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A Toy Examples in Energy Management

Economic dispatch as a cost-minimization problem under
supply-demand balance.
We consider two energy production units

I a “cheap” limited one which can produce a quantity q0, with
0 ≤ q0 ≤ q]0, at cost c0q0

I an “expensive” unlimited one which can produce quantity q1,
with 0 ≤ q1, at cost c1q1, with c1 > c0



A Toy Examples in Energy Management (II)

On the consumption side, the demand is D ≥ 0.
We express the supply-demand balance objective as ensuring at
least the demand, that is

q0 + q1 ≥ D .

This objective is to be achieved at least cost, so that the
optimization problems is :

min
q0,q1

c0q0 + c1q1︸ ︷︷ ︸
total costs

.



A Toy Examples in Energy Management (III)

Measurability constraints

I The probability law of the demand is known
I q0 is decided not knowing the demand D

I Open-Loop control

I q1 is decided knowing the demand D (Recourse)
I Feedback control q1 = γ(D)



The Stochastic Optimization Problem

We have to consider a stochastic optimization problem

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q]0
0 ≤ q1

D ≤ q0 + q1

q1 depends upon D ,
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The One Day Newsvendor Problem as a Linear Program

Recall
min
u∈R+

J(u) = EW [j(u,W )]

where

j(u,w) = cMw + (c − cM)u + (cM + cS)(u − w)+

can be writen as a linear program



The One Day Newsvendor Problem as a Linear Program

min
u∈U,(rs)s∈S∈VS

∑
s∈S

πs
(
cMws + (c − cM)u + (cM + cS)rs

)
subject to

rs ≥ u − ws ∀s ∈ S

rs ≥ 0 ∀s ∈ S

u ≥ 0

I From a non-linear optimization problem with u ∈ R+

I To a Linear Program with
I 1 + |S | variables :

(
u, (rs)s∈S

)
∈ R1+|S|

I 2|S |+ 1 constraints



The measurability constraint (I)

I The control u ∈ U must be the same for all realizations of the
demand ws

I Introduce a control us ∈ U for each scenario (duplication of
variables) and force all the control to be equal. That is, add a
constraint us = u for all s ∈ S

min
u∈U,(us)s∈S∈US ,(rs)s∈S∈VS

∑
s∈S

πs
(
cMws + (c − cM)us + (cM + cS)rs

)
subject to

rs ≥ us − ws ∀s ∈ S

rs ≥ 0 ∀s ∈ S

us ≥ 0

us = u ∀s ∈ S



The measurability constraint (II)

us = u for all s ∈ S implies that u =
∑

s′∈S πs′us′

min
(us)s∈S∈US ,(rs)s∈S∈VS

∑
s∈S

πs
(
cMws + (c − cM)us + (cM + cS)rs

)
subject to

rs ≥ us − ws ∀s ∈ S

rs ≥ 0 ∀s ∈ S

us ≥ 0

us −
∑
s′∈S

πs′us′ = 0 ∀s ∈ S



Using multipliers

For all s ∈ S , dualize the constraint us −
∑

s′∈S πs′us′ = 0 We
have that∑

s∈S
πs
〈
λs , us −

∑
s′∈S

πs′us′
〉

=
∑
s∈S

πs
〈
λs −

∑
s′∈S

πs′λs′ , us
〉

Thus we obtain

min
us∈US ,(rs)s∈S∈VS

∑
s∈S

πs

(
cMws + (c − cM)us + (cM + cS)rs

+
〈
λs −

∑
s′∈S

πs′λs′ , us
〉)

rs ≥ us − ws ∀s ∈ S

rs ≥ 0 ∀s ∈ S

us ≥ 0



Using multipliers (II)

For given multipliers the problem is decomposed scenario by
scenario. For scenario s we have to solve

min
us∈U,rs∈V

(
cMws + (c − cM)us + (cM + cS)rs

+
〈
λs −

∑
s′∈S

πs′λs′ , us
〉)

rs ≥ us − ws

rs ≥ 0

us ≥ 0

I |S | Linear problems to solve in parallel

I Each L.P. have 2 variables and 3 constraints

How to chose multipliers in order to recover a solution of the
original problem ?
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Lagrangian recalls

min
u∈U ,Θ(u)∈−C

f (u)

I Θ : U→ K, K in duality with K?

