Dynamic Programming

Jean-Philippe Chancelier and SOWG CERMICS, École des Ponts ParisTech

CIRM, Luminy November 2019

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Outline of the presentation

Introduction to Dynamic Programming The All-pairs Shortest Path Problem

The One Step Newsvendor Problem

The T-Step Newsvendor Problem

The Dynamic Programming Equation

Exercise

Extensions

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Outline of the presentation

Introduction to Dynamic Programming The All-pairs Shortest Path Problem

The One Step Newsvendor Problem

The T-Step Newsvendor Problem

The Dynamic Programming Equation

Exercise

Extensions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The All-Pairs Shortest Path Problem

(V, E) a given oriented graph, nodes V, edges E ⊂ V × V.
P : sequences (v₁,..., v_n), s.t v_i ∈ V, (v_i, v_{i+1}) ∈ E. given l : E → ℝ ∪ {+∞} we extend l : P → ℝ ∪ {+∞} by

$$\ell\big((v_1,\ldots,v_n)\big) := \sum_{i=1}^{n-1} \ell\big((v_i,v_{i+1})\big) \text{ (path length)}$$

Shortest path from v_i to v_j :

 $sp(v_i, v_j) \in argmin \left\{ \ell(p) \, \middle| \, p = (w_1, \ldots, w_n) \in P, w_1 = v_i, w_n = v_j \right\}$

Find sp(v, w) for all $(v, w) \in V^2$ is called the all-pairs shortest path problem.

Assumption : there does not exists cycles with negative length

$$p = (w_1, \ldots, w_n) \in P, w_1 = w_n$$
 then $\ell(p) \ge 0$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Matrix Notations

To simplify the notation we consider that V = {1,..., n}
 ℓ : E → ℝ ∪ {+∞} is represented by a matrix L

$$L_{i,j} = \begin{cases} 0 & \text{when } i = j, \\ +\infty & \text{when } (i,j) \notin E \\ \ell(i,j) & \text{when } (i,j) \in E \end{cases}$$

• We define $(D^{(k)})_{k\in\mathbb{N}}$, a sequences of matrices given by

$$D_{i,j}^{(k)} = \begin{cases} 0 & \text{when } i = j, \\ lsp_k(i,j) & \end{cases}$$

 $lsp_k(i,j) = \min \left\{ \ell(p) \mid p = (i,\ldots,j) \in P, |p| \le k+1 \right\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

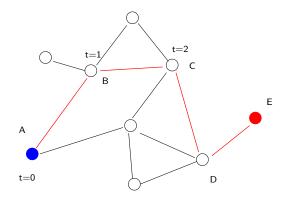
Dynamic Programming Approach

- We have that $D_{i,j}^{(1)} = L_{i,j}$
- ▶ The no-negative-cycle assumption implies that $D_{i,j}^{(k)} = \ell(sp(i,j))$ when $k \ge n-1$ (n = |V|).
- We thus have to compute $D^{(1)}, \ldots, D^{(n-1)}$
- We have introduced a family of problems, the original problem being one of them
- We compute value functions (value of optimal path lengths in set of constrained paths) instead of optimal paths.

A recursion formula giving the value function of problem k given the value of problem k - 1 will be obtained through an optimality principle.

Optimality Principle

A sub-path of an optimal path is an optimal path If the path $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$ is a shortest path form A to E Then, the path $C \rightarrow D \rightarrow E$ is a shortest path from C to E.



(日) (四) (日) (日) (日)

Optimality Principle at Work

- Consider $D_{i,j}^{(m)}$ the value of the shortest path going from *i* to *j* with at most m + 1 nodes.
- ▶ If the shortest path have at most *m* nodes then $D_{i,j}^{(m)} = D_{i,j}^{(m-1)}$
- If the shortest path have exactly m + 1 nodes : then it is composed of a path from i to k with m nodes and an edge (k, j) whose length is L_{k,j}.
- Optimality principle : The path from *i* to *k* must be optimal in the set of path with at most *m* nodes. Thus,

$$D_{i,j}^{(m)} = D_{i,k}^{(m-1)} + L_{k,j}$$

Gathering all the cases

$$D_{i,j}^{(m)} = \min\left(D_{i,j}^{(m-1)}, \min_{k \neq j}\left(D_{i,k}^{(m-1)} + L_{k,j}\right)\right) = \min_{k}\left(D_{i,k}^{(m-1)} + L_{k,j}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Find the optimal path using $D^{(1)}, \ldots, D^{(n-1)}$

► Compute the shortest path from *i* to *j* in *p*[#]:

if
$$D_{i,j}^{(n-1)} = \infty$$
 then stop (there's no path from *i* to *j*)
Fix *last* = *j*, set *q* = 1, and *p*[#] = ()
If *n* - *q* = 1 then *p*[#] = (*i*, *p*[#]) and go to end 7
let *k*[#] ∈ arg min_k $\left(D_{s,k}^{(n-q)} + L_{k,last}\right)$.
If *k*[#] ≠ *last* then *p*[#] = (*k*[#], *p*[#]).
q = *q* + 1, *last* = *k*[#] and iterate at 3.
p[#] gives the optimal path

k[#] ∈ arg min_k $\left(D_{i,k}^{(p-1)} + L_{k,j}\right)$
i ~ *j* = *i* ~ *k*[#] → *j*

p-shortest path p-1 shortest path

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Recursive functions

Fib
$$(n) = (n \le 1)$$
?1 : Fib $(n - 1) + Fib(n - 2)$.

