
Mixing Time Blocks and
Price/Resource Decomposition Methods

Application to Long Term Battery Management

P. Carpentier — J.-P. Chancelier — M. De Lara — T. Rigaut

ENSTA Paris — ENPC ParisTech — Efficacity

BIRS-CMO Workshop 19w5091, 22–27 September 2019

Battery management involves
short time control and long term renewal,
hence two time scales

I When to renew a battery (long term decision)?

I How to optimally control the battery (short time decision)?
−→ impact on aging?

10, 512, 000︸ ︷︷ ︸
stages

= 7300︸︷︷︸
days

× 1440︸︷︷︸
minutes

We will decompose the battery management problem
according to control/renewal scales

Ṽd ←− Ṽd+1 ←− Ṽd+2

I Under what assumptions is there a Bellman Equation day by day?

I How to compute the one day Bellman operator,
which involves an optimization problem at minute time scale?

Lecture outline

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions
Two time scales battery management problem statement
Intraday time block and resource decomposition algorithm
Intraday time block and price decomposition algorithm
Producing minute scale policies

Numerical results

Conclusion

Outline of the presentation

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions

Numerical results

Conclusion

We introduce notations for two time scales

Time is described by to indices (d ,m) ∈ T

T = {0, . . . ,D} × {0, . . . ,M} ∪ {(D + 1, 0)}

1. Battery charge/discharge, decision every minute m ∈ {0, . . . ,M}
of every day d ∈ {0, . . . ,D}
→ Minutes in day d are (d , 0), (d , 1),. . . , (d ,M)

2. Renewal of the battery, decision every day d ∈ {0, . . . ,D + 1}
→ Start of days are (0, 0),. . . , (d + 1, 0),. . . , (D + 1, 0)

3. Compatibility between days:
(
(d ,M + 1) = (d + 1, 0)

)

T is a totally ordered set when equipped with the lexicographical order

(d ,m) < (d ′,m′) ⇐⇒ (d < d ′) ∨
(
d = d ′ ∧m < m′

)

Bellman Operators and Dynamic Programming

We introduce Bellman functions Vt for t ∈ T,
solution of the Bellman or dynamic programming equation with history

I Bellman operator at time t: ϕ ∈ L0
+(Ht+1,Ht+1) and ht ∈ Ht ,

(
Bt+1:tϕ

)
(ht) = inf

ut∈Ut

∫

Wt+1

ϕ(ht , ut ,wt+1)ρt:t+1(ht , dwt+1)

I Bellman equations

VT = j ,

Vt = Bt+1:tVt+1 , for t = T−1, . . . , 1, 0

→ State reduction at times (d , 0) for d ∈ {0, . . . ,D + 1}

Graphical representation of state reduction
I The triplet (θr , θt , f(d,0):(d+1,0)) is a state reduction

across ((d , 0) :(d + 1, 0)) if the following diagram is commutative

H(d,0) ×H(d,1):(d,M+1) H(d+1,0)

X(d,0) ×H(d,1):(d,M+1) X(d+1,0)

θ(d,0) Id

Id

θ(d+1,0)

f(d,0):(d+1,0)

I Compatibility with kernels p ∈ {1, . . . ,M}

H(d,0) ×H(d,1):(d,p−1) ∆(W(d,p))

X(d,0) ×H(d,1):(d,p−1)

θ(d,0) Id

ρ(d,p−1):(d,p)

ρ̃(d,p−1):(d,p)

Application of Time Blocks Dynamic Programming

We will now present an application
to a two time-scales optimization problem

I optimize long-term investment decisions (slow time-scale)
— here the renewal of batteries in an energy system

I but the optimal long-term decisions highly depend
on short-term operating decisions (fast time-scale)
— here the way the battery is operated in real-time.

We will decompose the scales (day and minutes)

Ṽ(d,0) ←− Ṽ(d+1,0) ←− Ṽ(d+2,0)

We propose numerical schemes that provide upper and lower bounds on

the family of reduced value functions
{
Ṽ(d,0)

}
d=0,...,D

I Assuming between days independence assumption
enables time scale decomposition

I Within a day, the fast time scale uncertainties can be dependent,
and we will resort to other decomposition principles:
within block resource/price decomposition techniques

Outline of the presentation

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions

Numerical results

Conclusion

Outline of the presentation

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions
Two time scales battery management problem statement
Intraday time block and resource decomposition algorithm
Intraday time block and price decomposition algorithm
Producing minute scale policies

