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The All-Pairs Shortest Path Problem

I (V ,E ) a given oriented graph, nodes V , edges E ⊂ V × V .

I P : sequences (v1, . . . , vn), s.t vi ∈ V , (vi , vi+1) ∈ E . given
` : E → R ∪ {+∞} we extend ` : P → R ∪ {+∞} by

`
(
(v1, . . . , vn)

)
:=

n−1∑
i=1

`
(
(vi , vi+1)

)
(path length)

I Shortest path from vi to vj :

sp(vi , vj) ∈ arg min
{
`(p)

∣∣ p = (w1, . . . ,wn) ∈ P,w1 = vi ,wn = vj
}

Find sp(v ,w) for all (v ,w) ∈ V 2 is called the all-pairs shortest
path problem.

I Assumption : there does not exists cycles with negative length

p = (w1, . . . ,wn) ∈ P,w1 = wn then `(p) ≥ 0



Matrix Notations

I To simplify the notation we consider that V = {1, . . . , n}
I ` : E → R ∪ {+∞} is represented by a matrix L

Li ,j =


0 when i = j ,

+∞ when (i , j) 6∈ E

`(i , j) when (i , j) ∈ E

I We define (D(k))k∈N, a sequences of matrices given by

D
(k)
i ,j =

{
0 when i = j ,

lspk(i , j)

lspk(i , j) = min
{
`(p)

∣∣ p = (i , . . . , j) ∈ P, |p| ≤ k + 1
}



Dynamic Programming Approach

I We have that D
(1)
i ,j = Li ,j

I The no-negative-cycle assumption implies that

D
(k)
i ,j = `

(
sp(i , j)

)
when k ≥ n − 1 (n = |V |).

I We thus have to compute D(1), . . . , D(n−1)

I We have introduced a family of problems, the original problem
being one of them

I We compute value functions (value of optimal path lengths in
set of constrained paths) instead of optimal paths.

A recursion formula giving the value function of problem k given
the value of problem k − 1 will be obtained through an optimality
principle.



Optimality Principle

A sub-path of an optimal path is an optimal path
If the path A→ B → C → D → E is a shortest path form A to E

Then, the path C → D → E is a shortest path from C to E .

t=0

t=1
t=2

A

B

C

D

E



Optimality Principle at Work

I Consider D
(m)
i ,j the value of the shortest path going from i to j

with at most m + 1 nodes.

I If the shortest path have at most m nodes then

D
(m)
i ,j = D

(m−1)
i ,j

I If the shortest path have exactly m + 1 nodes : then it is
composed of a path from i to k with m nodes and an edge
(k , j) whose length is Lk,j .

I Optimality principle : The path from i to k must be optimal
in the set of path with at most m nodes. Thus,

D
(m)
i ,j = D

(m−1)
i ,k + Lk,j

Gathering all the cases

D
(m)
i ,j = min

(
D

(m−1)
i ,j ,min

k 6=j

(
D

(m−1)
i ,k +Lk,j

))
= min

k

(
D

(m−1)
i ,k +Lk,j

)



Find the optimal path using D(1), . . . , D(n−1)

I Compute the shortest path from i to j in p] :

1. if D
(n−1)
i,j =∞ then stop (there’s no path from i to j)

2. Fix last = j , set q = 1, and p] = ()

3. If n − q = 1 then p] = (i , p]) and go to end 7

4. let k] ∈ arg mink

(
D

(n−q)
s,k + Lk,last

)
.

5. If k] 6= last then p] = (k], p]).
6. q = q + 1, last = k] and iterate at 3.

7. p] gives the optimal path

If k] ∈ arg mink

(
D

(p−1)
i ,k + Lk,j

)
i ; j︸ ︷︷ ︸

p-shortest path

= i ; k]︸ ︷︷ ︸
p − 1 shortest path

7→ j



Recursive functions

I Fib(n) = (n <= 1)?1 : Fib(n − 1) + Fib(n − 2).

