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Where do we come from: two-stage programming
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u1,8 We take decisions in two stages

u0 ; W1 ; U1 ,

with U1: recourse decision .

On a tree, it resumes to
solve the extensive formulation:

min
u0,u1,s

∑
s∈S

πs
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〉
+
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ps , u1,s

〉]
.

We have as many u1,s as scenarios!
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Extending two-stage to multistage programming
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U = (U0, · · · ,UT )

W = (W1, · · · ,WT )

We take decisions in T stages

W0 ; U0 ; W1 ; U1 ; · · ·; WT ; UT .
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Introducing the non-anticipativity constraint

We do not know what holds behind the door.

Non-anticipativity

At time t, decisions are taken sequentially, only knowing the past
realizations of the perturbations.

Mathematically, this is equivalent to say that at time t,
the decision Ut is

1 a function of past noises

Ut = πt(W0, · · · ,Wt) ,

2 taken knowing the available information,

σ(Ut) ⊂ σ(W0, · · · ,Wt) .
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Multistage extensive formulation approach
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Assume that wt ∈ Rnw can take nw values
and that Ut(x) can take nu values.

Then, considering the extensive formulation
approach, we have

nT
w scenarios.

(nT+1
w − 1)/(nw − 1) nodes in the tree.

Number of variables in the optimization
problem is roughly
nu × (nT+1

w − 1)/(nw − 1) ≈ nunT
w .

The complexity grows exponentially with the
number of stage. :-(
A way to overcome this issue is to compress
information!
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Illustrating extensive formulation with the damsvalley
example

SoulcemGnioure Izourt

Auzat

Sabart

5 interconnected dams

5 controls per timesteps

52 timesteps (one per week, over one
year)

nw = 10 noises for each timestep

We obtain 1052 scenarios, and ≈ 5.1052

constraints in the extensive formulation ...
Estimated storage capacity of the Internet:
1024 bytes.
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Compressing information inside a state

Due to non-anticipativity constraint, decisions are function of
previous history:

σ(Ut) = πt(W0, · · · ,Wt) .

As the number of timesteps increases, the computation of the
policy πt becomes more and more complicated.

A solution is to compute decisions as function of a sufficient
aggregated information called state (and denoted by Xt):

σ(Ut) = ψt(Xt) .

This is equivalent to find a sufficient statistic for the process
(W0, · · · ,Wt).
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Stochastic Controlled Dynamic System

A discrete time controlled stochastic dynamic system is defined by
its dynamic

Xt+1 = ft(Xt ,Ut ,Wt+1)

and initial state
X0 = W0

The variables

Xt is the state of the system,

Ut is the control applied to the system at time t,

Wt is an exogeneous noise.

Usually, Xt ∈ Xt and Ut beglongs to a set depending upon the
state: Ut ∈ Ut(Xt).
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Examples

Stock of water in a dam:

Xt is the amount of water in the dam at time t,
Ut is the amount of water turbined at time t,
Wt+1 is the inflow of water in [t, t + 1[.

Boat in the ocean:

Xt is the position of the boat at time t,
Ut is the direction and speed chosen for [t, t + 1[,
Wt+1 is the wind and current for [t, t + 1[.

Subway network:

Xt is the position and speed of each train at time t,
Ut is the acceleration chosen at time t,
Wt+1 is the delay due to passengers and incident on the
network for [t, t + 1[.
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Optimization Problem

We want to solve the following optimization problem

min E
( T−1∑

t=0

Lt

(
Xt ,Ut ,Wt+1

)
+ K

(
XT

))
s.t. Xt+1 = ft(Xt ,Ut ,Wt+1), X0 = W0

Ut ∈ Ut(Xt)

σ(Ut) ⊂ σ
(
W0, · · · ,Wt

)
1 We want to minimize the expectation of the sum of costs.

