Progressive Hedging

Jean-Philippe Chancelier and SOWG
CERMICS, École des Ponts ParisTech

Interface course, CIRM, Luminy
November 2019

Presentation Outline

A Toy Examples in Energy Management

The Newsvendor problem

Lagrangian recalls

The Progressive Hedging Algorithm

Outline of the presentation

A Toy Examples in Energy Management

The Newsvendor problem

Lagrangian recalls

The Progressive Hedging Algorithm

A Toy Examples in Energy Management

Economic dispatch as a cost-minimization problem under supply-demand balance.
We consider two energy production units

- a "cheap" limited one which can produce a quantity q_{0}, with $0 \leq q_{0} \leq q_{0}^{\sharp}$, at cost $c_{0} q_{0}$
- an "expensive" unlimited one which can produce quantity q_{1}, with $0 \leq q_{1}$, at $\operatorname{cost} c_{1} q_{1}$, with $c_{1}>c_{0}$

A Toy Examples in Energy Management (II)

On the consumption side, the demand is $D \geq 0$.
We express the supply-demand balance objective as ensuring at least the demand, that is

$$
q_{0}+q_{1} \geq D
$$

This objective is to be achieved at least cost, so that the optimization problems is :

$$
\min _{q_{0}, q_{1}} \underbrace{c_{0} q_{0}+c_{1} q_{1}}_{\text {total costs }}
$$

A Toy Examples in Energy Management (III)

Measurability constraints

- The probability law of the demand is known
- q_{0} is decided not knowing the demand D
- Open-Loop control
- q_{1} is decided knowing the demand D (Recourse)
- Feedback control $\boldsymbol{q}_{1}=\gamma(D)$

The Stochastic Optimization Problem

We have to consider a stochastic optimization problem

$$
\begin{aligned}
& \min _{q_{0}, \boldsymbol{q}_{1}} \mathbb{E}\left[c_{0} q_{0}+c_{1} \boldsymbol{q}_{1}\right] \\
& \text { under the constraints } \\
& 0 \leq q_{0} \leq \boldsymbol{q}_{0}^{\sharp} \\
& 0 \leq \boldsymbol{q}_{1} \\
& \boldsymbol{D} \leq q_{0}+\boldsymbol{q}_{1} \\
& \boldsymbol{q}_{1} \text { depends upon } \boldsymbol{D},
\end{aligned}
$$

Outline of the presentation

A Toy Examples in Energy Management

The Newsvendor problem

Lagrangian recalls

The Progressive Hedging Algorithm

The One Day Newsvendor Problem as a Linear Program

Recall

$$
\min _{u \in \mathbb{R}_{+}} J(u)=\mathbb{E}_{\boldsymbol{W}}[j(u, \boldsymbol{W})]
$$

where

$$
j(u, w)=c_{M} w+\left(c-c_{M}\right) u+\left(c_{M}+c_{S}\right)(u-w)_{+}
$$

can be writen as a linear program

The One Day Newsvendor Problem as a Linear Program

$$
\begin{aligned}
\min _{u \in \mathbb{U},\left(r_{s}\right)_{s \in S} \in \mathbb{V} S} & \sum_{s \in S} \pi_{s}\left(c_{M} w_{s}+\left(c-c_{M}\right) u+\left(c_{M}+c_{S}\right) r_{s}\right) \\
& \text { subject to } \\
& r_{s} \geq u-w_{s} \quad \forall s \in S \\
& r_{s} \geq 0 \quad \forall s \in S \\
& u \geq 0
\end{aligned}
$$

- From a non-linear optimization problem with $u \in \mathbb{R}_{+}$
- To a Linear Program with
- $1+|S|$ variables : $\left(u,\left(r_{s}\right)_{s \in S}\right) \in \mathbb{R}^{1+|S|}$
- $2|S|+1$ constraints

The measurability constraint (I)

- The control $u \in \mathbb{U}$ must be the same for all realizations of the demand w_{s}
- Introduce a control $u_{s} \in \mathbb{U}$ for each scenario (duplication of variables) and force all the control to be equal. That is, add a constraint $u_{s}=\bar{u}$ for all $s \in S$

$$
\begin{aligned}
\min _{\left.\bar{u} \in \mathbb{U},\left(u_{s}\right)_{s \in s \in \mathbb{U}^{S},\left(r_{s}\right)}\right)_{s \in S} \in \mathbb{V}^{S}} & \sum_{s \in S} \pi_{s}\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right) \\
& \text { subject to } \\
& r_{s} \geq u_{s}-w_{s} \quad \forall s \in S \\
& r_{s} \geq 0 \quad \forall s \in S \\
& u_{s} \geq 0 \\
& u_{s}=\bar{u} \quad \forall s \in S
\end{aligned}
$$

