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From two-stage to multistage programming

Where do we come from: two-stage programming
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u1,8 We take decisions in two stages

u0 ; ξ1 ; u1 ,

with u1: recourse decision .

On a tree, it resumes to
solve the extensive formulation:

min
u0,u1,s

∑
s∈S

πs
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〉
+
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ps , u1,s

〉]
.

We have as many u1,s as scenarios!
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From two-stage to multistage programming

Extending two-stage to multistage programming
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U = (u0, · · · ,UT )

ξ = (ξ1, · · · , ξT )

We take decisions in T stages

ξ0 ; u0 ; ξ1 ; u1 ; · · ·; ξT ; uT .
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From two-stage to multistage programming

Multistage extensive formulation approach
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Assume that ξt ∈ Rnξ can take nξ values
and that Ut(x) ⊂ Rnu .

Then, considering the extensive formulation
approach, we have

nTξ scenarios.

(nT+1
ξ − 1)/(nξ − 1) nodes in the tree.

Number of variables in the optimization
problem is roughly
nu × (nT+1

ξ − 1)/(nξ − 1) ≈ nun
T
ξ .

The complexity grows exponentially with the
number of stage. :-(
A way to overcome this issue is to compress
information!
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From two-stage to multistage programming

Illustrating extensive formulation with the damsvalley
example

SoulcemGnioure Izourt

Auzat

Sabart

5 interconnected dams

5 controls per timesteps

52 timesteps (one per week, over one
year)

nξ = 10 noises for each timestep

We obtain 1052 scenarios, and ≈ 5.1052

constraints in the extensive formulation ...
Estimated storage capacity of the Internet:
1024 bytes.
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Information structure

Optimization Problem

We want to solve the following optimization problem

min E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
(1a)

s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0 (1b)

ut ∈ Ut(x t) (1c)

σ(ut) ⊂ Ft := σ
(
ξ0, · · · , ξt

)
(1d)

Where

constraint (1b) is the dynamic of the system ;

constraint (1c) refer to the constraint on the controls;

constraint (1d) is the information constraint : ut is choosen
knowing the realisation of the noises ξ0, . . . , ξt but without
knowing the realisation of the noises ξt+1, . . . , ξT−1.
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Information structure

Information structure I

In Problem (1), constraint (1d) is the information constraint.
There are different possible information structure.

If constraint (1d) reads σ(ut) ⊂ F0, the problem is open-loop,
as the controls are choosen without knowledge of the
realisation of any noise.

If constraint (1d) reads σ(ut) ⊂ Ft , the problem is said to be
in decision-hazard structure as decision ut is chosen without
knowing ξt+1.

If constraint (1d) reads σ(ut) ⊂ Ft+1, the problem is said to
be in hazard-decision structure as decision ut is chosen with
knowledge of ξt+1 (in which case we have ut ∈ Ut(x t , ξt+1))

If constraint (1d) reads σ(ut) ⊂ FT−1, the problem is said to
be anticipative as decision ut is chosen with knowledge of all
the noises.
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Information structure

Information structure II

Be careful when modeling your information structure:

Open-loop information structure might happen in practice
(you have to decide on a planning and stick to it). If the
problem does not require an open-loop solution then it might
be largely suboptimal (imagine driving a car eyes closed...). In
any case it yields an upper-bound of the problem.

In some cases decision-hazard and hazard-decision are both
approximation of the reality. Hazard-decision yield a lower
value then decision-hazard.

Anticipative structure is never an accurate modelization of the
reality. However it can yield a lower-bound of your
optimization problem relying on deterministic optimization
and Monte-Carlo.

We are going to assume Hazard-Decision structure
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Bounds and heuristics

Bounds and heuristics

Due to the size of the extensive formulation of multistage
programm we cannot hope to numerically solve them without
further assumptions on the problem.

