The expression of the i-th subproblem becomes:

max
U i ,Z i ,X i

E
( T−1∑

t=0

(
Lit
(
X i

t ,U
i
t ,W

i
t ,Z

i
t

)
+ E

(
Λ
i,(k)
t

∣∣ Y i−1
t

)
· Z i

t

− E
(
Λ
i+1,(k)
t

∣∣ Y i
t

)
· g i

t

(
X i

t ,U
i
t ,W

i
t ,Z

i
t

))

+ K i
(
X i

T

))
.

If each process Y i follows a dynamical equation, DP applies.
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A crude relaxation: Y i
t ≡ cste

1 The multipliers Λ
i ,(k)
t appear only in the subproblems by

means of their expectations E
(
Λ
i ,(k)
t

)
, so that each

subproblem involves a 1-dimensional state variable.

2 For the gradient algorithm, the coordination task reduces to:

E
(
Λ

i,(k+1)
t

)
= E

(
Λ

i,(k)
t

)
−ρtE

(
Z i+1,(k)
t −g i

t

(
X i,(k)

t ,U i,(k)
t ,W i

t ,Z
i,(k)
t

))
.

3 The constraints taken into account by DADP are

E
(
Z i+1
t − g i

t

(
X i

t ,U
i
t ,W

i
t ,Z

i
t

))
= 0 .

The DADP solutions do not satisfy the initial constraints:
we need to use an heuristic method to regain admissibility.
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Admissible online policies for the global problem

We have computed N local Bellman functions V i
t at each time t,

each depending on a single state variable x i , whereas we need
one global Bellman function Vt depending on the global state(
x1, . . . , xN

)
in order to design the decisions at time t.

Heuristic procedure: form the following global Bellman function:

V̂t

(
x1, . . . , xN

)
=

N∑

i=1

V i
t

(
x i
)
,

and solve at each time t the one-step DP problem:

max
u,z

N∑

i=1

Lit
(
x i , ui ,w i

t , z
i
)

+ V̂t+1

(
x1
t+1, . . . , x

N
t+1

)
,

s.t. x it+1 = f it
(
x i , ui ,w i

t , z
i
)
, z i+1 = g i

t (x i , ui ,w i
t , z

i ) ∀i .

P. Carpentier & SOWG CIRM 2019 November 2019 44 / 71



Mixing spatial and temporal decompositions
Application to dams management problems

Application to microgrids management problems

Hydro valley modeling
Numerical experiments

Bounds for the problem optimal cost

Let V ]
0 be the optimal value of the global optimization problem.

1 As already noticed, the optimal value computed by DADP,
that is, the sum of the optimal values of the subproblems once
the optimal multiplier E

(
Λt

)
have been obtained, is an exact

upper bound2 of V ]
0 .

2 The expected value associated to the admissible policy
induced by the sum of the local Bellman functions is a lower
bound of global problem optimal value. This expected value
being evaluated by Monte Carlo, we in fact have at disposal
a statistical lower bound of V ]

0 .

2and not a lower bound because we are dealing with a maximization problem
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Four case studies

dam 2

dam 1

dam 3

Discretization

T  12

X  41

U  6

W  10

3-Dams

dam 1 dam 2

dam 3

dam 4

dam 5

5-Dams

dam 5

dam 3 dam 4

dam 2

dam 6

dam 7

dam 8

dam 5

dam 3dam 1

8-Dams

dam 5

dam 3 dam 4

dam 2

dam 6

dam 5

dam 3

dam 7

dam 1

dam 8

dam 9

dam 10

10-Dams
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Results

Valley 3-Dams 5-Dams 8-Dams 10-Dams

DP CPU time 5 ’ 461200 ’ N.A. N.A.
DP value 2482.3 4681.6 N.A. N.A.

SDDP exact UB 2491.3 4694.1 11958.3 17256.0
SDDP value 2481.6 4680.9 11834.4 17069.3
SDDP CPU time 3 ’ 7 ’ 13 ’ 50 ’

Table: Results obtained by DP and SDDP

Valley 3-Dams 5-Dams 8-Dams 10-Dams

DADP CPU time 3 ’ 5 ’ 12 ’ 24 ’
DADP exact UB 2687.5 4885.9 12451.0 17933.5
DADP value 2401.6 4633.7 11573.0 16759.8
Gap with SDDP −3.2% −1.0% −2.2% −1.8%

Table: Results obtained by DADP

Results obtained using a 4 cores – 8 threads IntelrCore i7 based computer.
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Challenging the curse of dimensionality
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Two realistic valleys