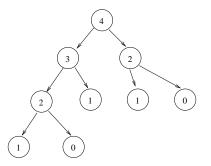


FIGURE – Fibonacci

Recursion

- Exponential complexity of the naive recursive algorithm.
- ▶ Solution 1 : iterative computation from (*Fib*(0), *Fib*(1))
- Solution 2 : use recursion but keep track of already computed values (memoization).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline of the presentation

Introduction to Dynamic Programming The All-pairs Shortest Path Problem

The One Step Newsvendor Problem

The T-Step Newsvendor Problem

The Dynamic Programming Equation

Exercise

Extensions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The One Day Newsvendor Problem

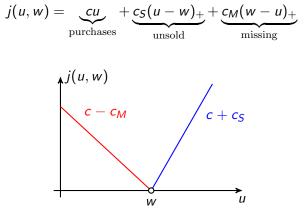
- ► Each morning, The newsvendor orders a number of newspaper u ∈ U = {0,1,...} at unit price c > 0.
- The demand is incertain $w \in \mathbb{W} = \{0, 1, \ldots\}$
 - If at the end of the day, if it remains unsold newspapers, the incurred cost is

$$c_{S}(u-w)_{+} = c_{S} \underbrace{\max(u-w,0)}_{\text{unsold}}$$
 with $c > -c_{S}$

If during the day facing the demand was not possible, the incurred cost for unsatisfied demand is

$$c_M(w-u)_+ = c_M \underbrace{\max(w-u,0)}_{\text{missing}}$$

Uncertain Demand Induces Uncertain Cost



 $\operatorname{Argmin}_{u \in \mathbb{U}} j(u, w) = \{w\} : \text{unknown quantity } w !$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Attitude Toward Risk

The choice of the cost to minimize depends on the risk attitude of the newsvendor. We will use to aggregate random values through expectation

$$\min_{u \in \mathbb{U}} J(u)$$
 with $J(u) := \underbrace{\mathbb{E}_w[j(u,w)]}_{ ext{Expectation}}$

A pessimistic newsvendor could decide to use the worse case among all the possible values of the demand

$$\min_{u \in \mathbb{U}} J(u) \quad \text{with } J(u) := \underbrace{\max_{w \in \overline{\mathbb{W}}} j(u,w)}_{\text{Worse case}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Expected cost

- ► The demand, W, is a random variable. Te newsvendor knows the distribution P_W, that is the law of W.
- The cost to be minimized is

$$J(u) = \mathbb{E}_{\boldsymbol{W}} \left[cu + c_{\boldsymbol{S}} (u - \boldsymbol{W})_{+} + c_{\boldsymbol{M}} (\boldsymbol{W} - u)_{+} \right]$$

The newsvendor problem is to find

$$u^{\star} \stackrel{?}{\in} \operatorname{Argmin}_{u \in \mathbb{U}} J(u).$$

The newsvendor takes a deterministic decision facing a future random variable. He knows the law of the random variable but not the realization (Decision-Hazard framework).

Optimal Control

The optimal control u^{\star} when $u \in \mathbb{R}_+$:

- ▶ If $c_M \le c$ then J is a non-decreasing function and the optimal value is not to order $u^* = 0$
- If $c_M > c$ then the minimum of J is reached at u^* :

$$u^{\star} = \inf\{z \in \mathbb{R} \mid F(z) \geq (c_M - c)/(c_M + c_S)\}$$

where *F* is the cumulative distribution function of *W*, $F(z) = \mathbb{P}(W \le z).$

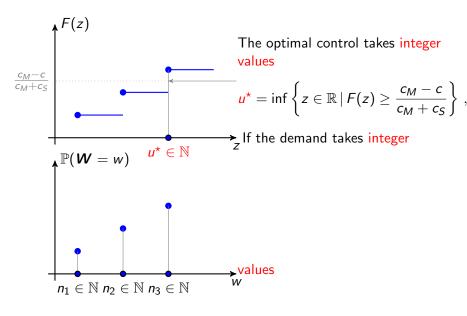
If *W* is a discrete random variable taking values in N then the optimal value of the relaxed problem *u*^{*} is in N

$$J(u) = c_M \mathbb{E}_{\boldsymbol{W}}[\boldsymbol{W}] + (c - c_M)u + (c_M + c_S)\mathbb{E}_{\boldsymbol{W}}[(u - \boldsymbol{W})_+]$$

= $c_M \mathbb{E}_{\boldsymbol{W}}[\boldsymbol{W}] + (c - c_M)u + (c_M + c_S)\int_0^u F(z)dz$

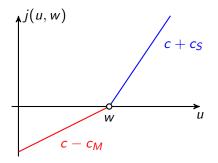
J is continuous and coercive. When $c_M > c$ it is non-increasing then non-decreasing with a minimum at u^* .

Optimal Control (II)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The case $c_M \leq c$



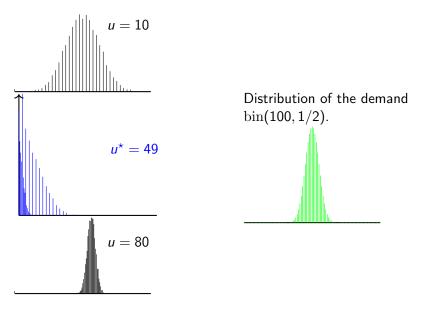
We note that

$$\min_{u \in \mathbb{U}} J(u) \geq \min_{u = \phi(\boldsymbol{W})} J(u) = \mathbb{E}_{\boldsymbol{W}}[\min_{u \in \mathbb{U}} j(u, \boldsymbol{W})]$$

 $\min_{u \in \mathbb{U}} j(u, w)$ is attained by u = 0 for all w and gives an admissible command for the problem $\min_{u \in \mathbb{U}} j(u, w)$.

・ロト・西・・田・・田・・日・

Costs Distribution j(u, W)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Initial Stock and Fixed Cost for Buying Newspapers

We change the model :

- We start with an initial stock $x \in \mathbb{Z}$
- When increasing stock a fixed cost c_F occurs

$$\begin{aligned} \widetilde{J}(u) &= \mathbb{E}_{\boldsymbol{W}}[c_{F}\mathbb{I}_{\{u>0\}} + cu + c_{s}(x+u-\boldsymbol{W})_{+} + c_{M}(\boldsymbol{W}-x-u)_{+}] \\ &= c_{F}\mathbb{I}_{\{u>0\}} - cx + \mathbb{E}_{\boldsymbol{W}}[j(u+x,\boldsymbol{W})] \\ &= c_{F}\mathbb{I}_{\{u>0\}} + J(u+x) - cx \end{aligned}$$

The optimal control u^{*}(x) (for c_M > c) is a function of x
 The optimal control depends on two bounds (s, S) :

$$u^{\star}(x) = (S-x)\mathbb{I}_{\{x \leq s\}}$$

- If the stock is smaller than s, buy newspapers to bring the stock to S.
- If the stock is bigger than s, do not buy newspapers
- ▶ The value of S is given by $\operatorname{Argmin}_{u \in \mathbb{U}} J(u)$.