The measurability constraint (II)

$$
\begin{aligned}
& u_{s}=\bar{u} \text { for all } s \in S \text { implies that } \bar{u}=\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}} \\
& \qquad \begin{array}{l}
\min _{\left(u_{s}\right)_{s \in S} \in \mathbb{U}^{S},\left(r_{s}\right)_{s \in S} \in \mathbb{V}^{S}} \sum_{s \in S} \pi_{s}\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right) \\
\\
\quad \text { subject to } \\
\\
r_{s} \geq u_{s}-w_{s} \quad \forall s \in S \\
\\
r_{s} \geq 0 \quad \forall s \in S \\
\\
u_{s} \geq 0 \\
\\
u_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}=0 \quad \forall s \in S
\end{array}
\end{aligned}
$$

Using multipliers

For all $s \in S$, dualize the constraint $u_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}=0 \mathrm{We}$ have that

$$
\sum_{s \in S} \pi_{s}\left\langle\lambda_{s}, u_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}\right\rangle=\sum_{s \in S} \pi_{s}\left\langle\lambda_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} \lambda_{s^{\prime}}, u_{s}\right\rangle
$$

Thus we obtain

$$
\begin{aligned}
& \min _{u_{s} \in \mathbb{U}^{S},\left(r_{s}\right)_{s \in s} \in \mathbb{V}^{S}} \sum_{s \in S} \pi_{s}\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right. \\
&\left.+\left\langle\lambda_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} \lambda_{s^{\prime}}, u_{s}\right\rangle\right) \\
& r_{s} \geq u_{s}-w_{s} \quad \forall s \in S \\
& r_{s} \geq 0 \quad \forall s \in S \\
& u_{s} \geq 0
\end{aligned}
$$

Using multipliers (II)

For given multipliers the problem is decomposed scenario by scenario. For scenario s we have to solve

$$
\begin{aligned}
& \min _{u_{s} \in \mathbb{U}, r_{s} \in \mathbb{V}}\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right. \\
&\left.\quad+\left\langle\lambda_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} \lambda_{s^{\prime}}, u_{s}\right\rangle\right) \\
& r_{s} \geq u_{s}-w_{s} \\
& r_{s} \geq 0 \\
& u_{s} \geq 0
\end{aligned}
$$

- $|S|$ Linear problems to solve in parallel
- Each L.P. have 2 variables and 3 constraints

How to chose multipliers in order to recover a solution of the original problem?

Outline of the presentation

> A Toy Examples in Energy Management

> The Newsvendor problem

Lagrangian recalls

The Progressive Hedging Algorithm

Lagrangian recalls

$$
\min _{u \in \mathcal{U}, \Theta(u) \in-C} f(u)
$$

- $\Theta: \mathbb{U} \rightarrow \mathbb{K}, \mathbb{K}$ in duality with \mathbb{K}^{\star}
- example $\mathbb{K}=\mathbb{K}^{*}=\mathbb{R}^{n}$ with usual $\langle x, y\rangle$
- $C \in \mathbb{K}$ a closed convex cone such that $C \cap-C=\{0\}$ (salient).
- $C^{\star} \in \mathbb{K}^{\star}, C^{\star}:=\left\{u^{\star} \in \mathbb{U}^{\star} \mid\left\langle u^{\prime}, u\right\rangle \geq 0 \forall u \in C\right\}$
- example $K: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}, K u=0 \sim K u \in-C$ with $C=\{0\}$, $C^{\star}=\mathbb{R}^{n}$
- example $K u \leq 0 \sim K u \in-C$ with $C=\mathbb{R}_{+}^{n}, C^{\star}=\mathbb{R}_{+}^{n}$

We introduce the Lagrangian

$$
\begin{aligned}
L(u, \lambda): \mathbb{U} \times \mathbb{K}^{\star} & \rightarrow \overline{\mathbb{R}} \\
(u, \lambda) & \rightarrow f(u)+\langle\lambda, \Theta(u)\rangle
\end{aligned}
$$

We consider the Lagrangian restricted to $u \in \mathcal{U}$ and $\lambda \in C^{\star}$

