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Dynamic Programming

Stochastic Controlled Dynamic System

A stochastic controlled dynamic system is defined by its dynamic
xt+1 = ft(xt7 Ut’WtJrl)
and initial state

XO:XO

The variables
@ X, is the state of the system,
e U, is the control applied to the system at time t,

e W, is an exogeneous noise.
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Dynamic Programming

Optimization Problem

We want to solve the following optimization problem

T-1
min B[ D Le(X U W) + K(Xp)] (1)
t=0
st Xy = (X, U, W), Xy = X0 (2)
U, € U(X,) (3)
U, =c(Wo, -\ W,) (4)
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Dynamic Programming

Dynamic Programming Principle

Assume that the noises W, are independent.

Then, there exists an optimal solution of the form U, = ; (Xt),

given by
me(x) = argminE { Le(x, u,WH_l) + Viig0 ft(x, ”th+1) } ,
ue Ui (x
el current cost future costs
where
Vr(x) = K(x)
Vi) = min E [Lt(x, U, W, ;) + Virr o fi(x, u,wm)}
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Dynamic Programming

Interpretation of Bellman Value

The Bellman’s value function V;,(x) can be interpreted as the

value of the problem starting at time tg from the state x. More
precisely we have

T-1
Vo(x)=min B> L(X U W) + KX (5)
t=tp
st Xy = (XU W, ), X, =x  (6)
U, € U(X,) (7)
U =o(Wp,-,W,) (8)
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Curses of Dimensionality

Dynamic Programming Algorithm

Data: Problem parameters
Result: optimal control and value;
VT =K )

fort: T — 0 do

for x € X; do
V= —00;

for u € U(x) do
L Vv = min {y,E [Lt(x, u,WH_l)—}— Vt+1oft(x, “th+1)} };

Vt(X) =V

Algorithm 1: Dynamic Programming Algorithm (discrete case)
Number of flops: O(T x |X¢| x [Ug| x |[Wy|).
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Curses of Dimensionality

3 curses of dimensionality

@ State. If we consider 3 independent states each taking 10
values, then |X;| = 1000. In practice DP is not applicable for
states of dimension more than 5.

@ Decision. The decision are often vector decisions, that is a
number of independent decision, hence leading to huge
|Ue(x))].

© Expectation. In practice random information came from large
data set. Without a proper statistical treatment computing an
expectation is costly. Monte-Carlo approach are costly too,
and unprecise.
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Infinite Horizon

Introducing the Bellman operators

We define the Bellman operator associated to our optimisation
problem

T:(J): x — n?jl? )E {Lt(x, u,W,, )+ Jofi(x, u,WH_l)} .
ucUs(x

The Dynamic Programming equation can then be written

Vr =K
Ve = Te(Vesa)
We also construct the policy-dependent Bellman operator

TE() £ x5 B [Lelx (), Wiy) + S 0 i (6, 7(6), W) |
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Infinite Horizon

Discounted fixed cost case

We now consider the following specific case problem, where

(W,) oy is i-id.
-
min  E| Y a'L(X, U W) 9)
t=0
st Xy =f(X,U,W, ), Xo=x  (10)
U, < U(X,) (11)
U, 2o (Wo, -, W,) (12)

where « €]0, 1]. Note that the constraint and cost structure
doesnot depend on t.

The Bellman operator is given by

T(J):x— uénui(nX)E [L(X, u, W, 1) +adof(x,u, W, )
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Infinite Horizon

Infinite horizon problems

There is different ways of considering the above problem in an
“infinite horizon” setting.

@ Discounted case. This is the case where o < 1. It is especially
easy to treat if the cost L is bounded.

@ Stocastic shortest path. In this case o = 1 but there is a
“cemetary state” such that once reached the system remains
there with null cost. Moreover, we assume that the system
always reach the cemetary state in a finite time.

© Average cost per stage problems. This approach is mainly
taken if the infinite time cost isn't finite (for example oo = 1
and L > 0). We consider

\'

-1
. 1
lim ? E[ L(vat’Wt—i—l)

T—o0
t

Il
o
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Infinite Horizon

An overview of typical infinite horizon results

Here are the main results that can be shown in infinite horizon
problems (under the right set of assumptions)

@ the sequence of value function V11 = T(V,,), converges
toward the value function of the infinite horizon problem:
limpy—oo Vi, = VE.

@ The optimal value of the infinite horizon problem is a fixed
point of the Bellman operator: V¥ = T(Vﬁ).

© If 7 is such that V¥ = T7 V¥ then the stationnary policy 7 is
optimal.
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Infinite Horizon
Value iteration algorithm

Data: Initial value V()
Result: optimal policy and value;
repeat

for x € X do

L V(D) () = T(V9) ()

until ||V<HD — v <&
Algorithm 2: Value iteration algorithm

e Each step takes O(|X]| x |U| x |€|) flops.
@ The error |V,(x) — V#(x)| is bounded by Ca”.
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Infinite Horizon

Policy iteration algorithm

Data: Initial policy (%)

Result: optimal policy and value;

repeat

policy evaluation step: solve V = T’T(k)(V) which gives V(¥
policy improvement step :

for x ¢ X do

) (x) = arEgUnSi)n E {L(X, u, W, )+ aV® o f(x,u, Wt+1)}
u X

until V(9 = T(v(¥);
Algorithm 3: Policy iteration algorithm

The policy iteration algorithm terminate in a finite number of step.
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