However, there are a few ideas we can use to get

heuristics policies (that is non-optimal but ”reasonable”
solution), and thus upper bounds (estimated by Monte Carlo)
lower bounds to guarantee quality of heuristics

We can get these through:

deterministic approximation
two-stage approximations
linear decision rules
...
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Bounds and heuristics

Anticipative lower bound

If we relax the measurability constraint by assuming that ut is
measurable w.r.t σ(ξ0, . . . , ξT ), that is knows the whole
scenario we get the anticipative solution :

E
[

min
u

T∑
t=0

Lt(x t ,ut , ξt+1) + K (xT )
]

This can be computed by solving |Ω| deterministic
optimization problems.

As |Ω| is often too large, this lower bound is estimated by
Monte-Carlo :

draw N scenarios (e.g. N = 1000)
solve each deterministic problem
average their value to estimate the lower bound
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Bounds and heuristics

Deterministic heuristic

A natural heuristic consists in looking for a deterministic
solution (we stick to the plan).

The first heuristic consists in simply replacing ξt+1 by an
estimation (often its expectation E[ξt+1]), and solve a
deterministic problem.

A more advanced heuristic consists in looking for optimal
open-loop solution (e.g. by using Stochastic Gradient
algorithms).
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Bounds and heuristics

Model Predictive Control

A very classical heuristic, often very efficient if the
stochasticity is not too important is the so-called Model
Predictive Control (MPC).

MPC works in the following way :

at time t0, being in x0, solve the deterministic problem

min
T−1∑
t=t0

Lt
(
xt , ut , ξ̂t+1

)
+ K

(
xT
)

s.t. xt+1 = ft(xt , ut , ξ̂t+1), xt0 = x0

ut ∈ Ut(xt)

where ξ̂t is your best estimate of ξt (its expectation by default)
apply ut0 and get xt0+1

update your estimation of ξ, set x0 = xt0+1 and t0 = t0 + 1
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Bounds and heuristics

Two-stage lower-bound

We can refine the anticipative lower bound by relaxing all
measurability constraint except the one on u0.

We thus obtain a two-stage programm u0 being the first stage
control, and all the other ut knowing the whole scenario are
second-stage variable.

We thus have a 2-stage program with |Ω| second stage
(vector) variables whose value is a lower-bound to the original
problem.

This value can be approximated by SAA :

draw N scenarios
write a 2-stage programm with these scenarios, with u0 as first
stage control and (u1, . . . , uT−1) as recourse
its value is an estimation of the 2-stage lower-bound
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Bounds and heuristics

2-stage repeated heuristic

We can adapt the MPC approach by solving two-stage
programm instead of deterministic one.

The procedure goes as follows:

at time t0 in stage x0, draw N scenarios
approximate the problem on [t0,T ] by a two-stage programm
with ut0 as first stage variable, and (ut0+1, . . . , uT−1) as
recourse
apply ut0 and get xt0+1

set x0 = xt0+1 and t0 = t0 + 1
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Bounds and heuristics

Linear Decision Rules

Another way of getting heuristics consists in looking for
solution ut = Φt(ξ0, . . . , ξt+1) where Φ is in a specific class
of function.

Classically we can look for Φt in the class of affine functions.

In which case, a multistage linear stochastic programm turns
into a large one-stage stochastic linear programm, which can
be approximated by SAA to get a reasonable LP.

Don’t forget to evaluate the obtained heuristic by Monte
Carlo on new scenarios.
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Stochastic optimal control problem

Stochastic Controlled Dynamic System

A discrete time controlled stochastic dynamic system is defined by
its dynamic

x t+1 = ft(x t ,ut , ξt+1)

and initial state
x0 = ξ0

The variables

x t is the state of the system,

ut is the control applied to the system at time t,

ξt is an exogeneous noise.

Usually, x t ∈ Xt and ut beglongs to a set depending upon the
state: ut ∈ Ut(x t).
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Stochastic optimal control problem

Examples

Stock of water in a dam:

x t is the amount of water in the dam at time t,
ut is the amount of water turbined at time t,
ξt+1 is the inflow of water in [t, t + 1[.

Boat in the ocean:

x t is the position of the boat at time t,
ut is the direction and speed chosen for [t, t + 1[,
ξt+1 is the wind and current for [t, t + 1[.