Numerical results

Conclusion

Physical model: a home with load, solar panels and storage

I Two time scales uncertainties
I EL

d,m: Uncertain demand

I ES
d,m: Uncertain solar electricity

I Pb
d : Uncertain storage cost

I Two time scales controls
I EE

d,m: National grid import

I EB
d,m: Storage charge/discharge

I Rd : Storage renewal

I Two time scales states
I Bd,m: Storage state of charge
I Hd,m: Storage health
I Cd : Storage capacity

I Balance equation:

EE
d,m + ES

d,m = EB
d,m + EL

d,m

I Battery dynamic:

Bd,m+1 = Bd,m − 1
ρd

EB−
d,m + 1

ρd
ρcEB+

d,m

Two time scales dynamics: aging and renewal model

I At the end of every day d , we can buy a new battery at cost Pb
d × Rd

Storage capacity: Cd+1 =

{
Rd , if Rd > 0

Cd , otherwise

I A new battery can make a maximum number of cycles Nc (Rd):

Storage health: Hd+1,0 =

{
2 × Nc (Rd) × Rd , if Rd > 0

Hd,M , otherwise

Hd,m is the amount of exchangeable energy day d , minute m

Hd,m+1 = Hd,m −
1

ρd
EB−
d,m − ρcEB+

d,m

I A new battery is empty

Storage state of charge: Bd+1,0 =

{
B × Rd , if Rd > 0

Bd,M , otherwise

We build a non standard SOC problem

I Objective to be minimized

E
(D∑

d=0

(
Pb
d × Rd︸ ︷︷ ︸
renewal

+

M−1∑
m=0

ped,m︸︷︷︸
price

×
(
EB
d,m + EL

d,m+1 − ES
d,m+1︸ ︷︷ ︸

national grid energy consumption

)))

I Controls

Ud = (EB
d,0 . . . ,E

B
d,m, . . . ,E

B
d,M−1,Rd)

I Uncertainties

Wd =

(ES
d,1

EL
d,1

)
, . . . ,

(
ES
d,m

EL
d,m

)
, . . . ,

(
ES
d,M−1

EL
d,M−1

)
,

ES
d,M

EL
d,M

Pb
d


I States and dynamics

Xd =

 Cd
Bd,0

Hd,0

 and Xd+1 = fd
(
Xd ,Ud ,Wd

)

Two time scales stochastic optimal control problem

P : Ṽ0 = min
X0:D+1, U0:D

E
(D∑

d=0

Ld(Xd ,Ud ,Wd) + K (XD+1)

)
,

s.t Xd+1 = fd(Xd ,Ud ,Wd) ,

Ud = (Ud,0, . . . ,Ud,m, . . . ,Ud,M)

Wd = (Wd,0, . . . ,Wd,m, . . . ,Wd,M)

σ(Ud,m) ⊂ σ
(
W

d′,m′
; (d ′,m′) ≤ (d ,m)

)

Two time scales because of the nonanticipativity constraint
written every minute!

I Intraday time stages: M = 24 ∗ 60 = 1440 minutes

I Daily time stages: D = 365 ∗ 20 = 7300 days

I D ×M = 10, 512, 000 stages!

We write a Bellman equation with daily time blocks

Daily Independence Assumption
{Wd}d=0,...,D is a sequence of independent random variables

We set ṼD+1 = K and

Ṽd(x) = min
Xd+1,Ud

E
[
Ld(x ,Ud ,Wd) + Ṽd+1(Xd+1)

]
s.t Xd+1 = fd(x ,Ud ,Wd)

σ(Ud,m) ⊂ σ(Wd,0:m)

where Wd,0:m = (Wd,0, . . . ,Wd,m)
is possibly made of non independent random variables within a day

Proposition
Under Daily Independence Assumption, Ṽ0 is the value of problem P

Independence assumption at the day scale
is the key to enable stochastic kernels reduction (commutative diagram)

We introduce price/resource daily decompositions

We present two efficient daily decomposition algorithms
to compute upper and lower bounds

of the daily value functions
{
Ṽ(d ,0)

}
d=0,...,D

1. resource (targets) decomposition gives an upper bound

Xd+1 = X︸ ︷︷ ︸
resource decomposition

, fd(x ,Ud ,Wd) = X

2. price (weights) decomposition gives a lower bound
〈
λd ,Xd+1 − fd(x ,Ud ,Wd)

〉
︸ ︷︷ ︸

price decomposition

Outline of the presentation

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions
Two time scales battery management problem statement
Intraday time block and resource decomposition algorithm
Intraday time block and price decomposition algorithm
Producing minute scale policies

Numerical results

Conclusion

Decomposing by imposing targets

Stochastic target decomposition

We introduce the stochastic target intraday problem

φ(d,=)

(
xd ,Xd+1

)
= min

Ud

E
[
Ld(x ,Ud ,Wd)

]

s.t fd(x ,Ud ,Wd) = Xd+1

σ(Ud,m) ⊂ σ(Wd,0:m)

