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Outline of the presentation

Introduction to Dynamic Programming
The All-pairs Shortest Path Problem



The All-Pairs Shortest Path Problem

» (V,E) a given oriented graph, nodes V, edges E C V x V.

» P :sequences (vi,...,Vs), s.tvi € V, (vi,vit1) € E. given
0:E—RU{+o00} we extend £: P — RU{+o0} by

n—1

O((vi, o)) =D L((vi, viz1)) (path length)

i=1
» Shortest path from v; to v; :
sp(vi, vj) € argmin {{(p) ‘ p=(wi...,wp) € P,w1 = vj,w, = vj}

Find sp(v, w) for all (v,w) € V2 is called the all-pairs shortest
path problem.

» Assumption : there does not exists cycles with negative length

p=(wi,...,w,) € P,w; = w, then {(p) >0



Matrix Notations

» To simplify the notation we consider that V' = {1,... n}
» (: E — RU{+o00} is represented by a matrix L

0 when / = j,
Lij=q+oc0  when (i,j)¢E
0(i,j) when (i,j) e E

> We define (D(¥)),cn, a sequences of matrices given by

D(k) _ 0 when i = j,
" Ispy (i J)

Ispi(i,j) = min {€(p) | p = (is-...J) € P,|p| < k +1}



Dynamic Programming Approach

>

We have that D) = L

iy
The no-negative-cycle assumption implies that
D) = ((sp(i,j)) when k > n—1 (n=|V|).

i
We thus have to compute D), ... D("=1)
We have introduced a family of problems, the original problem

being one of them

We compute value functions (value of optimal path lengths in
set of constrained paths) instead of optimal paths.

A recursion formula giving the value function of problem k given
the value of problem k — 1 will be obtained through an optimality
principle.



Optimality Principle

A sub-path of an optimal path is an optimal path
If the path A— B — C — D — E is a shortest path form A to E
Then, the path C — D — E is a shortest path from C to E.
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Optimality Principle at Work

>

>

Consider D,-(;') the value of the shortest path going from i to j
with at most m + 1 nodes.
If the shortest path have at most m nodes then

(m) _ p(m—1)
D,-J- = DI-J-
If the shortest path have exactly m + 1 nodes : then it is
composed of a path from i to k with m nodes and an edge
(k,j) whose length is Ly ;.
Optimality principle : The path from i/ to k must be optimal
in the set of path with at most m nodes. Thus,

ol = Dl + 4

Gathering all the cases

(m) _ . (m-1) . (m—1) . o (m—1) )
0 = min (07, (D7 1s) ) = min (D5 +Lsy)

i7



Find the optimal path using DU, ..., D1

» Compute the shortest path from i to j in p! :
1. if D,.(,'}_l) = oo then stop (there's no path from i to j)
Fix last = j, set ¢ = 1, and p* = ()
If n— g =1 then p* = (i,p*) and go to end 7
let k¥ € argmin, (D + Lyt )
If k* £ last then p* = (k¥, p*).
g=q+1, last = k* and iterate at 3.
p® gives the optimal path

Noo &~ wDd

p-shortest path P — 1 shortest path




Recursive functions

> Fib(n) = (n <= 1)?1: Fib(n — 1) + Fib(n — 2).
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Recursion

» Exponential complexity of the naive recursive algorithm.
» Solution 1 : iterative computation from (Fib(0), Fib(1))

» Solution 2 : use recursion but keep track of already computed
values (memoization).



Outline of the presentation

The One Step Newsvendor Problem



The One Day Newsvendor Problem

B>

» Each morning, The newsvendor orders a number of newspaper
uelU=1{0,1,...} at unit price ¢ > 0.
» The demand is incertain w € W ={0,1,...}
P If at the end of the day, if it remains unsold newspapers, the
incurred cost is
cs(u—w)y = csmax(u — w,0)  with ¢ > —cs
———
unsold

» |If during the day facing the demand was not possible, the
incurred cost for unsatisfied demand is

em(w — u) = ey max(w — u,0)
—_——

missing



Uncertain Demand Induces Uncertain Cost

Ju,w)=_cu, +cs(u—w)y+cp(w— u)J5

-~

purchases unsold missing
(U, w)
c—¢tm c+cs
w u

Argmin ,cq; j(u, w) = {w} : unknown quantity w!