4

3 2

2 1

1 0

1 0

Figure – Fibonacci



Recursion

I Exponential complexity of the naive recursive algorithm.

I Solution 1 : iterative computation from (Fib(0),Fib(1))

I Solution 2 : use recursion but keep track of already computed
values (memoization).
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The One Day Newsvendor Problem

I Each morning, The newsvendor orders a number of newspaper
u ∈ U = {0, 1, . . .} at unit price c > 0.

I The demand is incertain w ∈W = {0, 1, . . .}
I If at the end of the day, if it remains unsold newspapers, the

incurred cost is

cS(u − w)+ = cS max(u − w , 0)︸ ︷︷ ︸
unsold

with c > −cS

I If during the day facing the demand was not possible, the
incurred cost for unsatisfied demand is

cM(w − u)+ = cM max(w − u, 0)︸ ︷︷ ︸
missing



Uncertain Demand Induces Uncertain Cost

j(u,w) = cu︸︷︷︸
purchases

+ cS(u − w)+︸ ︷︷ ︸
unsold

+ cM(w − u)+︸ ︷︷ ︸
missing

u

j(u,w)

c + cSc − cM

w

Argminu∈U j(u,w) = {w} : unknown quantity w !



Attitude Toward Risk

The choice of the cost to minimize depends on the risk attitude of
the newsvendor. We will use to aggregate random values through
expectation

min
u∈U

J(u) with J(u) := Ew [j(u,w)]︸ ︷︷ ︸
Expectation

A pessimistic newsvendor could decide to use the worse case
among all the possible values of the demand

min
u∈U

J(u) with J(u) := max
w∈W

j(u,w)︸ ︷︷ ︸
Worse case



Expected cost

I The demand, W , is a random variable. Te newsvendor knows
the distribution PW , that is the law of W .

I The cost to be minimized is

J(u) = EW
[
cu + cS(u −W )+ + cM(W − u)+

]
I The newsvendor problem is to find

u?
?
∈ Argmin

u∈U
J(u) .

The newsvendor takes a deterministic decision facing a future
random variable. He knows the law of the random variable but
not the realization (Decision-Hazard framework).



Optimal Control
The optimal control u? when u ∈ R+ :

I If cM ≤ c then J is a non-decreasing function and the optimal
value is not to order u? = 0

I If cM > c then the minimum of J is reached at u? :

u? = inf{z ∈ R |F (z) ≥ (cM − c)/(cM + cS)}

where F is the cumulative distribution function of W ,
F (z) = P(W ≤ z).

I If W is a discrete random variable taking values in N then the
optimal value of the relaxed problem u? is in N

J(u) = cMEW [W ] + (c − cM)u + (cM + cS)EW [(u −W )+]

= cMEW [W ] + (c − cM)u + (cM + cS)

∫ u

0
F (z)dz

J is continuous and coercive. When cM > c it is non-increasing
then non-decreasing with a minimum at u?.



Optimal Control (II)

z

F (z)

cM−c
cM+cS

u? ∈ N

w

P(W = w)

n3 ∈ Nn2 ∈ Nn1 ∈ N

The optimal control takes integer
values

u? = inf

{
z ∈ R |F (z) ≥ cM − c

cM + cS

}
,

If the demand takes integer

values



The case cM ≤ c

u

j(u,w)

c + cS

c − cM

w

We note that

min
u∈U

J(u) ≥ min
u=φ(W )

J(u) = EW [min
u∈U

j(u,W )]

minu∈U j(u,w) is attained by u = 0 for all w and gives an
admissible command for the problem minu∈U j(u,w).



Costs Distribution j(u,W )

u = 10

u? = 49

u = 80

Distribution of the demand
bin(100, 1/2).