SoulcemGnioure Izourt

Auzat

Sabart

Discretization

T  12, W  10

realistic grids for U and X

Vicdessos

Chastang

Bort

Mareges

Aigle

Sablier

Dordogne

P. Carpentier & SOWG CIRM 2019 November 2019 50 / 71



Mixing spatial and temporal decompositions
Application to dams management problems

Application to microgrids management problems

Hydro valley modeling
Numerical experiments

Results

Valley Vicdessos Dordogne

SDDP CPU time 9 ’ 17 ’
SDDP exact UB 2258.0 22310.0
SDDP value 2244.3 22136.1

Table: Results obtained by SDDP

Valley Vicdessos Dordogne

DADP CPU time 10 ’ 210 ’
DADP exact UB 2285.6 22991.1
DADP value 2237.4 21650.8
Gap with SDDP −0.3% −2.2%

Table: Results obtained by DADP
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Conclusions and perspectives

Conclusions for this study

Fast numerical convergence of the DADP method.

Near-optimal results even when using a “crude” relaxation.

Method that can be used for very large valleys

General perspectives

Apply to more complex topologies (microgrids).

Use other decomposition methods (resource, prediction).

Study the theoretical questions (convergence. . . ).
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Motivation

We consider a peer-to-peer microgrid where houses exchange energy,

and we formulate it as a large-scale stochastic optimization problem

HOUSE 

SOLAR PANEL

HOUSE 

HOUSE 

HOUSE 

BATTERY

HOUSE 

BATTERY

HOUSE 

SOLAR PANEL

How to manage it in an (sub)optimal manner?
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Network and flows

Directed graph G = (V, E)

Φi

Qe

Qe
t flow through edge e,

Φi
t flow imported at node i

Let A be the node-edge incidence matrix

Each node corresponds to
a building with its own
devices (battery, hot water
tank, solar panel. . . )

At each time
t ∈ J0,T − 1K,
the Kirchhoff current law
couples node and edge
flows

AQt + Φt = 0
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Optimization problem at a given node

At each node i ∈ V, given a node flow process Φi , we minimize the
house cost

J iV(Φi ) = min
X i ,U i

E
( T−1∑

t=0

Lit(X
i
t ,U

i
t ,W

i
t+1) + K i (X i

T )

)

subject to, for all t ∈ J0,T − 1K

i) nodal dynamics constraints (battery, hot water tank)

X i
t+1 = f it (X i

t ,U
i
t ,W

i
t+1)

ii) non-anticipativity constraints (future remains unknown)

σ(U i
t) ⊂ σ(W0, · · · ,Wt+1)

iii) nodal load balance equations (demand - production = import)

∆i
t(X

i
t ,U

i
t ,W

i
t+1) = Φi

t
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Transportation cost and global optimization problem

We define the network cost as the sum over time and edges of the costs
of flows Qe

t through the edges of the network

JE(Q ) = E
( T−1∑

t=0

∑

e∈E
let (Qe

t )

)

This transportation cost is additive in space, in time and in uncertainty!

The global optimization problem is obtained by gathering all elements

V ]
0 = min

Φ,Q

∑

i∈V

J iV(Φi ) + JE(Q )

s.t. AQ + Φ = 0
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Price and resource decompositions

Price problem:

V 0[Λ] = min
Φ,Q

∑
i∈V

J i
V(Φi ) + JE(Q ) +

〈
Λ ,AQ + Φ

〉
=
∑
i∈V

(
min

Φi

J i
V(Φi ) +

〈
Λi ,Φi〉)

︸ ︷︷ ︸
Node i ’s subproblem

+
(

min
Q

JE(Q ) +
〈
A>Λ ,Q

〉)
︸ ︷︷ ︸

Network subproblem

Resource problem:

V 0[R ] = min
Φ,Q

∑
i∈V

J i
V(Φi ) + JE(Q ) s.t. AR + Φ = 0 , Q = R

=
∑
i∈V

(
min

Φi

J i
V(Φi ) s.t. Φi = −(AR )i

)
+
(

min
Q

JE(Q ) s.t. Q = R
)

Find deterministic processes λ̂ and r̂ with a gap as small as possible

sup
λ

V 0[λ] ≤ V ]
0 ≤ inf

r
V 0[r ]
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Progress status

We have formulated a multistage stochastic optimization
problem on a graph

We are able to handle the coupling Kirchhoff constraints
by the two methods presented earlier