Lagrangian recalls

The solutions of the problems

$$
\min _{u \in \mathcal{U}, \Theta(u) \in-C} f(u)
$$

and

$$
\min _{u \in \mathcal{U}} f(u)+\delta_{-C}(\Theta(u))
$$

and

$$
\min _{u \in \mathcal{U}} \sup _{\lambda \in C^{\star}} L(u, \lambda)
$$

are the same.
where

$$
\delta_{A}(u)= \begin{cases}0 & \text { if } u \in A \\ +\infty & \text { if } u \notin A\end{cases}
$$

Lagrangian recalls

$$
\delta_{-c}(\Theta(u))=\sup _{\lambda \in C^{\star}}\langle\lambda, \Theta(u)\rangle
$$

(\$) : ignore on first read

- If $\Theta(u) \in-C$ then $\langle\lambda, \Theta(u)\rangle \leq 0$ for all $\lambda \in C^{\star}$ and equal to 0 when $\lambda=0 \in C^{\star}$ then $\sup _{\lambda \in C^{\star}}\langle\lambda, \Theta(u)\rangle=0$.
- C is a closed convex cone thus $C^{\star \star}=C$. Thus if $\langle\lambda, \Theta(u)\rangle \leq 0$ for all $\lambda \in C^{\star}$ we have that $\Theta(u) \in C^{\star \star}$ and thus $\Theta(u) \in C$. Therefore, assume that $\Theta(u) \notin C$, then there exists $\lambda_{0} \in C^{\star}$ such that $\left\langle\lambda_{0}, \Theta(u)\right\rangle<0$. Using the fact that C^{\star} is a cone we have

$$
\sup _{\lambda \in C^{\star}}\langle\lambda, \Theta(u)\rangle \geq \sup _{\mu \in \mathbb{R}_{+}}\left\langle\lambda_{0}, \Theta(u)\right\rangle=+\infty
$$

Dual function

- We always have that

$$
\sup _{\lambda \in C^{\star}} \inf _{u \in \mathcal{U}} L(u, \lambda) \leq \inf _{u \in \mathcal{U}} \sup _{\lambda \in C^{\star}} L(u, \lambda)=\min _{u \in \mathcal{U}, \Theta(u) \in-C} f(u)
$$

- We can obtain a a lower bound by maximizing the dual function

$$
\sup _{\lambda \in C^{\star}} \phi(\lambda) \quad \text { where } \quad \phi(\lambda):=\inf _{u \in \mathcal{U}} L(u, \lambda)
$$

- For λ fixed $\phi(\lambda)$ is always a lower bound
- Possible Algorithm \leadsto maximizing $\phi(\lambda)$ by projected gradient algorithm

$$
\lambda^{(k+1)}=P_{C^{\star}}\left(\lambda^{(k)}+\rho \Theta\left(u^{(k+1)}\right)\right)
$$

Saddle Point

- Let $f: \mathbb{X} \times \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $X \times Y \subset \mathbb{X} \times \mathbb{Y}$ $\left(x^{\sharp}, y^{\sharp}\right) \in \mathbb{X} \times \mathbb{Y}$ is a saddle point of f on $\mathbb{X} \times \mathbb{Y}$ if

$$
\forall(x, y) \in X \times Y, f\left(x^{\sharp}, y\right) \leq f\left(x^{\sharp}, y^{\sharp}\right) \leq f\left(x, y^{\sharp}\right)
$$

- Result : $\left(x^{\sharp}, y^{\sharp}\right) \in \mathbb{X} \times \mathbb{Y}$ is a saddle point of f if and only if

$$
\begin{aligned}
f\left(x^{\sharp}, y^{\sharp}\right)=\sup _{y \in \mathbb{Y}} f\left(x^{\sharp}, y\right) & =\min _{x \in \mathbb{X}} \sup _{y \in \mathbb{Y}} f(x, y) \\
& =\max _{y \in \mathbb{Y}} \inf _{x \in \mathbb{X}} f(x, y)=\inf _{x \in \mathbb{X}} f\left(x, y^{\sharp}\right)
\end{aligned}
$$

- supinf and inf sup commute
- we have supinf = maxinf and inf sup = minsup

Lagrangian case

- If $\left(u^{\star}, \lambda^{\star}\right)$ is a saddle point of $L(u, \lambda)$ on $\mathcal{U} \times C^{\star}$ then u^{\star} is solution of the primal problem $\min _{u \in \mathcal{U}, \Theta(u) \in-C} f(u)$.
- $\left(u^{\star}, \lambda^{\star}\right)$ is a saddle point if and only if

$$
\max _{\lambda \in C^{\star}} \inf _{u \in \mathcal{U}} L(u, \lambda)=\min _{u \in \mathcal{U}} \sup _{\lambda \in C^{\star}} L(u, \lambda)
$$