Attitude Toward Risk

The choice of the cost to minimize depends on the risk attitude of
the newsvendor. We will use to aggregate random values through
expectation

min J(u) with J(u) == Ey[j(u, w)]
uelU ——
Expectation

A pessimistic newsvendor could decide to use the worse case
among all the possible values of the demand

min J(u) with J(u) := maxj(u, w)
ucU weW
—_———

Worse case



Expected cost

» The demand, W, is a random variable. Te newsvendor knows
the distribution Py, that is the law of W.

» The cost to be minimized is

J(u) =Ew [cu+ cs(u— W)+ cy(W — u)4]

» The newsvendor problem is to find

?
u* € Argmin J(u).
uelU
The newsvendor takes a deterministic decision facing a future
random variable. He knows the law of the random variable but
not the realization (Decision-Hazard framework).



Optimal Control
The optimal control u* when u € R :

» If cpy < c then J is a non-decreasing function and the optimal
value is not to order u* =0

» If cpp > ¢ then the minimum of J is reached at u* :
v =inf{zeR|F(z) > (cm—c)/(cm +cs)}

where F is the cumulative distribution function of W,
F(z) =P(W < z).

> If W is a discrete random variable taking values in N then the
optimal value of the relaxed problem u* is in N

J(U) = CMEw[W] + (C — CM)U + (C/\/] + Cs)Ew[(U — W)+]
= cyEw[W]+ (c — cm)u+ (cm + c_g)/0 F(z)dz

J is continuous and coercive. When ¢y > c it is non-increasing
then non-decreasing with a minimum at v*.



Optimal Control (1)

Cp—C
Ccpm+Cs

F(2)
The optimal control takes integer
values
o——
— cpy —C
u*—inf{zER\F(z) > M} :
- cm + Cs

nn € NnmeNn3eN

> If the demand takes integer

values



The case ¢y < ¢

A.j(ua W)

c+cs

=Y

w
C—Cm

. o _ .
min J(u) > u:”;E'JV)J(“) Ew[minj(u, W)]

We note that

minyeu j(u, w) is attained by u = 0 for all w and gives an
admissible command for the problem min,cy j(u, w).



Costs Distribution j(u, W)

u=10

Distribution of the demand
bin(100,1/2).

u* =49




Initial Stock and Fixed Cost for Buying Newspapers
We change the model :
> We start with an initial stock x € Z
» When increasing stock a fixed cost cg occurs
Jw) = Ewl[crliysoy +cu+cs(x +u— W)y + cm(W — x — u)4]
= crl{uo0y — ox + Ew[j(u + x, W)]
= CFH{U>0} + J(U + X) — X

» The optimal control u*(x) (for cp > ¢) is a function of x
» The optimal control depends on two bounds (s, S) :

U*(X) = (S - X)]I{xgs}

P If the stock is smaller than s, buy newspapers to bring the

stock to S.
P |If the stock is bigger than s, do not buy newspapers

» The value of S is given by Argmin,,y; J(u).



Initial Stock and Fixed Cost for Buying Newspapers
Let S given by {S} = Argmin .y J(u).
» If x > S, not buying is optimal since J(-) /* and ¢r > 0) :
J(0) = J(x) — ex < J(x + u) — ex + cr = J(u)

» If x < S, since J(-) is minimal for S :
» If buying, we need to order u = S — x whose cost is

J(u) = J(S) — ex + cF

» If not buying the cost is J(x) — cx
The solution for minimizing the costs is to fill the stock up to
S if J(x) > cg+ J(S) and do nothing otherwise. Noting that

(x| J(x) = cr + J(S)} = (x| x < 5}
where s is given by

s:=sup{z € (-00,S)|J(z) > cr+ J(S)}



Initial Stock and Fixed Cost for Buying Newspapers

Let X, = x and X; = f(X,, u) with f(x,u) := x4+ u—w et

j(u,xl) = CF]I{U>0} + cu + C5(X1)+ + C/\//(—X1)+
The newsvendor problem is

in Ewli(u, X
uaT)'Q,xO wli(u, X;)]

X, =x X, ="f(X,,u, W)

With a non-anticipative constraint
U={U:Q—=N| Uw)=9(X,(w))}
Note that uf(x) is obtained by

u*(x) € Argmin h(u, x) with h(u, x) = Ew[j(u, x, W)]
ueN

with J(u, x, W) = (u, F(u,x, w)).