Subway network:

x t is the position and speed of each train at time t,
ut is the acceleration chosen at time t,
ξt+1 is the delay due to passengers and incident on the
network for [t, t + 1[.
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Stochastic optimal control problem

More considerations about the state

Physical state: the physical value of the controlled system.
e.g. amount of water in your dam, position of your boat...

Information state: physical state and information you have
over noises. e.g.: amount of water and weather forecast...

Knowledge state: your current belief over the actual
information state (in case of noisy observations). Represented
as a distribution law over information states.

The state in the Dynamic Programming sense is the information
required to define an optimal solution.
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Stochastic optimal control problem

Optimization Problem

We want to solve the following optimization problem

min
u

E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(x t , ξt+1)

σ(ut) ⊂ σ
(
ξ0, · · · , ξt+1

)

1 We want to minimize the expectation of the sum of costs.
2 The system follows a dynamic given by the function ft .
3 There are constraints on the controls.
4 The controls are functions of the past noises

(= non-anticipativity).
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Stochastic optimal control problem

Optimization Problem

We want to solve the following optimization problem

min
Φ

E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(x t , ξt+1)

ut = Φ(ξ0, · · · , ξt+1)
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Stochastic optimal control problem

Optimization Problem with independence of noises

If noises at time independent, the optimization problem is
equivalent to

min
π

E
[ T−1∑

t=0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
s.t. x t+1 = ft(x t ,ut , ξt+1), x0 = ξ0

ut ∈ Ut(x t , ξt+1)

ut = πt(x t , ξt+1)
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Stochastic optimal control problem

Keeping only the state

For notational ease, we want to formulate Problem (1) only with states.
Let Xt(xt , ξt+1) be the reachable states, i.e.,

Xt(xt , ξt+1) :=
{
xt+1 ∈ Xt+1 | ∃ut ∈ Ut(xt , ξt+1), xt+1 = ft(xt , ut , ξt+1)

}
.

And ct(xt , xt+1, ξt+1) the transition cost from xt to xt+1, i.e.,

ct(xt , xt+1, ξt+1) := min
ut∈Ut(xt ,ξt+1)

{
Lt(xt , ut , ξt+1) | xt+1 = ft(xt , ut , ξt+1)

}
.

Then, under independance of noises, the optimization problem reads

min
ψ

E
[ T−1∑

t=0

ct(xt , xt+1, ξt+1) + K (xT )
]

s.t. x t+1 ∈ Xt(x t , ξt+1), x0 = ξ0

x t+1 = ψt(x t , ξt+1)
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Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19,
1984)

An optimal policy has the
property that whatever the
initial state and initial deci-
sion are, the remaining de-
cisions must constitute an
optimal policy with regard
to the state resulting from
the first decision (Richard
Bellman)
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The shortest path on a graph illustrates Bellman’s
Principle of Optimality

For an auto travel analogy,
suppose that the fastest
route from Los Angeles
to Boston passes through
Chicago.
The principle of optimality
translates to obvious fact
that the Chicago to Boston
portion of the route is also
the fastest route for a trip
that starts from Chicago
and ends in Boston. (Dim-
itri P. Bertsekas)
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Idea behind dynamic programming

If noises are time independent, then

1 The cost to go at time t depends only upon the current state.

2 We can compute recursively the cost to go for each position,
starting from the terminal state and computing optimal
trajectories backward.

Optimal cost-to-go of being in state x at time t is:
At time t, Vt+1 gives the cost of the future. Dynamic

Programming is a time decomposition method.

V. Leclère Dynamic Programming 15/12/2020 25 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Dynamic Programming principle

Idea behind dynamic programming

If noises are time independent, then

1 The cost to go at time t depends only upon the current state.

2 We can compute recursively the cost to go for each position,
starting from the terminal state and computing optimal
trajectories backward.

Optimal cost-to-go of being in state x at time t is:
At time t, Vt+1 gives the cost of the future. Dynamic

Programming is a time decomposition method.