I example K = K∗ = Rn with usual 〈x , y〉
I C ∈ K a closed convex cone such that C ∩ −C = {0}

(salient).
I C ? ∈ K?, C ? := {u? ∈ U? | 〈u′ , u〉 ≥ 0 ∀u ∈ C}

I example K : Rp → Rn, Ku = 0 ; Ku ∈ −C with C = {0},
C? = Rn

I example Ku ≤ 0 ; Ku ∈ −C with C = Rn
+, C? = Rn

+

We introduce the Lagrangian

L(u, λ) : U×K? → R
(u, λ)→ f (u) + 〈λ ,Θ(u)〉

We consider the Lagrangian restricted to u ∈ U and λ ∈ C ?



Lagrangian recalls

The solutions of the problems

min
u∈U ,Θ(u)∈−C

f (u)

and
min
u∈U

f (u) + δ−C
(
Θ(u)

)
and

min
u∈U

sup
λ∈C?

L(u, λ)

are the same.
where

δA(u) =

{
0 if u ∈ A

+∞ if u 6∈ A



Lagrangian recalls

δ−C
(
Θ(u)

)
= sup

λ∈C?
〈λ ,Θ(u)〉

X : ignore on first read

I If Θ(u) ∈ −C then 〈λ ,Θ(u)〉 ≤ 0 for all λ ∈ C ? and equal to
0 when λ = 0 ∈ C ? then supλ∈C? 〈λ ,Θ(u)〉 = 0.

I C is a closed convex cone thus C ?? = C . Thus if
〈λ ,Θ(u)〉 ≤ 0 for all λ ∈ C ? we have that Θ(u) ∈ C ?? and
thus Θ(u) ∈ C . Therefore, assume that Θ(u) 6∈ C , then there
exists λ0 ∈ C ? such that 〈λ0 ,Θ(u)〉 < 0. Using the fact that
C ? is a cone we have

sup
λ∈C?

〈λ ,Θ(u)〉 ≥ sup
µ∈R+

〈λ0 ,Θ(u)〉 = +∞



Dual function
I We always have that

sup
λ∈C?

inf
u∈U

L(u, λ) ≤ inf
u∈U

sup
λ∈C?

L(u, λ) = min
u∈U ,Θ(u)∈−C

f (u)

I We can obtain a a lower bound by maximizing the dual
function

sup
λ∈C?

φ(λ) where φ(λ) := inf
u∈U

L(u, λ)

I For λ fixed φ(λ) is always a lower bound

I Possible Algorithm ; maximizing φ(λ) by projected gradient
algorithm

λ(k+1) = PC?

(
λ(k) + ρΘ(u(k+1))

)



Saddle Point

I Let f : X× Y→ R and X × Y ⊂ X× Y
(x ], y ]) ∈ X× Y is a saddle point of f on X× Y if

∀(x , y) ∈ X × Y , f (x ], y) ≤ f (x ], y ]) ≤ f (x , y ])

I Result : (x ], y ]) ∈ X× Y is a saddle point of f if and only if

f (x ], y ]) = sup
y∈Y

f (x ], y) = min
x∈X

sup
y∈Y

f (x , y)

= max
y∈Y

inf
x∈X

f (x , y) = inf
x∈X

f (x , y ])

I sup inf and inf sup commute
I we have sup inf = max inf and inf sup = min sup



Lagrangian case

I If (u?, λ?) is a saddle point of L(u, λ) on U × C ? then u? is
solution of the primal problem minu∈U ,Θ(u)∈−C f (u).

I (u?, λ?) is a saddle point if and only if

max
λ∈C?

inf
u∈U

L(u, λ) = min
u∈U

sup
λ∈C?

L(u, λ)

I In the convex case (+ technical conditions) if u? is solution of
the primal problem there exists λ? such that (u?, λ?) is a
saddle point of the Lagrangian
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The newsvendor problem

min
(us ,rs)s∈S∈(U×V)S

∑
s∈S

πs

fs
(

(us ,rs)
)︷ ︸︸ ︷(

cMws + (c − cM)us + (cM + cS)rs
)

subject to

(us , rs) ∈ U s ⊂ U× V

us −
∑
s′∈S

πs′us′ = 0 ∀s ∈ S

where U s ⊂ U× V is defined by

rs ≥ us − ws ∀s ∈ S

rs ≥ 0 ∀s ∈ S

us ≥ 0



Abstract Version of P.H.

