Homework to be done for the 14/10/2015 The three exercises are independent. When possible underline the final answers.

Exercise 1 (5pts). Consider a control dynamical system following

$$\boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{w}_{t+1}) , \qquad (1)$$

where

- the state x_t belongs to a Cartesian product finite set $\mathbb{X} \times \cdots \times \mathbb{X} = \mathbb{X}^{n_x}$;
- the control u_t belongs to a Cartesian product finite set $\mathbb{U} \times \cdots \times \mathbb{U} = \mathbb{U}^{n_u}$;
- the noise \mathbf{w}_t belongs to a Cartesian product finite set $\mathbb{W} \times \cdots \times \mathbb{W} = \mathbb{W}^{n_w}$.

We suppose that $(\boldsymbol{w}_t)_{t\in\mathbb{N}}$ is a sequence of independent and identically distributed random vari-

We consider the following optimization problem

min
$$\mathbb{E}\left[\sum_{t=0}^{T-1} L_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{w}_{t+1}) + K(\boldsymbol{x}_T)\right]$$
(2a)
s.t.
$$\boldsymbol{x}_{t+1} = f_t(\boldsymbol{x}_t, \boldsymbol{u}_t, \boldsymbol{w}_{t+1}), \quad \boldsymbol{x}_0 = x_0$$
(2b)

$$\boldsymbol{u}_t \in \mathbb{U}, \quad \boldsymbol{u}_t \leq \sigma(\boldsymbol{w}_1, \dots, \boldsymbol{w}_t)$$
(2c)

s.t.
$$\mathbf{x}_{t+1} = f_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{w}_{t+1}), \quad \mathbf{x}_0 = x_0$$
 (2b)

$$u_t \in \mathbb{U}, \qquad u_t \preceq \sigma(w_1, \dots, w_t)$$
 (2c)

- 1. Write, in the form of a pseudo-code, the Dynamic Programming algorithm attached to the optimization problem.
- 2. What is the complexity of the Dynamic Programming algorithm in terms of the cardinals of the sets \mathbb{X}^{n_x} , \mathbb{U}^{n_u} , \mathbb{W}^{n_w} and of the horizon T?
- 3. If the optimization problem were written on a tree (with one decision per node), how many decisions are there in total?

```
Solution 1.
         V_T \equiv K;
        for t: T-1 \rightarrow 0 do
              for x \in \mathbb{X}_t^{n_X} do
                   \underline{v} = -\infty;
                   for u \in \mathbb{U}^{n_X} do
                        Vmoy = 0;
                         for w \in \mathbb{W}^{n_W} do
                         Vmoy = Vmoy + \mathbb{P}(w)(L_t(x, u, w_{t+1}) + V_{t+1} \circ f_t(x, u, w_{t+1}));
                end
\underline{v} = \min \left\{ \underline{v}, Vmoy \right\};
                   V_t(x) = \underline{v};
         end
```

- 2. The number of operations is in $O(|\mathbb{X}|^{n_X} \times |\mathbb{U}|^{n_U} \times |\mathbb{W}|^{n_W})$
- 3. At stage t there is $(|\mathbb{W}|^{n_W})^t$ decisions, hence there is $\frac{|\mathbb{W}|^{(T+1)n_W}-1}{|\mathbb{W}|^{n_W}}$.

Exercise 2 (8pts). Consider the controlled dynamic system given by

$$\boldsymbol{x}_{t+1} = \boldsymbol{x}_t + \boldsymbol{u}_t + \boldsymbol{w}_{t+1} ,$$

where (\mathbf{w}_t) is a sequence of independent, centered (i.e. $\mathbb{E}[\mathbf{w}_t] = 0$) exogeneous noises of standard-deviation σ_t . The control \mathbf{u}_t is taken knowing the past noises $\mathbf{w}_1, \dots, \mathbf{w}_t$ (in particular, \mathbf{u}_0 is deterministic and denoted u_0).

We consider the following optimization problem

$$\min_{u_0, \boldsymbol{u}_1} \qquad \mathbb{E}\left[u_0^2 + k\boldsymbol{u}_1^2 + \boldsymbol{x}_2^2\right] \tag{3a}$$

$$s.t.$$
 x_0 given (3b)

$$\boldsymbol{x}_1 = x_0 + u_0 + \boldsymbol{w}_1 \tag{3c}$$

$$\boldsymbol{x}_2 = \boldsymbol{x}_1 + \boldsymbol{u}_1 + \boldsymbol{w}_2 \tag{3d}$$

$$u_1 \leq w_1$$
 (3e)

where k > 0 is a given parameter.