V. Leclère Dynamic Programming 15/12/2020 25 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Dynamic Programming principle

Dynamic Programming Principle

Assume that the noises ξt are time-independent and exogeneous.
The Bellman’s equation writes


VT (x) = K (x)

V̂t(x , ξ) = min
y∈Xt(x ,ξ)

ct(x , y , ξt+1) + Vt+1(y)

Vt(x) = E
[
V̂t(x , ξt+1)

]
An optimal state trajectory is obtained by x t+1 = ψV

t

(
x t

)
, with

ψV
t (x , ξ) ∈ arg min

y∈Xt(x ,ξ)
ct(x , y , ξ)︸ ︷︷ ︸
current cost

+ Vt+1(y)︸ ︷︷ ︸
future costs

,
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Interpretation of Bellman Value Function

The Bellman’s value function Vt0 (x) can be interpreted as the value of
the problem starting at time t0 from the state x .
More precisely we have

Vt0 (x) = min E
[ T−1∑
t=t0

Lt
(
x t ,ut , ξt+1

)
+ K

(
xT

)]
s.t. x t+1 = ft(x t ,ut , ξt+1), x t0 = x

ut ∈ Ut(x t , ξt+1)

σ(ut) ⊂ σ
(
ξ0, · · · , ξt+1

)
or

min
ψ

E
[ T−1∑
t=t0

ct(xt , xt+1, ξt+1) + K (xT )
]

s.t. x t+1 ∈ Xt(x t , ξt+1), xt0 = x

x t+1 = ψt(x t)
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Optimization Problem

Recall that we want to solve the following optimization problem

min
ψ

E
[ T−1∑

t=0

ct(xt , xt+1, ξt+1) + K (xT )
]

s.t. x t+1 ∈ Xt(x t , ξt+1), x0 = ξ0

x t+1 = ψt(x t)

With Bellman’s equation reading
VT (x) = K (x)

V̂t(x , ξ) = min
y∈Xt(x ,ξ)

ct(x , y , ξ) + Vt+1(y)

Vt(x) = E
[
V̂t(x , ξt+1)

]
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Bellman operator

For any time t, and any function R mapping the set of states and noises
X× Ξ into R, we define B̂t(R)(x , ξ) := min

y∈Xt(x,ξ)
ct(x , y , ξ) + R(y)

Bt(R)(x) := E
(
B̂t(R)(x , ξt+1)

)
Thus the Bellman equation simply reads{

VT = K
Vt = Bt(Vt+1)

Further, any estimation R of the value functions yields an admissible
trajectory given by

ψR
t (x , ξ) ∈ arg min

y∈X (x,ξ)

ct(x , y , ξ) + R t+1(y)

optimal if Rt = Vt .
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Properties of the Bellman operator

Assume that ξt are finitely supported

Monotonicity:
R ≤ R ⇒ Bt

(
R
)
≤ Bt

(
R
)

Convexity: if ct is jointly convex in (x , y) for all ξ, R is convex,
gr(Xt) is convex then

x 7→ Bt
(
R
)
(x) is convex

Polyhedrality: for any polyhedral function R,
if ct is also polyhedral for all ξ, and gr(Xt) is polyhedral, then

x 7→ Bt
(
R
)
(x) is polyhedral
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Bellman Operators

Computing upper bounds

In the convex case we can compute exact upper-bound on the
value of the stochastic optimization problem.

For all t ≤ T , select points {xnt }n≤N in Xt .

For t = T , define vnT = K (xnt ).

Iteratively backward for t = T ..1 :

V̄t(x) := min
α∈∆n

{∑N
n=1 α

nvn
t

∣∣∣ ∑N
n=1 α

nxnt = x
}

where ∆n =
{
α ∈ Rn |

∑
n αn = 1, αn ≥ 0

}
.