Initial Stock and Fixed Cost for Buying Newspapers Let S given by $\{S\} = \operatorname{Argmin}_{u \in \mathbb{T}} J(u)$.

▶ If $x \ge S$, not buying is optimal since $J(\cdot) \nearrow$ and $c_F \ge 0$) :

$$\widetilde{J}(0) = J(x) - cx \leq J(x+u) - cx + c_F = \widetilde{J}(u)$$

• If $x \leq S$, since $J(\cdot)$ is minimal for S:

• If buying, we need to order u = S - x whose cost is

$$\widetilde{J}(u) = J(S) - cx + c_F$$

• If not buying the cost is J(x) - cxThe solution for minimizing the costs is to fill the stock up to S if $J(x) \ge c_F + J(S)$ and do nothing otherwise. Noting that

$$\{x \mid J(x) \ge c_F + J(S)\} = \{x \mid x \le s\}$$

where *s* is given by

$$s := \sup \{ z \in (-\infty, S) \mid J(z) \ge c_F + J(S) \}$$

Initial Stock and Fixed Cost for Buying Newspapers

Let
$$X_0 = x$$
 and $X_1 = f(X_0, u)$ with $f(x, u) := x + u - w$ et
 $\tilde{j}(u, x_1) := c_F \mathbb{I}_{\{u>0\}} + cu + c_S(x_1)_+ + c_M(-x_1)_+$
The newsvendor problem is

$$\begin{split} \min_{\boldsymbol{U} \in \mathcal{U}, \boldsymbol{X}_1, \boldsymbol{X}_0} & \mathbb{E}_{\boldsymbol{W}}[\tilde{j}(\boldsymbol{u}, \boldsymbol{X}_1)] \\ \boldsymbol{X}_0 &= x \quad \boldsymbol{X}_1 = f(\boldsymbol{X}_0, \boldsymbol{u}, \boldsymbol{W}) \end{split}$$

With a non-anticipative constraint $\mathcal{U} = \{ \boldsymbol{U} : \Omega \to \mathbb{N} \mid \boldsymbol{U}(\omega) = \phi(\boldsymbol{X}_0(\omega)) \}$ Note that $u^{\sharp}(x)$ is obtained by

 $u^{\sharp}(x) \in \operatorname{Argmin}_{u \in \mathbb{N}} h(u, x) \text{ with } h(u, x) = \mathbb{E}_{\boldsymbol{W}}[\overline{j}(u, x, \boldsymbol{W})]$

A D N A 目 N A E N A E N A B N A C N

with $\overline{j}(u, x, W) = \widetilde{j}(u, f(u, x, w)).$

Initial Stock and Fixed Cost for Buying Newspapers

- Suppose now that X₀ is a given random variable
- The newsvendor problem becomes

$$\min_{\boldsymbol{U}\in\mathcal{U}}\mathbb{E}\Big[\bar{j}\big(\boldsymbol{U},\boldsymbol{X}_{0},\boldsymbol{W}\big)\Big]$$

Where $\mathcal{U} = \{ \boldsymbol{U} : \Omega \to \mathbb{N} \mid \boldsymbol{U}(\omega) = \phi(\boldsymbol{X}_0(\omega)) \}$ Suppose that \boldsymbol{X}_0 and \boldsymbol{W} are independent r.v

- $\begin{aligned} & h(\gamma(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}) = \mathbb{E}\left[\overline{j}(\gamma(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}, \boldsymbol{W}) \middle| \boldsymbol{X}_{0}\right] \\ & \mathsf{If} \ h(u^{\sharp}(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}) \leq h(\gamma(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}) \text{ for all } \gamma \text{ then} \\ & \mathbb{E}\left[\overline{j}(u^{\sharp}(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}, \boldsymbol{W}) \middle| \boldsymbol{X}_{0}\right] \leq \mathbb{E}\left[\overline{j}(\gamma(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}, \boldsymbol{W}) \middle| \boldsymbol{X}_{0}\right] \\ & \mathsf{If} \ h(u^{\sharp}(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}) \leq h(\gamma(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}) \text{ for all } \gamma \text{ then} \\ & \mathbb{E}\left[\overline{j}(u^{\sharp}(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}, \boldsymbol{W})\right] \leq \mathbb{E}\left[\overline{j}(\gamma(\boldsymbol{X}_{0}), \boldsymbol{X}_{0}, \boldsymbol{W})\right] \end{aligned}$
- The optimal control is ${m U}^{\sharp}=u^{\sharp}({m X}_{0})$

We have

$$\min_{\boldsymbol{U}\in\mathcal{U}}\mathbb{E}\left[\bar{j}(\boldsymbol{U},\boldsymbol{X}_{0},\boldsymbol{W})\right] = \mathbb{E}\left[\min_{\boldsymbol{u}\in\mathbb{N}}\mathbb{E}\left[\bar{j}(\boldsymbol{u},\boldsymbol{X}_{0},\boldsymbol{W})|\boldsymbol{X}_{0}\right]\right]$$

Dynamics as a Markov Chain

The two stocks X_0 and X_1 can be seen as two consecutive states of a controlled Markov chain.