Initial Stock and Fixed Cost for Buying Newspapers
We change the model :

I We start with an initial stock x ∈ Z
I When increasing stock a fixed cost cF occurs

J̃(u) = EW [cF I{u>0} + cu + cs(x + u −W )+ + cM(W − x − u)+]

= cF I{u>0} − cx + EW [j(u + x ,W )]

= cF I{u>0} + J(u + x)− cx

I The optimal control u?(x) (for cM > c) is a function of x
I The optimal control depends on two bounds (s, S) :

u?(x) = (S − x)I{x≤s}

I If the stock is smaller than s, buy newspapers to bring the
stock to S .

I If the stock is bigger than s, do not buy newspapers
I The value of S is given by Argminu∈U J(u).



Initial Stock and Fixed Cost for Buying Newspapers
Let S given by {S} = Argminu∈U J(u).

I If x ≥ S , not buying is optimal since J(·)↗ and cF ≥ 0) :

J̃(0) = J(x)− cx ≤ J(x + u)− cx + cF = J̃(u)

I If x ≤ S , since J(·) is minimal for S :
I If buying, we need to order u = S − x whose cost is

J̃(u) = J(S)− cx + cF

I If not buying the cost is J(x)− cx

The solution for minimizing the costs is to fill the stock up to
S if J(x) ≥ cF + J(S) and do nothing otherwise. Noting that

{x | J(x) ≥ cF + J(S)} = {x | x ≤ s}

where s is given by

s := sup {z ∈ (−∞,S) | J(z) ≥ cF + J(S)}



Initial Stock and Fixed Cost for Buying Newspapers

Let X0 = x and X1 = f (X0, u) with f (x , u) := x + u − w et

j̃(u, x1) := cF I{u>0} + cu + cS(x1)+ + cM(−x1)+
The newsvendor problem is

min
U∈U ,X1,X0

EW [j̃(u ,X1)]

X0 = x X1 = f (X0,u ,W )

With a non-anticipative constraint
U = {U : Ω→ N | U (ω) = φ

(
X 0(ω)

)
}

Note that u](x) is obtained by

u](x) ∈ Argmin
u∈N

h(u, x) with h(u, x) = EW [j(u, x ,W )]

with j(u, x ,W ) = j̃(u, f (u, x ,w)).



Initial Stock and Fixed Cost for Buying Newspapers
I Suppose now that X0 is a given random variable
I The newsvendor problem becomes

min
U∈U

E
[
j
(
U ,X0,W

)]
Where U = {U : Ω→ N | U (ω) = φ

(
X 0(ω)

)
}

I Suppose that X0 and W are independent r.v

I h
(
γ(X0),X0

)
= E

[
j
(
γ(X0),X0,W

)∣∣∣X0

]
I If h

(
u](X0),X0

)
≤ h

(
γ(X0),X0

)
for all γ then

E
[
j
(
u](X0),X0,W

)∣∣∣X0

]
≤ E

[
j
(
γ(X0),X0,W

)∣∣∣X0

]
I If h

(
u](X0),X0

)
≤ h

(
γ(X0),X0

)
for all γ then

E
[
j
(
u](X0),X0,W

)]
≤ E

[
j
(
γ(X0),X0,W

)]
I The optimal control is U ] = u](X 0)
I We have

min
U∈U

E
[
j
(
U ,X0,W

)]
= E

[
min
u∈N

E
[
j
(
u,X0,W

)∣∣X0

]]



Dynamics as a Markov Chain

The two stocks X0 and X1 can be seen as two consecutive states
of a controlled Markov chain.