- In the convex case (+ technical conditions) if u^{\star} is solution of the primal problem there exists λ^{\star} such that $\left(u^{\star}, \lambda^{\star}\right)$ is a saddle point of the Lagrangian

Outline of the presentation

A Toy Examples in Energy Management

The Newsvendor problem

Lagrangian recalls

The Progressive Hedging Algorithm

The newsvendor problem

$$
\begin{aligned}
\min _{\left(u_{s}, r_{s}\right)} & \sum_{s \in S \in(\mathbb{U} \times \mathbb{V})^{s}} \sum_{s \in S} \overbrace{s} \overbrace{\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right)}^{f_{s}\left(\left(u_{s}, r_{s}\right)\right)} \\
& \text { subject to } \\
& \left(u_{s}, r_{s}\right) \in \overline{\mathcal{U}}_{s} \subset \mathbb{U} \times \mathbb{V} \\
& u_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}=0 \quad \forall s \in S
\end{aligned}
$$

where $\overline{\mathcal{U}}_{s} \subset \mathbb{U} \times \mathbb{V}$ is defined by

$$
\begin{aligned}
& r_{s} \geq u_{s}-w_{s} \quad \forall s \in S \\
& r_{s} \geq 0 \quad \forall s \in S \\
& u_{s} \geq 0
\end{aligned}
$$

Abstract Version of P.H.

- $\mathbb{U}=\prod_{s=1}^{n} \mathbb{U}_{s}$ equiped with a scalar product $\left\langle u, u^{\prime}\right\rangle=\sum_{s=1}^{n} \pi_{s}\left\langle u_{s}, u_{s}^{\prime}\right\rangle_{s}\left(\pi_{s}>0\right.$ for all $\left.i \in\{1, \ldots, n\}\right)$
- $\Pi: \mathbb{U} \rightarrow \mathbb{V} \subset \mathbb{U}$ an orthognal projection on \mathbb{V} a subspace of \mathbb{U} $\mathbb{V}:=\{u \in \mathbb{U} \mid K u=0\}$ where $K=I d-\Pi$
- $f: \mathbb{U} \rightarrow \mathbb{R} \cup+\infty$ such that $f(u):=\sum_{s=1}^{n} \pi_{s} f_{s}\left(u_{s}\right)$
- $\mathcal{U} \subset \mathbb{U}$ such that $\mathcal{U}=\prod_{s=1}^{n} \mathcal{U}_{s}$ with $\mathcal{U}_{s} \subset \mathbb{U}_{s}$

Minimization problem

$$
\min _{u \in \mathcal{U} \cap \mathbb{V}} f(u)
$$

Without the coupling constraint $u \in \mathbb{V}$ we would have

$$
\min _{u \in \mathcal{U}} f(u)=\sum_{s=1}^{n} \pi_{s} \min _{u_{s} \in \mathcal{U}_{s}} f_{s}\left(u_{s}\right)
$$

The coupling constraint $u \in \mathbb{V}$ can be written $K u=0$

Abstract Version of P.H.

- Measurability constraint $K u=0$
- $K=I d-\Pi$
- $\Pi: \mathbb{U} \rightarrow \mathbb{U}$ is a projection

$$
\Pi\left(\left(u_{1}, \ldots, u_{n}\right)\right)=\left(\left(\sum_{i=1}^{n} \pi_{i} u_{i}\right), \ldots,\left(\sum_{i=1}^{n} \pi_{i} u_{i}\right)\right)
$$

- The subscape \mathbb{V}

$$
\mathbb{V}:=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{U} \mid u_{1}=\ldots=u_{n}\right\}
$$

- The subspace \mathbb{V}^{\perp}

$$
\mathbb{V}:=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{U} \mid \sum_{i=1}^{n} \pi_{i} \lambda_{i}=0\right\}
$$

Abstract Version of P.H (II)

- Lagrangian $L: \mathbb{U} \times \mathbb{U}^{\star} \rightarrow \overline{\mathbb{R}}$, associated to $K u=0$

$$
L(u, v)=f(u)+\langle K u, v\rangle
$$

- We can in fact consider

$$
\begin{aligned}
L: \mathbb{U} \times \mathbb{U}^{\star} & \rightarrow \overline{\mathbb{R}} \\
(u, v) & \mapsto L(u, v)=f(u)+\langle u, v\rangle
\end{aligned}
$$

for $u \in \mathcal{U}$ and $\lambda \in K(\mathbb{U})$ (equivalent to $\sum_{s=1}^{n} \pi_{s} \lambda_{s}=0$)
(\$) : ignore on first read