Assume that $u \in \mathbb{N}$ is fixed, the transition matrix is

$$P_{x_0,x_1}^{u} = \mathbb{P}(\mathbf{X}_1 = x_1 | \mathbf{X}_0 = x_0)$$
$$P_{x_0,x_1}^{u} = \begin{cases} \mathbb{P}(\mathbf{W} = w_0) & \text{if } x_1 = x_0 + u - w_0\\ 0 & \text{if not} \end{cases}$$

• Assume that \boldsymbol{U} is chosen as a function of X_0 , $U = \phi(\boldsymbol{X}_0)$ then

$$P_{x_0,x_1}^{\phi} = \begin{cases} \mathbb{P}(W = w_0) & \text{if } x_1 = x_0 + \phi(x_0) - w_0 \\ 0 & \text{if not} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Outline of the presentation

Introduction to Dynamic Programming The All-pairs Shortest Path Problem

The One Step Newsvendor Problem

The T-Step Newsvendor Problem

The Dynamic Programming Equation

Exercise

Extensions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

From One Stage To Finite Horizon Problem

The one stage problem with initial stock

$$\min_{u \in \mathcal{U}, \boldsymbol{X}_1, \boldsymbol{X}_0} \mathbb{E} \boldsymbol{w} [\tilde{j}(u, \boldsymbol{X}_1)]$$

s.t. $\boldsymbol{X}_0 = x \quad \boldsymbol{X}_1 = f(\boldsymbol{X}_0, u, \boldsymbol{W}_1)$

with

$$f(x, u, w) := x + u - w$$

$$\tilde{j}(u, x) := c_F \mathbb{I}_{\{u>0\}} + cu + \alpha \left(c_S(x)_+ + c_M(-x)_+\right)$$

The stock X_t can be positive (physical stock) or negative (the opposite of missing newspapers) The law of the demand, W, is known (finite expectation)

Finite Horizon problem

The newsvendor minimizes the costs over a period T

$$\begin{split} \min_{\boldsymbol{U} \in \boldsymbol{\mathcal{U}}, \boldsymbol{X}} \mathbb{E}_{\boldsymbol{W}} \Big[\sum_{t=0}^{T-1} \alpha^{t} \widetilde{\jmath}(\boldsymbol{U}_{t}, \boldsymbol{X}_{t+1}) \Big] \\ \boldsymbol{X}_{0} = x \quad \boldsymbol{X}_{t+1} = f(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1}) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• $(\boldsymbol{X}_0, \boldsymbol{W}_1, \boldsymbol{W}_2, \dots, \boldsymbol{W}_T)$ are independent • $\alpha \in (0, 1]$ is an actualization rate.

Canonical Form

The newsvendor minimizes the costs over a T period of time

$$\min_{\boldsymbol{U} \in \boldsymbol{\mathcal{U}}, \boldsymbol{X}} \mathbb{E}_{\boldsymbol{W}} \left[\sum_{t=0}^{T-1} \alpha^{t} c_{t} (\boldsymbol{U}_{t}, \boldsymbol{X}_{t}) + \alpha^{T} \boldsymbol{\mathcal{K}} (\boldsymbol{X}_{T}) \right]$$
$$\boldsymbol{X}_{0} = \boldsymbol{X} \quad \boldsymbol{X}_{t+1} = f(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1})$$

with

$$c_t(u, x) := c_F \mathbb{I}_{\{u > 0\}} + cu + c_S(x)_+ + c_M(-x)_+$$

$$c_0(u, x) := c_F \mathbb{I}_{\{u > 0\}} + cu$$

$$K(x) := c_S(x)_+ + c_M(-x)_+$$

Canonical Form (II)

$$\widetilde{j}(u_{0}, x_{1}) + \alpha \widetilde{j}(u_{1}, x_{2}) = \overbrace{c_{F} \mathbb{I}_{\{u_{0} > 0\}} + cu_{0} + \alpha (c_{S}(x_{1})_{+} + c_{M}(-x_{1})_{+})}^{\widetilde{j}(u_{1}, x_{2})} \\ + \alpha \overbrace{(c_{F} \mathbb{I}_{\{u_{1} > 0\}} + cu_{1} + \alpha (c_{S}(x_{2})_{+} + c_{M}(-x_{2})_{+}))}^{c_{0}(u_{1}, x_{2})} \\ = \overbrace{c_{F} \mathbb{I}_{\{u_{0} > 0\}} + cu_{0}}^{c_{0}(u_{0}, x_{0})} \\ + \alpha \overbrace{(c_{F} \mathbb{I}_{\{u_{1} > 0\}} + cu_{1} + c_{S}(x_{1})_{+} + c_{M}(-x_{1})_{+})}^{c_{1}(u_{1}, x_{1})} \\ + \alpha 2 \overbrace{(c_{S}(x_{2})_{+} + c_{M}(-x_{2})_{+})}^{K(x_{2})} \\ = c_{0}(u_{0}, x_{0}) + \alpha c_{1}(u_{1}, x_{1}) + \alpha^{2} K(x_{2})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Non Anticipativity

- The newsvendor collects over time the demand of each day.
 - At time t, he knows (W₁, · · · , W_t) and X₀ and can use this information to compute U_t. He could also collect the past controls.
- Under the independence assumption of the r.v (X₀, W₁, ··· , W_t) the optimal control at time t only depends of the stock X_t.

Policies

$$\min_{\boldsymbol{U} \in \boldsymbol{\mathcal{U}}} J(\boldsymbol{U}) \text{ with } J(\boldsymbol{U}) = \mathbb{E}_{\boldsymbol{W}} [\sum_{t=0}^{T-1} \alpha^{t} c_{t}(\boldsymbol{U}_{t}, \boldsymbol{X}_{t}) + \alpha^{T} \boldsymbol{\mathcal{K}}(\boldsymbol{X}_{T})]$$
$$\boldsymbol{X}_{0} = \boldsymbol{X} \quad \boldsymbol{X}_{t+1} = f(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1})$$

- 1. $\min_{\boldsymbol{U} \in \mathcal{U}_H} J(\boldsymbol{U}) : \mathcal{U}_H$ space of history dependent controls depending on past states, past controls, past noises
- 2. $\leq \min_{\boldsymbol{U} \in \mathcal{U}_M} J(\boldsymbol{U}) : \mathcal{U}_M$ space of markovian controls depending on current state
- 3. $\leq \min_{\boldsymbol{U} \in \mathcal{U}_{OL}} J(\boldsymbol{U}) : \mathcal{U}_{OL}$ space of open-loop controls deterministic (constant random variables)