I Assume that u ∈ N is fixed, the transition matrix is

Pu
x0,x1 = P(X1 = x1|X0 = x0)

Pu
x0,x1 =

{
P(W = w0) if x1 = x0 + u − w0

0 if not

I Assume that U is chosen as a function of X0, U = φ(X0) then

Pφx0,x1 =

{
P(W = w0) if x1 = x0 + φ(x0)− w0

0 if not
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From One Stage To Finite Horizon Problem

The one stage problem with initial stock

min
u∈U ,X1,X0

EW [̃(u,X1)]

s.t. X0 = x X1 = f (X0, u,W 1)

with

f (x , u,w) := x + u − w

̃(u, x) := cF I{u>0} + cu + α (cS(x)+ + cM(−x)+)

The stock Xt can be positive (physical stock) or negative (the
opposite of missing newspapers)
The law of the demand, W , is known (finite expectation)



Finite Horizon problem

The newsvendor minimizes the costs over a period T

min
U∈U ,X

EW

[ T−1∑
t=0

αt ̃(U t ,Xt+1)
]

X0 = x Xt+1 = f (Xt ,U t ,W t+1)

I (X0,W 1,W 2, . . . ,W T ) are independent

I α ∈ (0, 1] is an actualization rate.



Canonical Form

The newsvendor minimizes the costs over a T period of time

min
U∈U ,X

EW

[ T−1∑
t=0

αtct(U t ,X t) + αTK (X T )
]

X0 = x Xt+1 = f (Xt ,U t ,W t+1)

with

ct(u, x) := cF I{u>0} + cu + cS(x)+ + cM(−x)+

c0(u, x) := cF I{u>0} + cu

K (x) := cS(x)+ + cM(−x)+



Canonical Form (II)

̃(u0, x1) + α̃(u1, x2) =

̃(u0,x1)︷ ︸︸ ︷
cF I{u0>0} + cu0 + α (cS(x1)+ + cM(−x1)+)

+ α

̃(u1,x2)︷ ︸︸ ︷(
cF I{u1>0} + cu1 + α (cS(x2)+ + cM(−x2)+)

)
=

c0(u0,x0)︷ ︸︸ ︷
cF I{u0>0} + cu0

+ α

c1(u1,x1)︷ ︸︸ ︷(
cF I{u1>0} + cu1 + cS(x1)+ + cM(−x1)+

)
+ α2

K(x2)︷ ︸︸ ︷
(cS(x2)+ + cM(−x2)+)

= c0(u0, x0) + αc1(u1, x1) + α2K (x2)



Non Anticipativity

I The newsvendor collects over time the demand of each day.
I At time t, he knows (W1, · · · ,Wt) and X

0
and can use this

information to compute U
t
. He could also collect the past

controls.

I Under the independence assumption of the r.v
(X 0,W1, · · · ,Wt) the optimal control at time t only depends
of the stock X t .



Policies

min
U∈U

J(U ) with J(U ) = EW [
T−1∑
t=0

αtct(U t ,X t) + αTK (X T )]

X0 = x Xt+1 = f (Xt ,U t ,W t+1)

1. minU∈UH J(U ) : UH space of history dependent controls
depending on past states, past controls, past noises

2. ≤ minU∈UM J(U ) : UM space of markovian controls
depending on current state

3. ≤ minU∈UOL
J(U ) : UOL space of open-loop controls

deterministic (constant random variables)

We have that minU∈UH J(U ) = minU∈UM J(U )



State Feedback Versus Open-Loop Feedback

min
U1,U2

E
[
X 2

1 + X 2
2

]
s.t X2 = X1 −U1 + W2 , X1 = X0 −U0 + W1 , X0 = 0

W0,W1 i.i.d (Bernoulli with p = 1/2)

I State Feedback U0 = γ0(X0) U1 = γ1(X1)
I V2(x) = x2

I V1(x) = minu E
[
x2 + V2(x − u + W2)

]
= minu x

2 + (x − u + 1)2/2 + (x − u)2/2 = x2 + 1/4
I V0(x) = minu E

[
V1(x − u + W1)

]
= minu 1/4 + (x − u + 1)2/2 + (x − u)2/2 = 1/2

I Open Loop Controls U0 = u0, U1 = u1
I minu0,u1 E

[
(−u0 + W1)2 + (−u0 + W1 − u1 + W2)2

]
= minu0,u1 2u20 + 2u0u1 + u21 − 3u0 − 2u1 + 2 = 3/4

1/2 = min
U0,U1

E
[
J(U0,U1)