I U =
∏n

s=1 Us equiped with a scalar product
〈u , u′〉 =

∑n
s=1 πs 〈us , u′s〉s (πs > 0 for all i ∈ {1, . . . , n})

I Π : U→ V ⊂ U an orthognal projection on V a subspace of U
V := {u ∈ U | Ku = 0} where K = Id − Π

I f : U→ R ∪+∞ such that f (u) :=
∑n

s=1 πs fs(us)

I U ⊂ U such that U =
∏n

s=1 Us with Us ⊂ Us

Minimization problem
min

u∈U∩V
f (u)

Without the coupling constraint u ∈ V we would have

min
u∈U

f (u) =
n∑

s=1

πs min
us∈Us

fs(us)

The coupling constraint u ∈ V can be written Ku = 0



Abstract Version of P.H.
I Measurability constraint Ku = 0

I K = Id − Π

I Π : U→ U is a projection

Π
(
(u1, . . . , un)

)
=
(
(

n∑
i=1

πiui ), . . . , (
n∑

i=1

πiui )
)

I The subscape V

V :=
{

(u1, . . . , un) ∈ U
∣∣ u1 = . . . = un

}
I The subspace V⊥

V :=
{

(λ1, . . . , λn) ∈ U
∣∣ n∑

i=1

πiλi = 0
}



Abstract Version of P.H (II)

I Lagrangian L : U× U? → R, associated to Ku = 0

L(u, v) = f (u) + 〈Ku , v〉

I We can in fact consider

L : U× U? → R
(u, v) 7→ L(u, v) = f (u) + 〈u , v〉

for u ∈ U and λ ∈ K (U) (equivalent to
∑n

s=1 πsλs = 0)

X : ignore on first read
I v ∈ U, v = (Id − Π)v + Πv with (Id − Π)v ∈ V and Πv ∈ V⊥

I L(x, v) = f (u) + 〈Ku ,Kv + Πv〉 = f (u) + 〈Ku ,Kv〉 = L(x,Kv)

I We can restrict the dual space to K(U) considering L : U× K(U)→ R. That is dual variables u′

satisfying Πu′ = 0.

I Assuming that v ∈ K(U) we have

I L(x, v) = f (u)+〈Ku , v〉 = f (u)+
〈
Ku ,Ku′

〉
= f (u)+

〈
u ,K ◦ Ku′

〉
= f (u)+

〈
u ,Ku′

〉
= f (u)+〈u , v〉

I We thus consider L(u, v) = f (u) + 〈u , v〉



Augmented Lagrangian

“Augmented Lagrangian methods were developed in part to bring
robustness to the dual ascent method, and in particular, to yield
convergence without assumptions like strict convexity or finiteness
of f ”

min
Θ(u)=0

f (u) ; Lr (u, v) = f (u) + 〈v ,Θ(u)〉+
r

2
‖Θ(u)‖2

2

The augmented Lagrangian can be viewed as the (unaugmented)
Lagrangian associated with the problem

min
Θ(u)=0

f (u) +
r

2
‖Θ(u)‖2

2



Augmented Lagrangian

I Augmented Lagrangian associated to Ku = 0

Lr (u, v) = L(u, v) + r/2‖Ku‖2

.

I That is

Lr (u, v) = f (u) + 〈u , v〉+ r/2‖u − Πu‖2

I with Πu =
∑n

i=1 πiui

At first look We lose decomposition !



The Progressive Hedging Algorithm

1. given uk ∈ U , λk such that Πλk = 0

2. compute uk+1 = Πuk

3. compute uk+1 solution of

uk+1 ∈ Argmin
u∈U

f (u) +
〈
u , λk

〉
+ r/2‖u − uk+1‖2

I From Linear Programming to Quadratic Programming
I But we can Linearize a quadratic term

4. update multiplier with λk+ = λk + rKuk+1.
(Note that Πλk+1 = Πλk + rΠKuk+1 = 0)



Abstract Version of P.H (III)

Compute uk+1 solution of

uk+1 ∈ Argmin
u∈U

f (u) +
〈
u , λk

〉
+ r/2‖u − uk+1‖2

leads to scenario decomposition as

uk+1
s ∈ Argmin

us∈Us
f (us) +

〈
us , λ

k
s

〉
+ r/2‖us − uk+1‖2

Note that uk+1 ∈ U and uk+1 ∈ V thus ‖uk+1 − uk+1‖2
is used to

measure how far is uk+1 from U ∩ V.



Convergence of Progressive Hedging

Rockafellar, R.T., Wets R. J-B.
Scenario and policy aggregation in optimization under uncertainty,

Mathematics of Operations Research, 16, pp. 119-147, 1991

I Extend to N-stage problems easily

I With integer variables it is an heuristic

I Many extensions to improve the integer variable cases
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