Further Considerations on Dynamic Programming

V. Leclère (ENPC)

October 16, 2014

Infinite Horizon

V. Leclère

Stochastic Controlled Dynamic System

A stochastic controlled dynamic system is defined by its dynamic

$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1})$$

and initial state

 $X_0 = x_0$

The variables

- X_t is the *state* of the system,
- \mathbf{U}_t is the *control* applied to the system at time t,
- W_t is an exogeneous noise.

Optimization Problem

We want to solve the following optimization problem

$$\begin{array}{ll} \min & \mathbb{E}\Big[\sum_{t=0}^{T-1} L_t\big(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}\big) + K\big(\mathbf{X}_T\big)\Big] & (1) \\ s.t. & \mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}), \quad \mathbf{X}_0 = x_0 & (2) \\ & \mathbf{U}_t \in U_t(\mathbf{X}_t) & (3) \\ & \mathbf{U}_t \preceq \sigma\big(\mathbf{W}_0, \cdots, \mathbf{W}_t\big) & (4) \end{array}$$

Dynamic Programming Principle

Assume that the noises W_t are independent.

Then, there exists an optimal solution of the form $\mathbf{U}_t = \pi_t(\mathbf{X}_t)$, given by

$$\pi_t(x) = \underset{u \in U_t(x)}{\arg\min} \mathbb{E}\left[\underbrace{L_t(x, u, \mathbf{W}_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})}_{\text{future costs}}\right],$$

where

$$\begin{cases} V_{\mathcal{T}}(x) = \mathcal{K}(x) \\ V_{t}(x) = \min_{u \in U_{t}(x)} \mathbb{E} \Big[L_{t}(x, u, \mathbf{W}_{t+1}) + V_{t+1} \circ f_{t}(x, u, \mathbf{W}_{t+1}) \Big] \end{cases}$$

Interpretation of Bellman Value

The Bellman's value function $V_{t_0}(x)$ can be interpreted as the value of the problem starting at time t_0 from the state x. More precisely we have

$$V_{t_0}(x) = \min \qquad \mathbb{E}\left[\sum_{t=t_0}^{T-1} L_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}) + K(\mathbf{X}_T)\right] \qquad (5)$$

s.t.
$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}), \qquad \mathbf{X}_{t_0} = x \qquad (6)$$

$$\mathbf{U}_t \in U_t(\mathbf{X}_t) \qquad (7)$$

$$\mathbf{U}_t \preceq \sigma(\mathbf{W}_0, \cdots, \mathbf{W}_t) \qquad (8)$$

Infinite Horizon

V. Leclère

Dynamic Programming Algorithm

Data: Problem parameters **Result**: optimal control and value; $V_T \equiv K$; for $t: T \rightarrow 0$ do for $x \in \mathbb{X}_t$ do $\underline{v} = -\infty;$ for $u \in U_t(x)$ do $\lfloor \underline{\mathbf{v}} = \min\left\{\underline{\mathbf{v}}, \mathbb{E}\left[L_t(x, u, \mathbf{W}_{t+1}) + V_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})\right]\right\};$ $V_t(x) = v$:

Algorithm 1: Dynamic Programming Algorithm (discrete case) Number of flops: $O(T \times |\mathbb{X}_t| \times |\mathbb{U}_t| \times |\mathbb{W}_t|)$.

3 curses of dimensionality

- State. If we consider 3 independent states each taking 10 values, then $|X_t| = 1000$. In practice DP is not applicable for states of dimension more than 5.
- Decision. The decision are often vector decisions, that is a number of independent decision, hence leading to huge |U_t(x)|.
- Expectation. In practice random information came from large data set. Without a proper statistical treatment computing an expectation is costly. Monte-Carlo approach are costly too, and unprecise.

Introducing the Bellman operators

We define the Bellman operator associated to our optimisation problem

$$T_t(\mathbf{J}): x \mapsto \min_{u \in U_t(x)} \mathbb{E} \left[L_t(x, u, \mathbf{W}_{t+1}) + \mathbf{J} \circ f_t(x, u, \mathbf{W}_{t+1}) \right] \,.$$

The Dynamic Programming equation can then be written

$$\begin{cases} V_{\mathcal{T}} = K \\ V_t = T_t \Big(V_{t+1} \Big) \end{cases}$$

We also construct the policy-dependent Bellman operator

$$\mathcal{T}_t^{\pi}(J): x \mapsto \mathbb{E}\left[L_t(x, \pi(x), \mathbf{W}_{t+1}) + J \circ f_t(x, \pi(x), \mathbf{W}_{t+1})\right] + J \cdot f_t(x, \pi(x), \mathbf{W}_{t+1})$$

Discounted fixed cost case

We now consider the following specific case problem, where $(\mathbf{W}_t)_{t\in\mathbb{N}}$ is i.i.d.

$$\min \quad \mathbb{E}\left[\sum_{t=0}^{T} \alpha^{t} L(\mathbf{X}_{t}, \mathbf{U}_{t}, \mathbf{W}_{t+1})\right]$$
(9)

$$s.t. \quad \mathbf{X}_{t+1} = f(\mathbf{X}_{t}, \mathbf{U}_{t}, \mathbf{W}_{t+1}), \quad \mathbf{X}_{0} = x_{0}$$
(10)

$$\mathbf{U}_{t} \in U(\mathbf{X}_{t})$$
(11)

$$\mathbf{U}_{t} \preceq \sigma(\mathbf{W}_{0}, \cdots, \mathbf{W}_{t})$$
(12)

where $\alpha \in]0,1]$. Note that the constraint and cost structure doesnot depend on *t*.

The Bellman operator is given by

$$T(J): x \mapsto \min_{u \in U(x)} \mathbb{E} \Big[L(x, u, \mathbf{W}_{t+1}) + \alpha J \circ f(x, u, \mathbf{W}_{t+1}) \Big]$$

V. Leclère

Infinite horizon problems

There is different ways of considering the above problem in an "infinite horizon" setting.

- Discounted case. This is the case where α < 1. It is especially easy to treat if the cost *L* is bounded.
- Stocastic shortest path. In this case α = 1 but there is a "cemetary state" such that once reached the system remains there with null cost. Moreover, we assume that the system always reach the cemetary state in a finite time.
- Average cost per stage problems. This approach is mainly taken if the infinite time cost isn't finite (for example $\alpha = 1$ and L > 0). We consider

$$\lim_{T \to \infty} \frac{1}{T} \quad \mathbb{E} \Big[\sum_{t=0}^{T-1} L(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}) \Big] \; .$$

An overview of typical infinite horizon results

Here are the main results that can be shown in infinite horizon problems (under the right set of assumptions)

- the sequence of value function V_{n+1} = T(V_n), converges toward the value function of the infinite horizon problem: lim_{n→∞} V_n = V[♯].
- The optimal value of the infinite horizon problem is a fixed point of the Bellman operator: $V^{\sharp} = T(V^{\sharp})$.
- If π is such that $V^{\sharp} = T^{\pi} V^{\sharp}$ then the stationnary policy π is optimal.

Value iteration algorithm

Algorithm 2: Value iteration algorithm

- Each step takes $O(|\mathbb{X}| \times |\mathbb{U}| \times |\Omega|)$ flops.
- The error $|V_n(x) V^{\sharp}(x)|$ is bounded by $C\alpha^n$.

Policy iteration algorithm

The policy iteration algorithm terminate in a finite number of step.