Compute vn
t−1 = Bt−1(V̄t)(xnt−1)

For all t, V̄t ≥ Vt , and in particular B0

(
V̄1

)
(x0) is an upper

bound on the value of our problem.
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal trajectory and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1→ 0 do

for x ∈ Xt do

Vt(x) = E
[

min
y∈Xt(x,ξt+1)

(
ct(x , y , ξt+1) + Vt+1(y)

)]
Algorithm 1: Classical stochastic dynamic programming algo-
rithm
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Curses of dimensionality

Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal trajectory and value;
VT ≡ K ; Vt ≡ 0
for t : T − 1→ 0 do

for x ∈ Xt do
for ξ ∈ Ξt do

V̂t(x , ξ) =∞;
for y ∈ Xt(x , ξ) do

vy = ct(x , y , ξ) + Vt+1(y);

if vy < V̂t(x , ξ) then

V̂t(x , ξ) = vy ;
ψt(x , ξ) = y ;

Vt(x) = Vt(x) + P(ξ)V̂t(x , ξ)

Algorithm 3: Classical stochastic dynamic programming algo-
rithm
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3 curses of dimensionality

Complexity = O(T × |Xt | × |Xt | × |Ξt |)
Linear in the number of time steps, but we have 3 curses of
dimensionality :

1 State. Complexity is exponential in the dimension of Xt

e.g. 3 independent states each taking 10 values leads to a
loop over 1000 points.

2 Decision. Complexity is exponential in the dimension of Xt .
 due to exhaustive minimization of inner problem. Can be
accelerated using faster method (e.g. MILP solver).

3 Expectation. Complexity is exponential in the dimension of
Ξt .
 due to expectation computation. Can be accelerated
through Monte-Carlo approximation (still at least 1000 points)

In practice DP is not used for state of dimension more than 5.
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Illustrating dynamic programming with the damsvalley
example

SoulcemGnioure Izourt

Auzat

Sabart
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Illustrating the curse of dimensionality

We are in dimension 5 (not so high in the world of big data!) with
52 timesteps (common in energy management) plus 5 controls and
5 independent noises.

1 We discretize each state’s dimension in 100 values:
|Xt | = 1005 = 1010

2 We discretize each control’s dimension in 100 values:
|Ut | = 1005 = 1010

3 We use optimal quantization to discretize the noises’ space in
10 values: |Ξt | = 10

Number of flops: O(52× 1010 × 1010 × 10) ≈ O(1023).
In the TOP500, the best computer computes 1017 flops/s.
Even with the most powerful computer, it takes at least 12 days to
solve this problem.
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Computing a decision online

Algorithm: Offline value functions precomputation + Online open loop
reoptimization

Offline: We produce value functions with Bellman equation:

Vt(x) = E
[

min
y∈Xt(x,ξt+1)

ct(x , y , ξt+1) + Vt+1(y)
]

Online: At time t, knowing xt and ξt+1 we plug the computed value
function Vt+1 as future cost

xt+1 ∈ arg min
y∈Xt(xt ,ξt+1)

ct(xt , y , ξt+1) + Vt+1(y)

This can be extended to approximate value function Ṽt computed in any
way.
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Dynamic Programming : Discretization-Interpolation

When the state space is continuous, the DP equation holds :

Vt(x) = E
[

min
y∈Xt(x ,ξt+1)

ct(x , y , ξt+1) + Vt+1(y)
]
.

But computation is impractical in a continuous space.
Simplest solution : discretization and interpolation.

We choose a finite set XD
t ⊂ Xt where we will compute (an

approximation of) the Bellman value Vt .

We approximate the Bellman value at time t by interpolating
these value.
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Numerical techniques

Dynamic Programming : Discretization-Interpolation

Data: Problem parameters, discretization,
one-stage solver, interpolation operator;

Result: approximation of optimal value;
ṼT ≡ K ;
for t : T − 1→ 0 do

for x ∈ XD
t do

Ṽt(x) := E
[

min
y∈Xt(x ,ξt+1)

ct(x , y , ξt+1) + Ṽt+1(y)
]
;

Define Ṽt by interpolating {Ṽt(x) | x ∈ XD
t };

Algorithm 4: Dynamic Programming Algorithm (Continuous)
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Independence of noises

The Dynamic Programming equation requires only the
time-independence of noises.

This can be relaxed if we consider an extended state.