]
< min

u0,u1
E
[
J(u0, u1)

]
= 3/4
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Start with a Simplified Problem → just a Final Cost

Problem (P0) starting at position x at initial time t = 0 :

V0(x) = min
X ,U∈U

E
[
K
(
XT

)]
,

s.c. X0 = x ,

Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
, ∀t = 0, . . . ,T − 1,

I Noises W = (Wt)t=1,...,T (The demand)

I Controls U = (Ut)t=0,...,T−1 (Newspaper to order)

I States (Xt)t=0,...,T−1 (Stock of Newspaper)



Markovian Dynamics

The noises and initial state X0,W1, . . . ,WT are independent r.v

I Transition Matrix : uncontrolled case f : X×W→ X

Xt+1 = f (Xt ,Wt+1), P(x , y) = P
(
f (x ,W1) = y

)
I Transition Matrix : controlled case f : X× U×W→ X with

markovian policy (φs)s∈[0,T−1], Ut = φt(Xt)

Xt+1 = f (Xt , φt(Xt),Wt+1), Pt(x , y) = P
(
f (x , φt(x),W1) = y

)
For u ∈ U, let Pu := P

(
f (x , u,W1) = y

)
. For a Markovian

policy (φs)s∈[0,T−1], P
φ
t is defined by Pφt (x , y) := Pφt(x)(x , y)

Xt+1 = f (Xt , φt(Xt),Wt+1), Pφt (x , y) = Pφt(x)(x , y)



A Family of problems

I Problem (Pt0) starting with stock x at time t0 :

Vt0(x) = min
X ,φ(·)

V φ
t0(x)

V φ
t0(x) = E

[
K
(
XT

)]
,

s.t Xt0
= x , Xt+1 = ft

(
Xt , φt(Xt),Wt+1

)
I Problem (P′t0) démarrant en µ à t0 :

Vt0(µ) = min
µ,φ(·)

V
φ
t0(µ)

V
φ
t0(µ) =

∑
x

µT (x)K (x)

with µt0 = µ, µt+1 = µtP
φ
t

I Dynamic µt+1(y) =
∑

x µt(x)P
φ(x)
x,y



Links between V
φ
t0(·) and V φ

t0(·)
We have that

V
φ
t0(µ) =

〈
µ,V φ

t0

〉
:=
∑
x

µ(x)V φ
t0(x) , and V φ

t0(x) = V
φ
t0(δx(·))

Indeed :

I Problem (Pt0) starting with stock x at t0 :

V φ
t0(x) = (Pφt0 · · ·P

φ
T−1K )(x)

(Ex. for t0 = T − 1 V φ
T−1(x) =

∑
y∈X

PφT−1(x , y)K (y))

I Problem (P′t0) starting with µ at t :

V
φ
t0(µ) = µPφt0 · · ·P

φ
T−1K

(Ex. for t0 = T − 1 V
φ
T−1(µ) =

∑
x ,y∈X

µ(x)PφT−1(x , y)K (y))



The case T = 1

X0 = x

V (x) = E
[
K (X1)

]
=
∑
y

Px ,yK (y)

Assume that the law of X0 is µ

V(µ) = E
[
K (X1)

]
=
∑
x

µ(x)
∑
y

Px ,yK (y)

We obtain
V(µ) =

∑
y

µ(x)V (x) = 〈µ,V 〉 ,

and

V(δx ′) =
∑
x

δx ′(x)
∑
y

Px ,yK (y) =
∑
y

µ(x)Px ′,yK (y) = V (x ′) .



Recursive Computation of Vt

We have that :

Vt(µ) = min
φt

Vt+1(µPφt )

Proof : The problem (P′t) starting with µ at time t :

Vt(µ) = min
φ(·)

µPφt · · ·P
φ
T−1K

I At time t, Pφt only depends on φt .

