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Stochastic Controlled Dynamic System

A stochastic controlled dynamic system is defined by its dynamic

Xt+1 = ft(Xt ,Ut ,Wt+1)

and initial state
X0 = x0

The variables

Xt is the state of the system,

Ut is the control applied to the system at time t,

Wt is an exogeneous noise.
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Optimization Problem

We want to solve the following optimization problem

min E
[ T−1∑

t=0

Lt
(
Xt ,Ut ,Wt+1

)
+ K

(
XT

)]
(1)

s.t. Xt+1 = ft(Xt ,Ut ,Wt+1), X0 = x0 (2)

Ut ∈ Ut(Xt) (3)

Ut � σ
(
W0, · · · ,Wt

)
(4)
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Dynamic Programming Principle

Assume that the noises Wt are independent.

Then, there exists an optimal solution of the form Ut = πt
(
Xt

)
,

given by

πt(x) = arg min
u∈Ut(x)

E
[
Lt(x , u,Wt+1)︸ ︷︷ ︸

current cost

+Vt+1 ◦ ft
(
x , u,Wt+1

)︸ ︷︷ ︸
future costs

]
,

where VT (x) = K (x)

Vt(x) = min
u∈Ut(x)

E
[
Lt(x , u,Wt+1) + Vt+1 ◦ ft

(
x , u,Wt+1

)]
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Interpretation of Bellman Value

The Bellman’s value function Vt0(x) can be interpreted as the
value of the problem starting at time t0 from the state x . More
precisely we have

Vt0(x) = min E
[ T−1∑
t=t0

Lt
(
Xt ,Ut ,Wt+1

)
+ K

(
XT

)]
(5)

s.t. Xt+1 = ft(Xt ,Ut ,Wt+1), Xt0
= x (6)

Ut ∈ Ut(Xt) (7)

Ut � σ
(
W0, · · · ,Wt

)
(8)
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Dynamic Programming Algorithm

Data: Problem parameters
Result: optimal control and value;
VT ≡ K ;
for t : T → 0 do

for x ∈ Xt do
v = −∞;
for u ∈ Ut(x) do

v = min
{

v,E
[
Lt(x , u,Wt+1)+Vt+1◦ft

(
x , u,Wt+1

)]}
;

Vt(x) = v;

Algorithm 1: Dynamic Programming Algorithm (discrete case)

Number of flops: O(T × |Xt | × |Ut | × |Wt |).

V. Leclère Dynamic Programming October 16, 2014 7 / 14



Dynamic Programming Curses of Dimensionality Infinite Horizon

3 curses of dimensionality

1 State. If we consider 3 independent states each taking 10
values, then |Xt | = 1000. In practice DP is not applicable for
states of dimension more than 5.

2 Decision. The decision are often vector decisions, that is a
number of independent decision, hence leading to huge
|Ut(x)|.

3 Expectation. In practice random information came from large
data set. Without a proper statistical treatment computing an
expectation is costly. Monte-Carlo approach are costly too,
and unprecise.
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Introducing the Bellman operators

We define the Bellman operator associated to our optimisation
problem

Tt(J) : x 7→ min
u∈Ut(x)

E
[
Lt(x , u,Wt+1) + J ◦ ft

(
x , u,Wt+1

)]
.

The Dynamic Programming equation can then be written{
VT = K

Vt = Tt

(
Vt+1

)
We also construct the policy-dependent Bellman operator

Tπ
t (J) : x 7→ E

[
Lt(x , π(x),Wt+1) + J ◦ ft

(
x , π(x),Wt+1

)]
.
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Discounted fixed cost case

We now consider the following specific case problem, where(
Wt

)
t∈N is i.i.d.

min E
[ T∑
t=0

αtL
(
Xt ,Ut ,Wt+1

)]
(9)

s.t. Xt+1 = f (Xt ,Ut ,Wt+1), X0 = x0 (10)

Ut ∈ U(Xt) (11)

Ut � σ
(
W0, · · · ,Wt

)
(12)

where α ∈]0, 1]. Note that the constraint and cost structure
doesnot depend on t.

The Bellman operator is given by

T (J) : x 7→ min
u∈U(x)

E
[
L(x , u,Wt+1) + αJ ◦ f (x , u,Wt+1)

]
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Infinite horizon problems

There is different ways of considering the above problem in an
“infinite horizon” setting.

1 Discounted case. This is the case where α < 1. It is especially
easy to treat if the cost L is bounded.

2 Stocastic shortest path. In this case α = 1 but there is a
“cemetary state” such that once reached the system remains
there with null cost. Moreover, we assume that the system
always reach the cemetary state in a finite time.

3 Average cost per stage problems. This approach is mainly
taken if the infinite time cost isn’t finite (for example α = 1
and L > 0). We consider

lim
T→∞

1

T
E
[ T−1∑

t=0

L(Xt ,Ut ,Wt+1)
]
.
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An overview of typical infinite horizon results

Here are the main results that can be shown in infinite horizon
problems (under the right set of assumptions)

1 the sequence of value function Vn+1 = T
(
Vn

)
, converges

toward the value function of the infinite horizon problem:
limn→∞ Vn = V ].

2 The optimal value of the infinite horizon problem is a fixed
point of the Bellman operator: V ] = T

(
V ]
)
.

3 If π is such that V ] = TπV ] then the stationnary policy π is
optimal.
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Value iteration algorithm

Data: Initial value V (0)

Result: optimal policy and value;
repeat

for x ∈ X do

V (k+1)(x) = T
(
V (k)

)
(x)

until ‖V (k+1) − V (k)‖∞ < ε;

Algorithm 2: Value iteration algorithm

Each step takes O(|X| × |U| × |Ω|) flops.

The error |Vn(x)− V ](x)| is bounded by Cαn.
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Policy iteration algorithm

Data: Initial policy π(0)

Result: optimal policy and value;
repeat

policy evaluation step: solve V = Tπ(k)(
V
)

which gives V (k);
policy improvement step :
for x ∈ X do

π(k+1)(x) = arg min
u∈U(x)

E
[
L(x , u,Wt+1) + αV (k) ◦ f

(
x , u,Wt+1

)]

until V (k) = T
(
V (k)

)
;

Algorithm 3: Policy iteration algorithm

The policy iteration algorithm terminate in a finite number of step.
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