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A few notions

set of aleas Ω
sigma-algebra F ⊂ 2Ω

probability P : F → [0, 1]
real valued random variable X : Ω→ R
discrete random variable
continuous random variable with density function
expectation : L1(Ω,F ,P;R)→ R

variance var(X) := E
[
(X − E

[
X
]
)2
]

= E
[
X2]− E

[
X
]2

standard-deviation σ(X) :=
√

var(X)
independance
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Some calculus

E
[
λX + µY

]
= λE

[
X
]

+ µE
[
Y
]

var(X + c) = (X )
var(λX) = λ2var(X)
var(X + Y ) = var(X) + 2cov(X ,Y ) + var(Y )
σ(X + c) = σ(X)
σ(λX) = |λ|σ(X)
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Two results

Theorem (Law of large numbers)
Let (X i )i∈N be a sequence of independent and identically distributed
random variables (iid r.v.), that are real valued and integrable. Then we
have

Mn := 1
n

n∑
i=1

X i → E
[
X1
]

a.s.

Theorem (Central Limit Theorem)
Let (X i )i∈N be a sequence real valued iid r.v. with finite variance. Then
we have

√
n

Mn − E
[
X1
]

σ(X1) =⇒ N (0, 1)
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Objective and constraints

A standard optimization problem

min
u0

L(u0)

s.t. g(u0) ≤ 0

where
u0 is the control, or decision.
L is the cost or objective function.
g(u0) ≤ 0 represent the constraint(s).

Vincent Leclère OS - 1 September 28 2017 6 / 25



Some probability recalls Dealing with Uncertainty Numerical methods Devoir

Objective and constraints

The (deterministic) newsboy problem

In the 50’s a boy would buy a stock u of newspapers each morning
at a cost c, and sell them all day long for a price p. The number of
people interested in buying a paper during the day is d . We
assume that 0 < c < p.

How shall we model this ?

Control u ∈ R+

Cost L(u) = cu − p min(u, d)

Leading to

min
u

cu − p min(u, d)

s.t. u ≥ 0
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Objective and constraints

An optimization problem with uncertainty
Adding uncertainty ξ in the mix

min
u0

L(u0, ξ)

s.t. g(u0, ξ) ≤ 0

Remarks:
ξ is unknown. Two main ways of modelling it:

ξ ∈ Ξ with a known uncertainty set Ξ, and a pessimistic
approach. This is the robust optimization approach (RO).
ξ is a random variable with known probability law. This is the
Stochastic Programming approach (SP).

Cost is not well defined.
RO : maxξ∈Ξ L(u, ξ).
SP : E

[
L(u, ξ)

]
.

Constraints are not well defined.
RO : g(u, ξ) ≤ 0, ∀ξ ∈ Ξ.
SP : g(u, ξ) ≤ 0, P− a.s..
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Objective and constraints

The (stochastic) newsboy problem

Demand d is unknown at time of purchasing. We model it as a
random variable d with known law. Note that

the control u ∈ R+ is deterministic
the cost is a random variable (depending of d). We choose to
minimize its expectation.

We consider the following problem

min
u

E
[
cu − p min(u,d)

]
s.t. u ≥ 0

How can we justify the expectation ?
By law of large number: the Newsboy is going to sell newspaper
again and again. Then optimizing the sum over time of its gains is
closely related to optimizing the expected gains.
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Objective and constraints

Solving the stochastic newsboy problem
For simplicity assume that the demand d has a continuous density f . Define
J(u) the expected ”loss” of the newsboy if he bought u newspaper. We have

J(u) = E
[
cu − p min(u, d)

]
= (c − p)u − pE

[
min(0, d − u)

]
= (c − p)u − p

∫ u

−∞
(x − u)f (x)dx

= (c − p)u − p
(∫ u

−∞
xf (x)dx − u

∫ u

−∞
f (x)dx

)

Thus,

J ′(u) = (c − p)− p
(

uf (u)−
∫ u

−∞
f (x)dx − uf (u)

)
= c − p + pF (u)

where F is the cumulative distribution function (cdf) of d . F being non

decreasing, the optimum control u∗ is such that J ′(u∗) = 0, which is

u∗ ∈ F−1
(p − c

p

)
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Objective and constraints

The robust newsboy problem

Demand d is unknown at time of purchasing. We assume that it
will be in the set [d , d ].