Initial Stock and Fixed Cost for Buying Newspapers

» Suppose now that X is a given random variable
» The newsvendor problem becomes

PREP(U: X0 W)

Where i = {U : Q = N | U(w) = ¢(Xy(w))}
> Suppose that X, and W are independent r.v

h((Xo), X ) E [7(1(X), X0, W) | X,
> If h(u*(X, ) < h(¥(X,), X,) for all v then

E[j (uﬂ( W)|%,| < E[f(30%). % W) |X]
> If h(u*(X, ) < h(v(X,), X,) for all  then

E [7(uf(X, ) w)] < E[i(+(X,). X, W)]
» The optimal control is U = ui(X,)
> We have

lrJnElnE[ (U, X,, W)} [mEiQEU(UyXovW)‘XOH



Dynamics as a Markov Chain

The two stocks X0 and X; can be seen as two consecutive states
of a controlled Markov chain.

» Assume that v € N is fixed, the transition matrix is

P! :P(Xl :X1’X0 :Xo)

X0,X1

u . ]P(W:Wo) ifX1:X0+U—W0
S N if not

» Assume that U is chosen as a function of Xg, U = ¢(X,)) then

po  _ JEW =wo) ifxi=x+d(x)—wo
X0 0 if not



Outline of the presentation

The T-Step Newsvendor Problem



From One Stage To Finite Horizon Problem

The one stage problem with initial stock

ueurgl(lz’onw [(u, X;)]

st. Xg=x X; =f(Xp,u, W)
with
f(x,uw):=x+u—w
J(u, x) := celyysoy + cu+ a(cs(x)+ + cm(—x)+)

The stock X, can be positive (physical stock) or negative (the
opposite of missing newspapers)
The law of the demand, W/, is known (finite expectation)



Finite Horizon problem

The newsvendor minimizes the costs over a period T

T-1
JrinEw [ 3 o X, )]
Xo=x Xy =f(X, U, W)

> (X, W,,W,,..., W) are independent

» « € (0,1] is an actualization rate.



Canonical Form

The newsvendor minimizes the costs over a T period of time

min Ew | " a‘c(U,, X,) +aTK(X )]

X
I

x X4 =f(X,U, Wt+1)

with
ct(u, x) = crlgysoy + cu+ cs(x)+ + em(—x) +
co(u, x) := crlyysoy +cu

K(x) == cs(x)+ + em(—x)+



Canonical Form (I1)

I(uo,x1)

Huo, x1) + aj(ur, x2) = cpliyy=0p + cuo + a (cs(x1)+ + em(—x1)+)

I(u1,%2)

+ « (CFH{u1>O} + cur + a(es(x2)+ + C/\//(—X2)+))
co(uo,%0)
—
= crllyy>0y + cuo

c1(ur,x1)

+ a (crly o0y + cut + cs(xa)+ + em(—x1)+)
K(x2)

+ 02 (es(x)+ + em(—x2)+)
= Co(u(),Xo) + acl(ul,xl) + a2K(X2)



Non Anticipativity

» The newsvendor collects over time the demand of each day.

> At time t, he knows (W,,---, W,) and X, and can use this
information to compute U,. He could also collect the past
controls.

» Under the independence assumption of the r.v
(Xo, Wy, -+, W,) the optimal control at time t only depends
of the stock X,.



Policies

T-1
in J(U) with J(U) =E te(U.. X TK(X
3‘6'2{( ) with J(U) w[t;owr( X)) ta K(X )]

Xy =x X, =f(X,U,, Wt+1)

1. minyey, J(U) : Uy space of history dependent controls
depending on past states, past controls, past noises

2. <minyey,, J(U) : Upn space of markovian controls
depending on current state

3. < minyey,, J(U) : Uor space of open-loop controls
deterministic (constant random variables)

We have that minyey, J(U) = mingey,, J(U)



State Feedback Versus Open-Loop Feedback

min | X7 + X2|
Upt;
W,, W, i.id (Bernoulli with p =1/2)

» State Feedback U, = 1o(X,) U; = 71(X;)
> Vy(x) = x?
> Vi(x) = min,E[x® + Vo(x — u + Wh)]
=min,x*+ (x —u+1)?/2+ (x —u)?/2=x*>+1/4
> Vo(X) = minu]E[Vl(x —u-+ Wl)]
=min, 1/4+ (x —u+1)?/2+ (x — u)?/2 =1/2
» Open Loop Controls Uy = up, U; = 11
> ming, u E[(—uo + W1)2 +(—uo+ W) —u + W2)2}
= ming,., 203 + 2uguy + U — 3uy — 2up +2 =3/4

1/2= gmig B (U, Uy)] < min E (o, ur)| =3/4



Outline of the presentation

The Dynamic Programming Equation



Start with a Simplified Problem — just a Final Cost

Problem (P) starting at position x at initial time t =0 :