Proposition
Under Daily Independence Assumption, Vd satisfies

Vd(x) = min
X∈L0(Ω,F,P;Xd+1)

(
φ(d,=)

(
x ,X

)
+ E

[
Vd+1(X)

])

s.t σ(X) ⊂ σ(Wd)

Relaxed stochastic targets decomposition

We introduce a relaxed target intraday problem

φ(d,≥)

(
xd ,Xd+1

)
= min

Ud

E
[
Ld(x ,Ud ,Wd)

]

s.t fd(x ,Ud ,Wd) ≥ Xd+1

σ(Ud,m) ⊂ σ(Wd,0:m)

A relaxed daily value function

V(d,≥)(x) = min
X∈L0(Ω,F,P;Xd+1)

(
φ(d,≥)

(
x ,X

)
+ E

[
V(d+1,≥)(X)

])

s.t σ(X) ⊂ σ(Wd)

Because of relaxation, we have V(d,≥) ≤ Vd

but V(d,≥) is hard to compute due to the stochastic targets

Relaxed deterministic targets decomposition

Now we can define value functions with deterministic targets:

V(d,≥,Xd+1)(x) = min
X∈Xd+1

(
φ(d,≥)

(
x ,X

)
+ V(d+1,≥,Xd+1)(X)

)

Monotonicity Assumption
The daily value functions Vd are nonincreasing

Theorem
Under Monotonicity Assumption

I V(d,≥) = Vd

I V(d,≥,Xd+1) ≥ V(d,≥) = Vd

There are efficient ways to compute the upper bounds V(d,≥,Xd+1)

Numerical efficiency of deterministic targets decomposition

Easy to compute by dynamic programming︷ ︸︸ ︷
V(d,≥,Xd+1)(x) = min

X∈Xd+1

(
φ(d,≥)

(
x ,X

)
︸ ︷︷ ︸
Hard to compute

+V(d+1,≥,Xd+1)(X)
)

It is challenging to compute φ(d,≥)

(
x ,X

)

for each couple (x ,X) and each day d but

I We can exploit periodicity of the problem, e.g φ(d,≥) = φ(0,≥)

I In some cases φ(d,≥)

(
x ,X

)
= φ(d,≥)

(
x − X , 0

)

I We can parallelize the computation of φ(d,≥) on day d

I We can use any suitable method to solve the multistage intraday
problems φ(d,≥) (SDP, scenario tree based SP, . . .)

Outline of the presentation

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions
Two time scales battery management problem statement
Intraday time block and resource decomposition algorithm
Intraday time block and price decomposition algorithm
Producing minute scale policies

Numerical results

Conclusion

Decomposing by sending weights

Stochastic weights decomposition

We introduce the dualized intraday problems

ψ(d,?)(xd ,λd+1) = min
Ud

E
[
Ld(xd ,Ud ,Wd) + 〈λd+1, fd(xd ,Ud ,Wd)〉

]
s.t σ(Ud,m) ⊂ σ(Wd,0:m)

Note that ψ(d,?) might be simpler than φ(d,≥) (state reduction)

Stochastic weights daily value function

V(d,?)(xd) = sup
λd+1∈L

q(Ω,F,P;Λd+1)

ψ(d,?)(xd ,λd+1)−
(
EV(d+1,?)

)?
(λd+1)

s.t σ(λd+1) ⊂ σ(Xd+1)

where
(
EV
)?

(λd+1) = sup
X∈Lp(Ω,F,P;Xd+1)

〈λd+1,X 〉 − E
[
V (X)

]
is the Fenchel transform of EV

Deterministic weights decomposition

We define value functions with deterministic weights

V(d,?,E)(xd) = sup
λd+1∈Λd+1

ψ(d,?)(xd , λd+1)− V ∗(d+1,?,E)(λd+1)

By weak duality and restriction, we get

V(d,?,E) ≤ V(d,?) ≤ Vd

Theorem
If ri

(
dom(ψ(d,?)(xd , ·))− dom(EVd+1(·))

)
6= ∅ and P is convex,

then we have
V(d,?,E) ≤ V(d,?) = Vd

There are efficient ways to compute the lower bounds V(d,?,E)

Numerical efficiency of deterministic weights decomposition

Easy to compute by dynamic programming︷ ︸︸ ︷
V(d,?,E)(xd) = sup

λd+1∈Λd+1

ψ(d,?)(xd , λd+1)
︸ ︷︷ ︸

Hard to compute

−V ∗(d+1,?,E)(λd+1)

It is challenging to compute ψ(d,?)(x , λ) for each couple (x , λ) and each
day d but

I Under Monotonicity Assumption,
we can restrict to positive weights λ ≥ 0

I We can exploit periodicity of the problem ψ(d,?) = ψ(0,?)