I The raw vector µPφt0 is non negative (its a probability law)

Vt(µ) = min
φt

〈
µPφt , min

(φs)s>t

Pφt+1 · · ·P
φ
T−1K

〉
Vt(µ) = min

φt

〈
µPφt ,Vt+1(·)

〉
= min

φt
Vt+1(µPφt )



Recursive Equation for Vt with t ∈ {0, · · · ,T}

Bellman Equation :

Vt(x) = min
u∈U

E
[
Vt+1(ft(x , u,Wt+1))

]
u](x) ∈ Argmin

u∈U
E
[
Vt+1(ft(x , u,Wt+1))

]
VT (x) = K (x)

Proof : We already have for Vt that

Vt(µ) = min
φt

Vt+1(µPφt )

I Vt(x) = Vt(δx(·))

I Vt+1(δx(·)Pφt ) = E
[
Vt+1(ft(x , φt ,Wt+1))

]



Recursive Equation for Vt with t ∈ {0, · · · ,T}

Bellman Equation

Vt(x) = min
u∈U

∑
y

Pu
x ,yVt+1(y)

VT (x) = K (x)

Optimal control

u](x) ∈ Argmin
u∈U

∑
y

Pu
x ,yVt+1(y)

Proof :∑
y

Pu
x ,yVt+1(y) =

∑
y

P
(
f (x , u,Wt+1) = y

)
Vt+1(y)

= E
[
Vt+1(ft(x , u,Wt+1))

]



Finite Horizon with instantaneous costs

The problem (P0) starting with x at initial time t = 0 :

V0(x) = min
X ,U∈U

E

[
T−1∑
t=0

Lt
(
Xt ,Ut ,Wt+1

)
+ K

(
XT

)]
,

s.t. X0 = x ,

Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
, ∀t = 0, . . . ,T − 1,

Dynamic Programming Equation (Bellman Equation)

Vt(x) = min
u∈U

E
[
Lt(x , u,Wt+1) + Vt+1(ft(x , u,Wt+1))

]
VT (x) = K (x)



Finite Horizon with instantaneous costs

The cost of problem (P0) starting at x at t = 0 equals Ṽ (0, x)

Ṽ0(z , x) = min
X ,U∈U

E
[
ZT + K

(
XT

)]
,

s.t. X0 = x ,Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
,

Z0 = z ,Zt+1 = Zt + Lt
(
Xt ,Ut ,Wt+1

)
,

I (Z ,X ) is Markovian for feedback controls φt(z , x).

I The Bellman Equation is ṼT (z , x) = z + K (x) and

Ṽt(z , x) = min
u∈U

E
[
Ṽt+1(z + Lt(x , u,Wt+1), ft(x , u,Wt+1))

]



Finite Horizon with instantaneous costs

I We recursively show that Ṽt(z , x) = z + Vt(x)

I true for t = T since ṼT (z , x) = z + K (x)

I at time t

Ṽt(z , x) = min
u∈U

E
[
z + Lt(x , u,Wt+1) + Vt+1(ft(x , u,Wt+1))

]
Ṽt(z , x) = z + min

u∈U
E
[
Lt(x , u,Wt+1) + Vt+1(ft(x , u,Wt+1))

]
︸ ︷︷ ︸

Vt(x)

I the minimization for u ∈ U only depends on x . Thus, the
optimal control is a feedback on the state x .

I we note that Ṽt(0, x) = Vt(x), giving the Bellman Equation
for the problem with instantaneous cost.