We have that $\min_{\boldsymbol{U} \in \mathcal{U}_H} J(\boldsymbol{U}) = \min_{\boldsymbol{U} \in \mathcal{U}_M} J(\boldsymbol{U})$

State Feedback Versus Open-Loop Feedback

$$\begin{split} \min_{\pmb{U}_1, \pmb{U}_2} & \mathbb{E} \left[\pmb{X}_1^2 + \pmb{X}_2^2 \right] \\ \text{s.t} & \pmb{X}_2 = \pmb{X}_1 - \pmb{U}_1 + \pmb{W}_2 \ , \ \pmb{X}_1 = \pmb{X}_0 - \pmb{U}_0 + \pmb{W}_1 \ , \ \pmb{X}_0 = 0 \\ & \pmb{W}_0, \pmb{W}_1 \ \text{i.i.d} \ (\text{Bernoulli with } p = 1/2) \end{split}$$

• State Feedback
$$U_0 = \gamma_0(X_0) \ U_1 = \gamma_1(X_1)$$

• $V_2(x) = x^2$
• $V_1(x) = \min_u \mathbb{E} [x^2 + V_2(x - u + W_2)]$
 $= \min_u x^2 + (x - u + 1)^2/2 + (x - u)^2/2 = x^2 + 1/4$
• $V_0(x) = \min_u \mathbb{E} [V_1(x - u + W_1)]$
 $= \min_u 1/4 + (x - u + 1)^2/2 + (x - u)^2/2 = 1/2$
• Open Loop Controls $U_0 = u_0$, $U_1 = u_1$
• $\min_{u_0, u_1} \mathbb{E} [(-u_0 + W_1)^2 + (-u_0 + W_1 - u_1 + W_2)^2]$
 $= \min_{u_0, u_1} 2u_0^2 + 2u_0u_1 + u_1^2 - 3u_0 - 2u_1 + 2 = 3/4$
 $1/2 = \min_{U_0, U_1} \mathbb{E} [J(U_0, U_1)] < \min_{u_0, u_1} \mathbb{E} [J(u_0, u_1)] = 3/4$

Outline of the presentation

Introduction to Dynamic Programming The All-pairs Shortest Path Problem

The One Step Newsvendor Problem

The T-Step Newsvendor Problem

The Dynamic Programming Equation

Exercise

Extensions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Start with a Simplified Problem \rightarrow just a Final Cost

Problem (\mathcal{P}_0) starting at position x at initial time t = 0:

$$\begin{split} \mathcal{V}_{0}(x) &= \min_{\boldsymbol{X}, \boldsymbol{U} \in \mathcal{U}} \quad \mathbb{E}\left[\mathcal{K}\left(\boldsymbol{X}_{T}\right)\right], \\ \text{s.c.} \quad \boldsymbol{X}_{0} &= x, \\ \boldsymbol{X}_{t+1} &= f_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1}\right), \qquad \forall t = 0, \dots, T-1, \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Noises $\boldsymbol{W} = (\boldsymbol{W}_t)_{t=1,...,T}$ (The demand)

- Controls $\boldsymbol{U} = (\boldsymbol{U}_t)_{t=0,...,T-1}$ (Newspaper to order)
- States $(\boldsymbol{X}_t)_{t=0,...,T-1}$ (Stock of Newspaper)

Markovian Dynamics

The noises and initial state $\textbf{\textit{X}}_0, \textbf{\textit{W}}_1, \dots, \textbf{\textit{W}}_{\mathcal{T}}$ are independent r.v

▶ Transition Matrix : uncontrolled case $f : X \times W \to X$

$$\boldsymbol{X}_{t+1} = f(\boldsymbol{X}_t, \boldsymbol{W}_{t+1}), \quad P(x, y) = \mathbb{P}(f(x, \boldsymbol{W}_1) = y)$$

▶ Transition Matrix : controlled case $f : \mathbb{X} \times \mathbb{U} \times \mathbb{W} \to \mathbb{X}$ with markovian policy $(\phi_s)_{s \in [0, T-1]}$, $\boldsymbol{U}_t = \phi_t(\boldsymbol{X}_t)$

$$\boldsymbol{X}_{t+1} = f(\boldsymbol{X}_t, \phi_t(\boldsymbol{X}_t), \boldsymbol{W}_{t+1}), \quad P_t(x, y) = \mathbb{P}\big(f(x, \phi_t(x), \boldsymbol{W}_1) = y\big)$$

For $u \in \mathbb{U}$, let $P^u := \mathbb{P}(f(x, u, \mathbf{W}_1) = y)$. For a Markovian policy $(\phi_s)_{s \in [0, T-1]}$, P_t^{ϕ} is defined by $P_t^{\phi}(x, y) := P^{\phi_t(x)}(x, y)$

$$\boldsymbol{X}_{t+1} = f(\boldsymbol{X}_t, \phi_t(\boldsymbol{X}_t), \boldsymbol{W}_{t+1}), \quad P_t^{\phi}(x, y) = P^{\phi_t(x)}(x, y)$$

A Family of problems

• Problem (\mathcal{P}_{t_0}) starting with stock x at time t_0 :

$$\begin{split} V_{t_0}(x) &= \min_{\boldsymbol{X}, \phi(\cdot)} \quad V_{t_0}^{\phi}(x) \\ V_{t_0}^{\phi}(x) &= \mathbb{E}\left[\mathcal{K}\left(\boldsymbol{X}_{\mathcal{T}}\right) \right], \\ \text{s.t} \quad \boldsymbol{X}_{t_0} &= x, \quad \boldsymbol{X}_{t+1} = f_t\left(\boldsymbol{X}_t, \phi_t(\boldsymbol{X}_t), \boldsymbol{W}_{t+1}\right) \end{split}$$