- 1. Identify the elements of a stochastic optimization control problem: what is the state variable? the control variable? the terminal time T? the final cost function K? the time-step cost functions L_t ? the initial state?
- 2. Why can we apply the Dynamic Programming approach to this problem? Hence, what is the form assumed by the optimal solution?
- 3. Determine the Bellman function V_1 at time 1, and the optimal strategy $\boldsymbol{u}_1^{\sharp}$ at time 1.
- 4. Determine the Bellman function V_0 at time 0, and the optimal control u_0 at time 0.
- 5. What is the optimal value of the optimization problem?
- 6. What are the optimal trajectories $t \mapsto \mathbf{x}_t^{\sharp}$ and $t \mapsto \mathbf{u}_t^{\sharp}$?
- 7. Interpret the behavior of the optimal trajectories $t \mapsto \boldsymbol{x}_t^{\sharp}$ and $t \mapsto \boldsymbol{u}_t^{\sharp}$, when $k \to +\infty$.
- **Solution 2.** 1. The state variable is x_t , the control variable u_t , the terminal time T = 2, the final cost function $K(x) = kx^2$, the time-step cost functions $L_1(x, u, w) = x^2$, $L_0(x, u, w) = 0$, the initial state $x_0 = 0$.
 - 2. The noises are independent, hence we can apply the DP approach and the optimal control are function of the current state.

3. By DP we have

$$\begin{split} V_{1}(x) &= \min_{u \in \mathbb{R}} \mathbb{E} \left[ku^{2} + (x + u + \boldsymbol{w}_{2})^{2} \right] \\ &= \min_{u \in \mathbb{R}} (1 + k)u^{2} + x^{2} + 2xu + 2(x + u)\mathbb{E} \left[\boldsymbol{w}_{2} \right] + \mathbb{E} \left[\boldsymbol{w}_{2}^{2} \right] \\ &= \min_{u \in \mathbb{R}} (1 + k)u^{2} + x^{2} + 2xu + \sigma^{2} \\ &= -\frac{1}{1 + k}x^{2} + x^{2} + \sigma^{2} \\ &= \frac{k}{1 + k}x^{2} + \sigma^{2} \end{split} \qquad with \ u^{\sharp} = -\frac{x}{1 + k}$$

and $u_1^{\sharp} = -\frac{x_1}{1+k}$.

4. By DP we have with $\kappa = \frac{k}{1+k}$

$$V_0(x) = \min_{u \in \mathbb{R}} \mathbb{E} \left[u^2 + \kappa (x + u + \boldsymbol{w}_2)^2 \right] + \sigma^2$$

$$= \min_{u \in \mathbb{R}} (1 + \kappa) u^2 + \kappa x^2 + 2\kappa x u + (1 + \kappa) \sigma^2$$

$$= -\frac{\kappa^2}{1 + \kappa} x^2 + x^2 + \sigma^2 \qquad with \ u^{\sharp} = -\frac{\kappa x}{1 + \kappa}$$

and $u_0^{\sharp} = -\kappa x_0/(1+\kappa)$. The optimal value is given by $V_0(x_0)$.

5. If k tends to ∞ the second control is extrmely costly and thus the optimal second control is 0.

Exercise 3 (7pts). You are the IT manager of a small company. You use a software for a period of 4 years. The software needs to be updated every year (else it becomes outdated). It has been bought (intalled up-to-date) on January 1st 2014, and will be changed January 1st 2018.

- If the software is up-to-date at the beginning of a year, its efficiency is evaluated at 100k\$ for the year.
- If the software is outdated at the beginning of a year, it is less efficient and only accounts for 80k\$.
- If the software is broken, reinstalling the software cost time and money and its value for one year is 0; however, the software is up-to-date at the end of the year.
- An outdated software has 25% chance of getting broken after one year of usage if nothing is done.
- When updating an outdated software there is 50% chance of breaking it (else it is up-to-date).

Suppose you want to optimize the expected value of the software on between January 1st 2014, and January 1st 2018.

- 1. Find a Controlled Markov chain representing the problem.
- 2. Solve the problem by dynamic programming: give the Bellman value function, the optimal policy, and the expected value of the software over the period. The Bellman function and policy can be presented as a table.