Final Result : The Bellman Equation

V0(x) = min
X ,U∈U

E

[
T−1∑
t=0

Lt
(
Xt ,Ut ,Wt+1

)
+ K

(
XT

)]
,

s.t. X0 = x ,

Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
, ∀t = 0, . . . ,T − 1,

Dynamic Programming Equation (Bellman Equation)

Vt(x) = min
u∈U

E
[
Lt(x , u,Wt+1) + Vt+1

(
ft(x , u,Wt+1)

)]
VT (x) = K (x)

u?(x) ∈ Argmin
u∈U

E
[
Lt(x , u,Wt+1) + Vt+1

(
ft(x , u,Wt+1)

)]



Computing value functions

1. Time loop backward to compute Vt for all t

2. State loop for all x

3. Find the optimal control (control loop, L.P., Q.P)

4. Loop on random values to compute the
expected cost



State Feedback Versus Open-Loop Feedback (II)

min
U1,U2

E
[
X 2

1 + X 2
2

]
s.t X2 = X1 −U1 + W2 , X1 = X0 −U0 + W1 , X0 = 0

W0,W1 i.i.d (Bernoulli with p = 1/2)

I State Feedback U0 = γ0(X0) U1 = γ1(X1)
I V2(x) = x2

I V1(x) = minu E
[
x2 + V2(x − u + W2)

]
= minu x

2 + (x − u + 1)2/2 + (x − u)2/2 = x2 + 1/4
I V0(x) = minu E

[
V1(x − u + W1)

]
= minu 1/4 + (x − u + 1)2/2 + (x − u)2/2 = 1/2

I Open Loop Controls U0 = u0, U1 = u1
I minu0,u1 E

[
(−u0 + W1)2 + (−u0 + W1 − u1 + W2)2

]
= minu0,u1 2u20 + 2u0u1 + u21 − 3u0 − 2u1 + 2 = 3/4

1/2 = min
U0,U1

E
[
J(U0,U1)

]
< min

u0,u1
E
[
J(u0, u1)

]
= 3/4



A Farmer problem

I when annual production is x units of a certain crop
I he stores (1− u)x units,
I he uses the remaining ux units for next year production,

where u ∈ (0, 1)

I then, the level of next year production will be W ux , where
W is a positive random variable not depending on x or u with
known expectation E[W ] = w .

I Optimization problem : find the optimal investment policy
that maximizes the total expected product stored over N years

E
[ N−1∑
k=0

(1−Uk)Xk + XN

]
,

assuming that Xk+1 = Wk+1UkXk .



Bellman Equation

Vn(x) = max
Un,Un+1,...,UN−1

E
[ N−1∑
k=n

(1−Uk)Xk + XN

]
Xk+1 = Wk+1UkXk and Xn = x .

We obtain that VN(x) = x and

Vn(x) = max
u∈[0,1]

(1− u)x + E
[
Vn+1

(
W ux

)]
Assume that Vn+1(x) = an+1x then we have that

Vn(x) =

{
x when an+1w ≤ 1

an+1wx when an+1w ≥ 1

That is Vn(x) = anx with an = max
(
1, an+1w

)
(with aN = 1).



Increasing the State Space

How to solve

V0(x) = min
X ,U∈U

E
[
K
(

max
s∈{0,...,T}

Xs

)]
,

s.t. X0 = x ,

Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
, ∀t = 0, . . . ,T − 1,

The noises and initial state X0,W1, . . . ,WT are independent r.v

I Yt = maxs∈{0,...,t}Xs , is not a Markov chain.

I
(
Xt ,Yt

)
is a Markov chain.

(
X0,Y0

)
= (x , x) and

Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
Yt+1 = max

s∈{0,...,t+1}
Xs = max

(
Yt ,Xt+1

)
= max

(
Yt , ft(Xt ,Ut ,Wt+1)

)



Increasing the State Space

How to solve

V0(x) = min
X ,U∈U

E
[
K
(
XT

)]
,

s.t. X0 = x fixed,

Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
, ∀t = 0, . . . ,T − 1,

The noises and initial state X0,W1, . . . ,WT are not independent

I Wt+1 = gt
(
Wt ,W t+1

)
I X0,W 1, . . . ,W T are independent

I
(
Xt ,Wt

)
is a Markov chain

Xt+1 = ft
(
Xt ,Ut ,Wt+1

)
= ft

(
Xt ,Ut , gt

(
Wt ,W t+1

))
Wt+1 = gt

(
Wt ,W t+1

)
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