• Problem $(\mathcal{P'}_{t_0})$ démarrant en μ à t_0 :

$$egin{aligned} &\mathcal{V}_{t_0}(\mu) = \min_{\mu,\phi(\cdot)} &\mathcal{V}^{\phi}_{t_0}(\mu) \ &\mathcal{V}^{\phi}_{t_0}(\mu) = \sum_{x} \mu_{\mathcal{T}}(x) \mathcal{K}(x) \ & ext{ with } & \mu_{t_0} = \mu, \quad \mu_{t+1} = \mu_t \mathcal{P}^{\phi}_t \end{aligned}$$

• Dynamic
$$\mu_{t+1}(y) = \sum_{x} \mu_t(x) P_{x,y}^{\phi(x)}$$

・ロト・4回ト・4回ト・目・9900

Links between $\mathcal{V}^{\phi}_{t_0}(\cdot)$ and $V^{\phi}_{t_0}(\cdot)$

We have that

$$\mathcal{V}^{\phi}_{t_0}(\mu) = \left\langle \mu, V^{\phi}_{t_0} \right\rangle := \sum_{x} \mu(x) V^{\phi}_{t_0}(x) \text{, and} \quad V^{\phi}_{t_0}(x) = \mathcal{V}^{\phi}_{t_0}(\delta_x(\cdot))$$

Indeed :

Problem (\mathcal{P}_{t_0}) starting with stock x at t_0 : $V_{t_0}^{\phi}(x) = (P_{t_0}^{\phi} \cdots P_{T-1}^{\phi} \mathcal{K})(x)$ (Ex. for $t_0 = T - 1$ $V_{T-1}^{\phi}(x) = \sum_{y \in \mathbb{X}} P_{T-1}^{\phi}(x, y) \mathcal{K}(y)$

• Problem (\mathcal{P}'_{t_0}) starting with μ at t :

 $\begin{aligned} \mathcal{V}_{t_0}^{\phi}(\mu) &= \mu P_{t_0}^{\phi} \cdots P_{T-1}^{\phi} K \\ (\text{Ex. for } t_0 &= T-1 \quad \mathcal{V}_{T-1}^{\phi}(\mu) = \sum_{x,y \in \mathbb{X}} \mu(x) P_{T-1}^{\phi}(x,y) K(y)) \end{aligned}$

The case T = 1 $X_0 = x$

$$V(x) = \mathbb{E}\left[K(\boldsymbol{X}_1)\right] = \sum_{y} P_{x,y}K(y)$$

Assume that the law of X_0 is μ

$$\mathcal{V}(\mu) = \mathbb{E}\left[K(\boldsymbol{X}_1)\right] = \sum_{x} \mu(x) \sum_{y} P_{x,y} K(y)$$

We obtain

$$\mathcal{V}(\mu) = \sum_{y} \mu(x) V(x) = \langle \mu, V \rangle \; ,$$

 and

$$\mathcal{V}(\delta_{x'}) = \sum_{x} \delta_{x'}(x) \sum_{y} P_{x,y} \mathcal{K}(y) = \sum_{y} \mu(x) P_{x',y} \mathcal{K}(y) = \mathcal{V}(x').$$

Recursive Computation of \mathcal{V}_t

We have that :

$$\mathcal{V}_t(\mu) = \min_{\phi_t} \mathcal{V}_{t+1}(\mu P_t^{\phi})$$

Proof : The problem (\mathcal{P}'_t) starting with μ at time t :

$$\mathcal{V}_t(\mu) = \min_{\phi(\cdot)} \quad \mu P_t^{\phi} \cdots P_{T-1}^{\phi} K$$

At time t, P^φ_t only depends on φ_t.
 The raw vector μP^φ_{t₀} is non negative (its a probability law)
 𝒱_t(μ) = min_{φt} ⟨μP^φ_t, min_{(φs)s>t} P^φ_{t+1} ··· P^φ_{T-1}K⟩
 𝒱_t(μ) = min_{φt} ⟨μP^φ_t, V_{t+1}(·)⟩ = min_{φt} 𝒱_{t+1}(μP^φ_t)

Recursive Equation for V_t with $t \in \{0, \cdots, T\}$

Bellman Equation :

$$\begin{aligned} \mathbf{V}_{t}(x) &= \min_{u \in \mathbb{U}} \mathbb{E} \left[\mathbf{V}_{t+1}(f_{t}(x, u, \mathbf{W}_{t+1})) \right] \\ u^{\sharp}(x) &\in \operatorname{Argmin}_{u \in \mathbb{U}} \mathbb{E} \left[\mathbf{V}_{t+1}(f_{t}(x, u, \mathbf{W}_{t+1})) \right] \\ \mathbf{V}_{T}(x) &= \mathcal{K}(x) \end{aligned}$$

Proof : We already have for \mathcal{V}_t that

$$\mathcal{V}_t(\mu) = \min_{\phi_t} \mathcal{V}_{t+1}(\mu P_t^{\phi})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$V_t(x) = \mathcal{V}_t(\delta_x(\cdot))$$

$$V_{t+1}(\delta_x(\cdot)P_t^{\phi}) = \mathbb{E}\left[V_{t+1}(f_t(x,\phi_t, \boldsymbol{W}_{t+1}))\right]$$

Recursive Equation for V_t with $t \in \{0, \dots, T\}$

Bellman Equation

$$egin{aligned} V_t(x) &= \min_{u \in \mathbb{U}} \sum_y P^u_{x,y} V_{t+1}(y) \ V_T(x) &= \mathcal{K}(x) \end{aligned}$$

Optimal control

$$u^{\sharp}(x) \in \operatorname{Argmin}_{u \in \mathbb{U}} \sum_{y} P^{u}_{x,y} V_{t+1}(y)$$

Proof :

$$\sum_{y} P_{x,y}^{u} V_{t+1}(y) = \sum_{y} \mathbb{P}(f(x, u, \boldsymbol{W}_{t+1}) = y) V_{t+1}(y)$$
$$= \mathbb{E}[\boldsymbol{V}_{t+1}(f_t(x, u, \boldsymbol{W}_{t+1}))]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite Horizon with instantaneous costs