- $v \in \mathbb{U}, v=(I d-\Pi) v+\Pi v$ with $(I d-\Pi) v \in \mathbb{V}$ and $\Pi v \in \mathbb{V}^{\perp}$
- $L(x, v)=f(u)+\langle K u, K v+\Pi v\rangle=f(u)+\langle K u, K v\rangle=L(x, K v)$
- We can restrict the dual space to $K(\mathbb{U})$ considering $L: \mathbb{U} \times K(\mathbb{U}) \rightarrow \overline{\mathbb{R}}$. That is dual variables u^{\prime} satisfying $\Pi u^{\prime}=0$.
- Assuming that $v \in K(\mathbb{U})$ we have
- L(x,v) $=f(u)+\langle K u, v\rangle=f(u)+\left\langle K u, K u^{\prime}\right\rangle=f(u)+\left\langle u, K \circ K u^{\prime}\right\rangle=f(u)+\left\langle u, K u^{\prime}\right\rangle=f(u)+\langle u, v\rangle$
- We thus consider $L(u, v)=f(u)+\langle u, v\rangle$

Augmented Lagrangian

"Augmented Lagrangian methods were developed in part to bring robustness to the dual ascent method, and in particular, to yield convergence without assumptions like strict convexity or finiteness of $f^{\prime \prime}$

$$
\min _{\Theta(u)=0} f(u) \leadsto L_{r}(u, v)=f(u)+\langle v, \Theta(u)\rangle+\frac{r}{2}\|\Theta(u)\|_{2}^{2}
$$

The augmented Lagrangian can be viewed as the (unaugmented) Lagrangian associated with the problem

$$
\min _{\Theta(u)=0} f(u)+\frac{r}{2}\|\Theta(u)\|_{2}^{2}
$$

Augmented Lagrangian

- Augmented Lagrangian associated to $K u=0$

$$
L_{r}(u, v)=L(u, v)+r / 2\|K u\|^{2}
$$

- That is

$$
L_{r}(u, v)=f(u)+\langle u, v\rangle+r / 2\|u-\Pi u\|^{2}
$$

- with $\Pi u=\sum_{i=1}^{n} \pi_{i} u_{i}$

At first look We lose decomposition!

The Progressive Hedging Algorithm

1. given $u^{k} \in \mathcal{U}, \lambda^{k}$ such that $\Pi \lambda^{k}=0$
2. compute $\bar{u}^{k+1}=\Pi u^{k}$
3. compute u^{k+1} solution of

$$
u^{k+1} \in \underset{u \in \mathcal{U}}{\operatorname{Argmin}} f(u)+\left\langle u, \lambda^{k}\right\rangle+r / 2\left\|u-\bar{u}^{k+1}\right\|^{2}
$$

- From Linear Programming to Quadratic Programming
- But we can Linearize a quadratic term

4. update multiplier with $\lambda^{k+}=\lambda^{k}+r K u^{k+1}$.
$\left(\right.$ Note that $\left.\Pi \lambda^{k+1}=\Pi \lambda^{k}+r \Pi K u^{k+1}=0\right)$

Abstract Version of P.H (III)

Compute u^{k+1} solution of

$$
u^{k+1} \in \underset{u \in \mathcal{U}}{\operatorname{Argmin}} f(u)+\left\langle u, \lambda^{k}\right\rangle+r / 2\left\|u-\bar{u}^{k+1}\right\|^{2}
$$

leads to scenario decomposition as

$$
u_{s}^{k+1} \in \underset{u_{s} \in \mathcal{U}_{s}}{\operatorname{Argmin}} f\left(u_{s}\right)+\left\langle u_{s}, \lambda_{s}^{k}\right\rangle+r / 2\left\|u_{s}-\bar{u}^{k+1}\right\|^{2}
$$

Note that $u^{k+1} \in \mathcal{U}$ and $\bar{u}^{k+1} \in \mathbb{V}$ thus $\left\|u^{k+1}-\bar{u}^{k+1}\right\|^{2}$ is used to measure how far is u^{k+1} from $\mathcal{U} \cap \mathbb{V}$.

Convergence of Progressive Hedging

Rockafellar, R.T., Wets R. J-B.

Scenario and policy aggregation in optimization under uncertainty, Mathematics of Operations Research, 16, pp. 119-147, 1991

- Extend to N -stage problems easily
- With integer variables it is an heuristic
- Many extensions to improve the integer variable cases