Consider a dynamic system driven by an equation

y t+1 = ft(y t ,ut , εt+1)

where the random noise εt is an AR-1 process :

εt = αtεt−1 + βt + ξt ,

{ξt}t∈Z being independent.

Then y t is called the physical state of the system and DP can
be used with the information state x t = (y t , εt).

Generically speaking, if the noise ξt is exogeneous (not
affected by decisions ut), then we can always apply Dynamic
Programming with the state (x t , ξ1, . . . , ξt).

V. Leclère Dynamic Programming 15/12/2020 39 / 41



Multistage stochastic programming Dynamic Programming Practical aspects of Dynamic Programming

Numerical techniques

State augmentation limits

Because of the curse of dimensionality it might be impossible to
take into account correlation by augmenting the state variable.

Practitioners often ignore noise dependence for the value functions
computation but use dependence information during online
reoptimization.
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Conclusion

Multistage stochastic programming fails to handle large
number of timesteps.

Dynamic Programming overcomes this difficulty while
compressing information inside a state x .

Dynamic Programming computes backward a set of value
functions

{
Vt

}
, corresponding to the optimal cost of being at

a given position at time t.

Numerically, DP is limited by the curse of dimensionality and
its performance are deeply related to the discretization of the
look-up table used.

Other methods exist to compute the value functions without
look-up table (Approximate Dynamic Programming, SDDP).
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Independence of noises: AR-1 case

Consider a dynamic system driven by an equation
y t+1 = ft(y t ,ut , εt+1) where the random noise εt is an AR-1
process : εt = αtεt−1 + βt + ξt+1, {ξt}t∈Z being
independent.

Define the information state x t = (y t , εt).

Then we have

x t+1 =

(
ft(y t ,ut , αtεt + βt + ξt+1)

αtεt + βt + ξt+1

)
= f̃t(x t ,ut , ξt+1)

And we have the following DP equation

Vt(
y
ε ) = min

u∈Ut(x)
E
[
Lt(y , u, αtε+ βt + ξt+1︸ ︷︷ ︸

”εt+1”

)+Vt+1◦f̃t
(
x , u, ξt+1

)︸ ︷︷ ︸
”x t+1”

]
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DP on a Markov Chain

Sometimes it is easier to represent a problem as a controlled
Markov Chain

Dynamic Programming equation can be computed directly,
without expliciting the control.

Let’s work out an example...
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Controlled Markov Chain

A controlled Markov Chain is controlled stochastic dynamic
system with independent noise (w t)t∈Z, where the dynamic
and the noise are left unexplicited.

What is given is the transition probability

πut (x , y) := P
(
x t+1 = y | x t = x ,ut = u

)
.

In this case the cost are given as a function of the current
stage, the next stage and the control.

The Dynamic Programming Equation then reads (assume
finite state)

Vt(x) = min
u

∑
y∈Xt+1

πut (x , y)
[
Lut (x , y) + Vt+1(y)

]
.
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Example

Consider a machine that has two states : running (R) and broken
(B). If it is broken we need to fix it (F) for a cost of 100. If it is
running there are two choices: maintaining it (M), or not
maintaining (N). If we maintain, the cost is 25 and the machine
stay running with probability πM(R,R) = 1; if we do not maintain
there is a probability of πN(R,B) = 0.5 of breaking it (or keep it
running). We need to have it running for 3 periods.

V. Leclère Dynamic Programming 15/12/2020 45 / 41



Controlled Markov Chain

V0 V1 V2 V3 V4

R 0
B 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R min
{

25 + 0, 0 + (0 + 0)/2
}

0
B 100 + 0 0
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V0 V1 V2 V3 V4

R min
{

25 + 0, 0 + (0 + 100)/2
}

0 0
B 100 + 0 100 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R min
{

25 + 25, 0 + (25 + 100)/2
}

25 0 0
B 100 + 25 100 100 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R min
{

25 + 50, 0 + (50 + 125)/2
}

50 25 0 0
B 100 + 50 125 100 100 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R 75 50 25 0 0
B 150 125 100 100 0
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