The problem (\mathcal{P}_0) starting with x at initial time t = 0:

$$V_{0}(x) = \min_{\boldsymbol{X}, \boldsymbol{U} \in \mathcal{U}} \mathbb{E} \left[\sum_{t=0}^{T-1} L_{t} \left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1} \right) + K \left(\boldsymbol{X}_{T} \right) \right],$$

s.t. $\boldsymbol{X}_{0} = x$,
 $\boldsymbol{X}_{t+1} = f_{t} \left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1} \right), \quad \forall t = 0, \dots, T-1,$

Dynamic Programming Equation (Bellman Equation)

$$V_t(x) = \min_{u \in \mathbb{U}} \mathbb{E} \left[L_t(x, u, \boldsymbol{W}_{t+1}) + V_{t+1}(f_t(x, u, \boldsymbol{W}_{t+1})) \right]$$
$$V_T(x) = \mathcal{K}(x)$$

Finite Horizon with instantaneous costs

The cost of problem (\mathcal{P}_0) starting at x at t = 0 equals V(0, x)

$$\begin{split} \widetilde{\mathcal{V}}_{0}(z,x) &= \min_{\boldsymbol{X}, \boldsymbol{U} \in \mathcal{U}} \quad \mathbb{E}\left[Z_{T} + \mathcal{K}\left(\boldsymbol{X}_{T}\right)\right], \\ \text{s.t.} \quad \boldsymbol{X}_{0} &= x, \boldsymbol{X}_{t+1} = f_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1}\right), \\ \boldsymbol{Z}_{0} &= z, \boldsymbol{Z}_{t+1} = \boldsymbol{Z}_{t} + L_{t}\left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1}\right), \end{split}$$

(Z, X) is Markovian for feedback controls φ_t(z, x).
 The Bellman Equation is V
 *V*_T(z, x) = z + K(x) and
 *V*_t(z, x) = min E[V
 *V*_{t+1}(z + L_t(x, u, W
 *V*_{t+1}), f_t(x, u, W
 *U*_{t+1}))]

Finite Horizon with instantaneous costs

- We recursively show that $\widetilde{V}_t(z,x) = z + V_t(x)$
- true for t = T since $\widetilde{V}_T(z, x) = z + K(x)$
- at time t

$$\widetilde{V}_{t}(z,x) = \min_{u \in \mathbb{U}} \mathbb{E}\left[z + L_{t}(x, u, \boldsymbol{W}_{t+1}) + V_{t+1}(f_{t}(x, u, \boldsymbol{W}_{t+1}))\right]$$
$$\widetilde{V}_{t}(z,x) = z + \underbrace{\min_{u \in \mathbb{U}} \mathbb{E}\left[L_{t}(x, u, \boldsymbol{W}_{t+1}) + V_{t+1}(f_{t}(x, u, \boldsymbol{W}_{t+1}))\right]}_{V_{t}(x)}$$

- the minimization for u ∈ U only depends on x. Thus, the optimal control is a feedback on the state x.
- we note that $V_t(0, x) = V_t(x)$, giving the Bellman Equation for the problem with instantaneous cost.

Final Result : The Bellman Equation

$$V_{0}(x) = \min_{\boldsymbol{X}, \boldsymbol{U} \in \mathcal{U}} \quad \mathbb{E} \left[\sum_{t=0}^{T-1} L_{t} \left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1} \right) + K \left(\boldsymbol{X}_{T} \right) \right],$$

s.t. $\boldsymbol{X}_{0} = x$,
 $\boldsymbol{X}_{t+1} = f_{t} \left(\boldsymbol{X}_{t}, \boldsymbol{U}_{t}, \boldsymbol{W}_{t+1} \right), \qquad \forall t = 0, \dots, T-1,$

Dynamic Programming Equation (Bellman Equation)

$$V_{t}(x) = \min_{u \in \mathbb{U}} \mathbb{E} \Big[L_{t}(x, u, \boldsymbol{W}_{t+1}) + V_{t+1} \big(f_{t}(x, u, \boldsymbol{W}_{t+1}) \big) \Big]$$

$$V_{T}(x) = K(x)$$

$$u^{*}(x) \in \operatorname{Argmin}_{u \in \mathbb{U}} \mathbb{E} \Big[L_{t}(x, u, \boldsymbol{W}_{t+1}) + V_{t+1} \big(f_{t}(x, u, \boldsymbol{W}_{t+1}) \big) \Big]$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Computing value functions

- 1. Time loop backward to compute V_t for all t
- 2. State loop for all x
- 3. Find the optimal control (control loop, L.P., Q.P)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

4. Loop on random values to compute the expected cost

State Feedback Versus Open-Loop Feedback (II)

$$\begin{split} \min_{\pmb{U}_1, \pmb{U}_2} & \mathbb{E} \left[\pmb{X}_1^2 + \pmb{X}_2^2 \right] \\ \text{s.t} & \pmb{X}_2 = \pmb{X}_1 - \pmb{U}_1 + \pmb{W}_2 \ , \ \pmb{X}_1 = \pmb{X}_0 - \pmb{U}_0 + \pmb{W}_1 \ , \ \pmb{X}_0 = 0 \\ & \pmb{W}_0, \pmb{W}_1 \ \text{i.i.d} \ (\text{Bernoulli with } p = 1/2) \end{split}$$