I We can parallelize the computation of ψ(d,?) on day d

Outline of the presentation

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions
Two time scales battery management problem statement
Intraday time block and resource decomposition algorithm
Intraday time block and price decomposition algorithm
Producing minute scale policies

Numerical results

Conclusion

Back to daily intraday problems with final costs

We obtained two bounds

V(d,?,E) ≤ Vd ≤ V(d,≥,Xd+1)

Now we can solve all intraday problems with a final cost

min
Xd+1,Ud

E
[
Ld(x ,Ud ,Wd) + Ṽd+1(Xd+1)

]

s.t Xd+1 = fd(x ,Ud ,Wd)

σ(Ud,m) ⊂ σ(Wd,0:m)

with Ṽd+1 = V(d,≥,Xd+1) or Ṽd+1 = V(d,?,E)

We obtain one targets and one weights minute scale policies

Outline of the presentation

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions

Numerical results

Conclusion

We present numerical results associated to two use cases

Common data: load/production from a house with solar panels

1. Managing a given battery charge and health on 5 days
to compare our algorithms to references on a “small” instance

2. Managing batteries purchases, charge and health on 7300 days
to show that targets decomposition scales

Application 1
Managing charge and aging of a battery

We control a battery

I capacity c0 = 13 kWh

I h0,0 = 100 kWh of exchangeable energy (4 cycles remaining)

I over D = 5 days or D ×M = 7200 minutes

I with 1 day periodicity

We compare 4 algorithms

1. Stochastic dynamic programming (that is, SDP alone)

2. Stochastic dual dynamic programming (that is, SDDP alone)

3. Targets decomposition (+ SDDP for intraday problems)

4. Weights decomposition (+ SDP for intraday problems)

Decomposition algorithms + S(D)DP
provide tighter bounds than S(D)DP alone

We know that

I V sddp
d ≤ Vd ≤ V sdp

d

I V(d,?,E) ≤ Vd ≤ V(d,≥,Xd+1)

We observe that V sddp
d ≤ V(d,?,E) ≤ V(d,≥,Xd+1) ≤ V sdp

d

We beat SDP and SDDP (that cannot fully handle 7200 stages)

Computation times and convergence

SDP Weights SDDP Targets
Total time (with parallelization) 22.5 min 5.0 min 3.6 min 0.41 min
Gap (200 × mc−v

mc+v
) 0.91 % 0.32 % 0.90 % 0.28 %

The Gap is between Monte Carlo simulation (upper bound)
and value functions at time 0

I Decomposition algorithms display smaller gaps

I Targets decompositon + SDDP is faster than SDDP

I Weights decomposition + SDP is faster than SDP

Application 2
Managing batteries purchases, charge and aging

I 20 years, 10, 512, 000 minutes, 1 day periodicity

I Battery capacity between 0 and 20 kWh

I Scenarios for batteries prices

SDP and SDDP fail to solve such a problem over 10, 512, 000 stages!

Target decomposed SDDP can handle
10, 512, 000 stages problems

Computing daily value functions by dynamic programming takes 45 min︷ ︸︸ ︷
V(d,≥,Xd+1)(x) = min

X∈Xd+1

(
φ(d,≥)

(
x ,X

)
︸ ︷︷ ︸

Computing φ(d,≥)

(
·, ·

)
with SDDP takes 60 min

+V(d+1,≥,Xd+1)(X)
)

Complexity: 45 min + D × 60 min

I Periodicity: 45 min + N × 60 min with N << D

I Parallelization: 45 min + 60 min

Does it pay to control aging?

We draw one battery prices scenario and one solar/demand scenario over
10, 512, 000 minutes and simulate the policy of targets algorithm

We make a simulation
of 10, 512, 000 decisions

in 45 minutes

We compare to a policy that
does not control aging

I Without aging control: 3 battery purchases

I With aging control: 2 battery purchases

It pays to control aging with targets decomposition!

Outline of the presentation

Background on two time scales decomposition

Mixing time blocks and price/resource decompositions

Numerical results

Conclusion

Conclusion

1. We have solved problems with millions of time steps
using targets decomposed SDDP

2. We have designed control strategies
for sizing/charging/aging/investment of batteries

3. We have used our algorithms to improve results
obtained with algorithms that are
sensitive to the number of time steps (SDP, SDDP)

	Background on two time scales decomposition
	Mixing time blocks and price/resource decompositions
	Two time scales battery management problem statement
	Intraday time block and resource decomposition algorithm
	Intraday time block and price decomposition algorithm
	Producing minute scale policies

	Numerical results
	Conclusion