Vo(x) = min  E[K (X7)],

sc. Xp=x,

Xt+1 =f (Xt7 U, Wt+1) )
» Noises W = (W,);=1,..7 (The demand)
» Controls U = (U,
» States (X,)¢—o,..,7—1 (Stock of Newspaper)

)t=0,....T—1 (Newspaper to order)



Markovian Dynamics

The noises and initial state X, W,, ..., W are independent r.v

» Transition Matrix : uncontrolled case f : X x W — X
Xt+1 = f(X,, Wt+1) P(x,y) = IP’(f(X, w,) = y)

» Transition Matrix : controlled case f : X x U x W — X with
markovian policy (¢s)sepo,7—1], Uy = #+(X,)

Xt+1 = f( t? ¢t( ) t+1) Pf(X7y) = P(f(xv ¢t(x)7 Wl) - y)

For u € U, let PY :=P(f(x,u, W,) = y). For a Markovian
policy (¢s)sepo,7—1). PY is defined by P{(x,y) = P#()(x, y)

Xt+1 = f( ta¢t( ) t+1) P?(va) = Pd)t(x)(xa)’)



A Family of problems

» Problem (Py,) starting with stock x at time tp :

st X, =x, X1 =1t (Xp, 0e(X,), W, y)
» Problem (P',) démarrant en p a ty :

Vi (1) = Mny(n) Vi (1)

Vfg ZMT

with i, = pt,  pes1 = pePy

» Dynamic pep1(y) =, ut(X)Pi(yx)



Links between Vﬁ)() and V{(")
We have that

Vi) = (1 V) = D H Vi) and V() = Vi (6()
Indeed :
» Problem (Py,) starting with stock x at tp :
Vi) = (P -+ Pr_1K)(x)

(Ex. fortop =T —1 V$1 ZPTlxy (v)
yeX

» Problem (P'y,) starting with u at t :
V%(u) = ,ng . P?_lK

(Ex.forto=T =1 V& ()= > u(x)PL 1(xy)K(¥))
x,yeX



Thecase T =1
XOZX

V(x) =E[K(X})] =Y PuyK(y)
y
Assume that the law of X, is p
V() =E [K(X)] =Y u(x) D PeyK(y)

We obtain

and

V(0x) = Zéx’(X)ZPX,yK(y) = ZM(X)PX’,yK(y) = V(X/) :

y



Recursive Computation of V;

We have that :

Vi(p) = min Vera(uPy)

Proof : The problem (P';) starting with u at time t :

Ve(p) = r(g(ir; pPf---PY_ K

> At time t, P? only depends on ¢;.

» The raw vector qu; is non negative (its a probability law)

Ve(p) = min <MP{?, ( m)in Pl P$_1K>

t ¢s s>t

V() = min (uPY. Veir () = min Vesa (uPf)



Recursive Equation for V; with t € {0,--- | T}

Bellman Equation :

Vi(x) = TQGE[VtH(ft(X, u, Wt+1))]
uﬁ(x) = Arge%linE[VtJrl(ﬂ(X, u, Wt+1))]

Vr(x) = K(x)
Proof : We already have for V; that

Ve(u) = ”;)i“ Ve (uPy)

> Vi(x) = Ve(0x(4))
> Vi (0x()PP) = E[Ver1(fe(x, e, Wi 1))



Recursive Equation for V; with t € {0,--- | T}
Bellman Equation

= min oy Ver1(y
uelU +

Vr(x) = K(X)

Optimal control

u*(x) € Argmin Z v Viera(y)

uel

Proof :

Z y Veraly ZP X, u, Wy 1) = y) Ver1(y)

:E[Vprl(ft(x u, Wt+1))]



Finite Horizon with instantaneous costs
The problem (Pg) starting with x at initial time t =0 :

T-1
Vo(x) = min, B ;Lt (X, U, W) + K (X7) |

st. X, =x,
Xt+1:ft(xtaut7wt+1), vt:0,7T—1,

Dynamic Programming Equation (Bellman Equation)
Vi(x) = [:nelt[r} E[Lt(x, u, W, 1) + Veua(f(x, u, Wt+1))]
Vr(x) = K(x)



Finite Horizon with instantaneous costs

The cost of problem (P) starting at x at t = 0 equals V/(0, x)

Vo(z, x) = Juin - E[Zr+ K (X))

s.t. XO =X, Xt+1 =t (Xt7 Ut? Wt+1) ’