• State Feedback
$$U_0 = \gamma_0(X_0) \ U_1 = \gamma_1(X_1)$$

• $V_2(x) = x^2$
• $V_1(x) = \min_u \mathbb{E} [x^2 + V_2(x - u + W_2)]$
 $= \min_u x^2 + (x - u + 1)^2/2 + (x - u)^2/2 = x^2 + 1/4$
• $V_0(x) = \min_u \mathbb{E} [V_1(x - u + W_1)]$
 $= \min_u 1/4 + (x - u + 1)^2/2 + (x - u)^2/2 = 1/2$
• Open Loop Controls $U_0 = u_0$, $U_1 = u_1$
• $\min_{u_0, u_1} \mathbb{E} [(-u_0 + W_1)^2 + (-u_0 + W_1 - u_1 + W_2)^2]$
 $= \min_{u_0, u_1} 2u_0^2 + 2u_0u_1 + u_1^2 - 3u_0 - 2u_1 + 2 = 3/4$
 $1/2 = \min_{U_0, U_1} \mathbb{E} [J(U_0, U_1)] < \min_{u_0, u_1} \mathbb{E} [J(u_0, u_1)] = 3/4$

A Farmer problem

- when annual production is x units of a certain crop
 - he stores (1 u)x units,
 - he uses the remaining ux units for next year production, where $u \in (0, 1)$
- ► then, the level of next year production will be *W ux*, where *W* is a positive random variable not depending on *x* or *u* with known expectation E[*W*] = w.
- Optimization problem : find the optimal investment policy that maximizes the total expected product stored over N years

$$\mathbb{E}\Big[\sum_{k=0}^{N-1}(1-\boldsymbol{U}_k)\boldsymbol{X}_k+\boldsymbol{X}_N\Big]\;,$$

assuming that $\boldsymbol{X}_{k+1} = \boldsymbol{W}_{k+1} \boldsymbol{U}_k \boldsymbol{X}_k.$

Bellman Equation

$$V_n(x) = \max_{\boldsymbol{U}_n, \boldsymbol{U}_{n+1}, \dots, \boldsymbol{U}_{N-1}} \mathbb{E} \Big[\sum_{k=n}^{N-1} (1 - \boldsymbol{U}_k) \boldsymbol{X}_k + \boldsymbol{X}_N \Big]$$
$$\boldsymbol{X}_{k+1} = \boldsymbol{W}_{k+1} \boldsymbol{U}_k \boldsymbol{X}_k \text{ and } \boldsymbol{X}_n = x .$$

A/ 4

We obtain that $V_N(x) = x$ and

$$V_n(x) = \max_{u \in [0,1]} (1-u)x + \mathbb{E} \left[V_{n+1} (\boldsymbol{W} ux) \right]$$

Assume that $V_{n+1}(x) = a_{n+1}x$ then we have that

$$V_n(x) = egin{cases} x & ext{when } a_{n+1}\overline{w} \leq 1 \ a_{n+1}\overline{w}x & ext{when } a_{n+1}\overline{w} \geq 1 \end{cases}$$

That is $V_n(x) = a_n x$ with $a_n = \max(1, a_{n+1}\overline{w})$ (with $a_N = 1$).

Increasing the State Space

How to solve

$$\begin{split} V_0(x) &= \min_{\boldsymbol{X}, \boldsymbol{U} \in \mathcal{U}} \quad \mathbb{E} \left[\mathcal{K} \big(\max_{s \in \{0, \dots, T\}} \boldsymbol{X}_s \big) \right], \\ \text{s.t.} \quad \boldsymbol{X}_0 &= x \;, \\ \boldsymbol{X}_{t+1} &= f_t \left(\boldsymbol{X}_t, \boldsymbol{U}_t, \boldsymbol{W}_{t+1} \right), \qquad \forall t = 0, \dots, T-1, \end{split}$$

The noises and initial state $\pmb{X}_0, \pmb{W}_1, \dots, \pmb{W}_T$ are independent r.v

 $\begin{array}{l} \bullet \quad \mathbf{Y}_{t} = \max_{s \in \{0, \dots, t\}} \mathbf{X}_{s}, \text{ is not a Markov chain.} \\ \bullet \quad \left(\mathbf{X}_{t}, \mathbf{Y}_{t}\right) \text{ is a Markov chain. } \left(\mathbf{X}_{0}, \mathbf{Y}_{0}\right) = (x, x) \text{ and} \\ \mathbf{X}_{t+1} = f_{t} \left(\mathbf{X}_{t}, \mathbf{U}_{t}, \mathbf{W}_{t+1}\right) \\ \mathbf{Y}_{t+1} = \max_{s \in \{0, \dots, t+1\}} \mathbf{X}_{s} = \max \left(\mathbf{Y}_{t}, \mathbf{X}_{t+1}\right) \\ = \max \left(\mathbf{Y}_{t}, f_{t}(\mathbf{X}_{t}, \mathbf{U}_{t}, \mathbf{W}_{t+1})\right) \end{aligned}$

Increasing the State Space

How to solve

$$\begin{split} \mathcal{V}_0(x) &= \min_{\boldsymbol{X}, \boldsymbol{U} \in \mathcal{U}} \quad \mathbb{E} \Big[\mathcal{K} \big(\boldsymbol{X}_T \big) \Big], \\ \text{s.t.} \quad \boldsymbol{X}_0 &= x \text{ fixed}, \\ \boldsymbol{X}_{t+1} &= f_t \left(\boldsymbol{X}_t, \boldsymbol{U}_t, \boldsymbol{W}_{t+1} \right), \qquad \forall t = 0, \dots, T-1, \end{split}$$

The noises and initial state $\pmb{X}_0, \pmb{W}_1, \dots, \pmb{W}_T$ are not independent

$$\begin{aligned} & \mathbf{W}_{t+1} = g_t \big(\mathbf{W}_t, \overline{\mathbf{W}}_{t+1} \big) \\ & \mathbf{X}_0, \overline{\mathbf{W}}_1, \dots, \overline{\mathbf{W}}_T \text{ are independent} \\ & (\mathbf{X}_t, \mathbf{W}_t) \text{ is a Markov chain} \\ & \mathbf{X}_{t+1} = f_t \left(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1} \right) = f_t \Big(\mathbf{X}_t, \mathbf{U}_t, g_t \big(\mathbf{W}_t, \overline{\mathbf{W}}_{t+1} \big) \Big) \\ & \mathbf{W}_{t+1} = g_t \big(\mathbf{W}_t, \overline{\mathbf{W}}_{t+1} \big) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