– Price decomposition
– Resource decomposition

Now, we show the scalability of decomposition algorithms
(we solve problems with up to 48 buildings)
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Different urban configurations

3-Nodes 6-Nodes 12-Nodes

24-Nodes 48-Nodes
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Problem settings

Thanks to the periodicity of demands and electricity tariffs, the
microgrid management problem can be solved day by day

One day horizon with a 15mn time step: T = 96

Weather corresponds to a sunny day in Paris (June 28, 2015)

We mix three kinds of buildings
1 battery + electrical hot water tank
2 solar panel + electrical hot water tank
3 electrical hot water tank

and we suppose that all consumers are sharing their devices
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Algorithms implemented on the problem

SDDP

We use the SDDP algorithm to solve the problem globally. . .

but noises W 1
t , · · · ,WN

t are independent node by node, so that the support
size of the noise may be huge (|supp(W i

t )|N). We must resample the noise
to be able to compute the cuts

Price decomposition

Spatial decomposition and maximization w.r.t. a deterministic price λ

Each nodal subproblem solved by a DP-like method

Maximisation w.r.t. λ by Quasi-Newton (BFGS) method

λ(k+1) = λ(k) + ρ(k)H(k)∇V 0[λ(k)]

Oracle ∇V 0[λ] estimated by Monte Carlo (Nscen = 1, 000)

Resource decomposition

Spatial decomposition and minimization w.r.t. a deterministic resource process r
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Exact upper and lower bounds on the global problem

Network 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes
State dim. |X| 4 8 16 32 64

SDDP time 1’ 3’ 10’ 79’ 453’
SDDP LB 225.2 455.9 889.7 1752.8 3310.3

Price time 6’ 14’ 29’ 41’ 128’
Price LB 213.7 447.3 896.7 1787.0 3396.4

Resource time 3’ 7’ 22’ 49’ 91’
Resource UB 253.9 527.3 1053.7 2105.4 4016.6

For the 48-Nodes microgrid,

price decomposition gives a (slightly) better exact lower bound than SDDP

3310.3︸ ︷︷ ︸
V 0[sddp]

≤ 3396.4︸ ︷︷ ︸
V 0[price]

≤ V ]
0 ≤ 4016.6︸ ︷︷ ︸

V 0[resource]

price decomposition is more than 3 times faster than SDDP
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Time evolution
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Policy evaluation by Monte Carlo (1,000 scenarios)

3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes

SDDP policy 226 ± 0.6 471 ± 0.8 936 ± 1.1 1859 ± 1.6 3550 ± 2.3

Price policy 228 ± 0.6 464 ± 0.8 923 ± 1.2 1839 ± 1.6 3490 ± 2.3
Gap +0.9 % -1.5% -1.4% -1.1% -1.7%

Resource policy 229 ± 0.6 471 ± 0.8 931 ± 1.1 1856 ± 1.6 3503 ± 2.2
Gap +1.3 % 0.0% -0.5% -0.2% -1.2%

All the cost values above are statistical upper bounds of V ]
0

For the 48-Nodes microgrid,

price policy beats SDDP policy and resource policy

V ]
0 ≤ 3490︸︷︷︸

C [price]

≤ 3503︸︷︷︸
C [resource]

≤ 3550︸︷︷︸
C [sddp]

the exact upper bound given by resource decomposition is not so tight

3396.4︸ ︷︷ ︸
V 0[price]

≤ V ]
0 ≤ 3490︸︷︷︸

C [price]

≤ 3503︸︷︷︸
C [resource]

≤ 4016.6︸ ︷︷ ︸
V 0[resource]

gap <3% ≈ 3% >18%
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Conclusions

We have two algorithms that decompose spatially and temporally
a large-scale optimization problem under coupling constraints.

In our case study, price decomposition beats SDDP for large
instances (≥ 24 nodes)

– in computing time (more than twice faster)
– in precision (more than 1% better)

Price decomposition gives (in a surprising way) a tight lower bound,
whereas the upper bound given by resource decomposition is weak
(which is understandable on the case study)

Can we obtain tighter bounds? especially for resource decomposition. . .

If we select properly price Λ and resource R processes among the
class of Markovian processes (instead of deterministic ones) we can
obtain “better” nodal value functions (with an extended local state)
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Thèse de doctorat, Université Paris-Est, 2014.

F. Pacaud.
Decentralized Optimization Methods for Efficient Energy Management under
Stochasticity.
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