Zy=2z,2, =2+ 1L (Xt’ U,, Wt+1) )

» (Z,X) is Markovian for feedback controls ¢(z, x).
> The Bellman Equation is V7 (z,x) = z + K(x) and

\7t(Z,X) = Tellr} E [\7t+1(z + Le(x,u, W, 1), fe(x, u, WtJrl))]

t+1



Finite Horizon with instantaneous costs

v

We recursively show that Vi(z,x) = z + Vi(x)

true for t = T since V7 (z,x) = z + K(x)

at time t

Ve(z,x) = min B [z + Le(x, 0, Wy y) + Vega(flx, u, W, )]

Vi(z,x) =z + min E [Le(x, u, W p) + Vera(fe(x, u, W)

Vt(X)
the minimization for u € U only depends on x. Thus, the

optimal control is a feedback on the state x.

we note that V;(0,x) = V;(x), giving the Bellman Equation
for the problem with instantaneous cost.



Final Result : The Bellman Equation

)= i, B |3 % U ) )|

st. X, =x,
XtH:ft(X u,, Wt+1) Vt=0,..., T -1,

Vi(x) = Téﬁl} E[Lt(x u, W, 1) + Vg (fe(x, u, t+1))]
Vr(x) = K(x)

u*(x) € Argrurjnn E [Lt(x, u, Wy, 1) + Ve (fe(x, u, H_1))]
ue




Computing value functions

1. Time loop backward to compute V; for all t

2. State loop for all x
3. Find the optimal control (control loop, L.P., Q.P)
4. Loop on random values to compute the

expected cost



State Feedback Versus Open-Loop Feedback (II)

min | X7 + X2|
Upt;
W,, W, i.id (Bernoulli with p =1/2)

» State Feedback U, = 1o(X,) U; = 71(X;)
> Vy(x) = x?
> Vi(x) = min,E[x® + Vo(x — u + Wh)]
=min,x*+ (x —u+1)?/2+ (x —u)?/2=x*>+1/4
> Vo(X) = minu]E[Vl(x —u-+ Wl)]
=min, 1/4+ (x —u+1)?/2+ (x — u)?/2 =1/2
» Open Loop Controls Uy = up, U; = 11
> ming, u E[(—uo + W1)2 +(—uo+ W) —u + W2)2}
= ming,., 203 + 2uguy + U — 3uy — 2up +2 =3/4

1/2= gmig B (U, Uy)] < min E (o, ur)| =3/4



A Farmer problem

» when annual production is x units of a certain crop
> he stores (1 — u)x units,
» he uses the remaining ux units for next year production,
where u € (0,1)

» then, the level of next year production will be W ux, where
W is a positive random variable not depending on x or u with
known expectation E[W] = w.

» Optimization problem : find the optimal investment policy
that maximizes the total expected product stored over N years

N-1

E[Z(l — U)X+ Xyl
k=0
assuming that X, , = W, U X,.



Bellman Equation

V, = E 1-U )X + X
0= g My, B[S0 X X
X1 =W, ,UX, and X, = x..
We obtain that Vjy(x) = x and

Vo(x) = max (1 —u)x +E [V,,H(Wuxﬂ
Assume that V,,11(x) = ap+1x then we have that

V() X when apiw <
n{X) = o
an+1wx when ap 1w >

5|

That is Vp(x) = apx with a, = max (1, a,,+1W) (with ay = 1).



Increasing the State Space

How to solve
Vo(x) = min  E[K x,)].
0(x) X, (Se{rgﬁfn )
s.t. X0 =x,
Xt+1:ft(xtautth+1), VtzO,...,T—l,

The noises and initial state X, W,,..., W are independent r.v

> Y, = maxs(o,....t} X, is not a Markov chain.

> (Xt, Yt) is a Markov chain. (XO, Yo) = (x, x) and
X1 =1 (Xt’ u,, Wt+1)
Y= se{(Ti);Jrl} X, = max (th Xt+1)

= max (Yt’ ft(xt: Ut7 Wt+1))



Increasing the State Space

How to solve

Vo(x) = min  E [K(XT)],
st. X, = x fixed,

Xt+]_:ft(xtaut7wt+1), vt:0,7T—1’

The noises and initial state X, W,,..., W are not independent

> W, = gf(Wt’WH-l)

> X,, W,,..., W are independent
> (Xt, Wt) is a Markov chain

X1 =" (Xt’ U,, Wt+1) = ft(xtv Ut’gt(Wt’WH—l))

W, =8 ( w,, Wt+1)
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