The robust problem consist in solving

min
u

max
d∈[d ,d]

cu − p min(u, d)

s.t. u ≥ 0

By monotonicity it is equivalent to

min
u

cu − p min(u, d)

s.t. u ≥ 0
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Objective and constraints

Alternative cost functions I

When the cost L(u, ξ) is random it might be natural to want
to minimize its expectation E

[
L(u, ξ)

]
.

This is even justified if the same problem is solved a large
number of time (Law of Large Number).
In some cases the expectation is not really representative of
your risk attitude. Lets consider two examples:

Are you ready to pay $1000 to have one chance over ten to
win $10000 ?
You need to be at the airport in 1 hour or you miss your flight,
you have the choice between two mean of transport, one of
them take surely 50’, the other take 40’ four times out of five,
and 70’ one time out of five.
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Objective and constraints

Alternative cost functions II

Here are some cost functions you might consider
Probability of reaching a given level of cost : P(L(u, ξ) ≤ 0)
Value-at-Risk of costs V @Rα(L(u, ξ)), where for any real
valued random variable X ,

V @Rα(X) := inf
t∈R

{
P(X ≥ t) ≤ α

}
.

In other word there is only a probability of α of obtaining a
cost worse than V @Rα(X).
Average Value-at-Risk of costs AV @Rα(L(u, ξ)), which is the
expected cost over the α worst outcomes.
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Objective and constraints

Alternative constraints I

The natural extension of the deterministic constraint
g(u, ξ) ≤ 0 to g(u, ξ) ≤ 0 P− as can be extremely
conservative, and even often without any admissible solutions.
For example, if u is a level of production that need to be
greater than the demand. In a deterministic setting the
realized demand is equal to the forecast. In a stochastic
setting we add an error to the forecast. If the error is
unbouded (e.g. Gaussian) no control u is admissible.
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Objective and constraints

Alternative constraints II

Here are a few possible constraints
E
[
g(u, ξ)

]
≤ 0, for quality of service like constraint.

P(g(u, ξ) ≤ 0) ≥ 1− α for chance constraint. Chance
constraint is easy to present, but might lead to misconception
as nothing is said on the event where the constraint is not
satisfied.
AV @Rα(g(u, ξ)) ≤ 0
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Evaluating a solution

Computing expectation

Computing an expectation E
[
L(u, ξ)

]
for a given u is costly.

If ξ is a r.v. with known law admitting a density, E
[
L(u, ξ)

]
is

a (multidimensional) integral.
If ξ is a r.v. with known discrete law, E

[
L(u, ξ)

]
is a sum over

all possible realizations of ξ, which can be huge.
If ξ is a r.v. that can be simulated but with unknown law,
E
[
L(u, ξ)

]
cannot be computed exactly.

Solution : use Law of Large Number (LLN) and Central Limit
Theorem (CLT).

Draw N ' 1000 realization of ξ.
Compute the sample average 1

N
∑N

i=1 L(u, ξi ).
Use CLT to give an asymptotic confidence interval of the
expectation.

This is known as the Monte-Carlo method.
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Evaluating a solution

Consequence : evaluating a solution is difficult

In stochastic optimization even evaluating the value of a
solution can be difficult an require approximate methods.
The same holds true for checking admissibility of a candidate
solution.
It is even more difficult to obtain first order informations
(gradient).

Standard solution : sampling and solving the sampled problem
(Sample Average Approximation).
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Evaluating a solution

Optimization problem and simulator

Generally speaking stochastic optimization problem are not
well posed and often need to be approximated before solving
them.
Good practice consists in defining a simulator, i.e. a
representation of the “real problem” on which solution can be
tested.
Then find a candidate solution by solving an (or multiple)
approximated problem.
Finally evaluate the candidate solutions on the simulator. The
comparison can be done on more than one dimension (e.g.
constraints, risk...)
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Evaluating a solution

Conclusion

When addressing an optimization problem under uncertain one has
to consider carefully

How to model uncertainty ? (random variable or uncertainty
set)
How to represent your attitude toward risk ? (expectation,
probability level,...)
How to include constraints ?
What is your information stucture ? (More on that later)
Set up a simulator and evaluate your solutions.
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Sample Average Approximation

How to deal with continuous distributions ?

Recall that if ξ as finite support we rewrite the 2-stage problem

min
u0

E
[
L(u0, ξ,u1)

]
s.t. g(u0, ξ,u1) ≤ 0, P− a.s

as

min
u0,{ui

1}i∈J1,nK

n∑
i=1

pi L(u0, ξi , ui
1)

s.t g(u0, ξi , ui
1) ≤ 0, ∀i ∈ J1, nK.

If we consider a continuous distribution (e.g. a Gaussian), we
would need an infinite number of recourse variables to obtain an
extensive formulation.
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Sample Average Approximation

Simplest idea: sample ξ

First consider the one-stage problem

min
u∈Rn

E
[
L(u, ξ)

]
(P)

Draw a sample (ξ1, . . . , ξN) (in a i.i.d setting with law ξ).
Consider the empirical probability P̂N = 1

N
∑N

i=1 δξi .

Replace P by P̂N to obtain a finite-dimensional problem that
can be solved.
This means solving

min
u∈Rn

1
N

N∑
i=1

L(u, ξi ) (PN)

We denote by v̂N (resp. v∗) the value of (PN) (resp. (P)),
and Sn the set of optimal solutions (resp. S∗).
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Sample Average Approximation

Consistence of estimators and convergence results

Generically speaking the estimators of the minimum are biased

E
[
v̂N
]
≤ E

[
v̂N+1

]
≤ v∗

Under technical assumptions (compacity of admissible
solution, lower semicontinuity of costs, ...) we obtain:

Law of Large Number extension: v̂N → v∗ almost surely
(according to sampling probability).
Convergence of controls: D(SN , S∗)→ 0 almost surely.
Central Limit Theorem (S =

{
u∗
}

):
√

N(v̂N − v∗)→ Y u∗

where Yu∗ ∼ N (0, σ(L(u∗, ξ))).
Central Limit Theorem extension:

√
N(v̂N − v∗)→ infu Y u

where Yu ∼ N (0, σ(L(u, ξ))).
Good reference for precise results : Lectures on Stochastic
Programming (Dentcheva, Ruszczynski, Shapiro) chap. 5.
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Stochastic Approximation
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Stochastic Approximation

Stochastic Gradient I

If u 7→ j(u, ξ) is convex P-a.s., and J is finite in a neighboorhood
of u, then we have

∂J(u) = E
[
∂uj(u, ξ)

]
.

If moreover u 7→ j(u, ξ) is differentiable at point u, then so is J ,
and we have

∇J(u) = E
[
∇uj(u, ξ)

]
.
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Stochastic Approximation

Stochastic Gradient II

The stochastic (projected) gradient have the following steps
1 Choose u0. Set k = 0.
2 Draw a random realization of the noise ξk according to the

law of ξ.
3 Set direction dk := −∇uj(u, ξk).
4 Choose a step τk = c/k.
5 Compute the new point uk+1 := PU

(
uk + τkdk

)
.

6 Set k := k + 1.
7 Test convergence and go to step 2.
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Newsvendor problem

1 Solve the (stochastic) newsvendor problem for c = 1, p = 2
and a uniform demand over [5, 15].

2 Write a Julia function evaluating the empirical cost of a given
control on N realisation.

3 Find the optimal value of the problem. Check that the optimal
control indeed have this optimal cost up, with precision 95%.

4 Write a function that solve the SAA problem with N scenarios.
5 Show that the SAA value (resp. control) converges almost

surely to the optimal value resp. control.
6 (optional) Verify that the expectation of SAA value is a

negatively biased estimator.
7 (optional) Find the optimal control through a Stochastic

Gradient algorithm.
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