2 The system follows a dynamic given by the function ft .

3 There are constraints on the controls.

4 The controls are functions of the past noises
(= non-anticipativity).
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Optimization Problem with independence of noises

If noises at time independent, the optimization problem is
equivalent to

min E
( T−1∑

t=0

Lt

(
Xt ,Ut ,Wt+1

)
+ K

(
XT

))
s.t. Xt+1 = ft(Xt ,Ut ,Wt+1), X0 = W0

Ut ∈ Ut(Xt)

Ut = ψt(Xt)
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Bellman’s Principle of Optimality

Richard Ernest Bellman
(August 26, 1920 – March 19,
1984)

An optimal policy has the
property that whatever the
initial state and initial
decision are, the remaining
decisions must constitute
an optimal policy with
regard to the state
resulting from the first
decision (Richard Bellman)
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The shortest path on a graph illustrates Bellman’s
Principle of Optimality

For an auto travel analogy,
suppose that the fastest
route from Los Angeles to
Boston passes through
Chicago.
The principle of optimality
translates to obvious fact
that the Chicago to Boston
portion of the route is also
the fastest route for a trip
that starts from Chicago
and ends in Boston.
(Dimitri P. Bertsekas)
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Idea behind dynamic programming

If noises are time independent, then

1 The cost to go at time t depends only upon the current state.

2 We can compute recursively the cost to go for each position,
starting from the terminal state and computing optimal
trajectories backward.

Optimal cost-to-go of being in state x at time t is:

Vt(x) = min
u∈Ut(x)

E
(

Lt(x , u,Wt+1)︸ ︷︷ ︸
instantaneous cost

+ Vt+1 ◦ ft
(
x , u,Wt+1

)︸ ︷︷ ︸
cost to be in Xt+1 at time t+1

)
.

At time t, Vt+1 gives the cost of the future. Dynamic

Programming is a time decomposition method.
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Dynamic Programming Principle

Assume that the noises Wt are time-independent and exogeneous.
The Bellman’s equation writes


VT (x) = K (x)

Vt(x) = min
u∈Ut(x)

E
(

Lt(x , u,Wt+1) + Vt+1 ◦ ft
(
x , u,Wt+1

)︸ ︷︷ ︸
”Xt+1”

)

Decisions are taken as Ut = πt
(
Xt

)
, with

πt(x) ∈ arg min
u∈Ut(x)

E
(

Lt(x , u,Wt+1)︸ ︷︷ ︸
current cost

+ Vt+1 ◦ ft
(
x , u,Wt+1

)︸ ︷︷ ︸
future costs

)
,
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Interpretation of Bellman Value Function

The Bellman’s value function Vt0(x) can be interpreted as the
value of the problem starting at time t0 from the state x .
More precisely we have

Vt0(x) = min E
( T−1∑

t=t0

Lt

(
Xt ,Ut ,Wt+1

)
+ K

(
XT

))
s.t. Xt+1 = ft(Xt ,Ut ,Wt+1), Xt0

= x

Ut ∈ Ut(Xt)

σ(Ut) ⊂ σ
(
W0, · · · ,Wt

)

Ex: Economists can view V as a way to
evaluate a stock (= value of water for a dam)
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal control and value;
VT ≡ K ;
for t : T − 1→ 0 do

for x ∈ Xt do

Vt(x) = min
u∈Ut(x)

E
(

Lt(x , u,Wt+1) + Vt(ft(x , u,Wt+1))
)

Algorithm 1: We iterate over the discretized state space
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal control and value;
VT ≡ K ;
for t : T − 1→ 0 do

for x ∈ Xt do
Vt(x) =∞;
for u ∈ Ut(x) do

vu = E
(

Lt(x , u,Wt+1) + Vt(ft(x , u,Wt+1))
)

if

vu < Vt(x) then
Vt(x) = vu ;
πt(x) = u ;

Algorithm 2: We iterate over the discretized control space
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Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters
Result: optimal control and value;
VT ≡ K ;
for t : T − 1→ 0 do

for x ∈ Xt do
Vt(x) =∞;
for u ∈ Ut(x) do

vu = 0;
for w ∈Wt do

vu = vu + P{w}
(
Lt(x , u,w) + Vt+1(ft

(
x , u,w

)
)
)
;

if vu < Vt(x) then
Vt(x) = vu ;
πt(x) = u ;

Algorithm 3: Classical stochastic dynamic programming algorithm
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3 curses of dimensionality

Complexity = O(T × |Xt | × |Ut | × |Wt |)

This is linear in the number of time steps :-)

But we have 3 curses of dimensionality :-( :

1 State. Complexity is exponential in the dimension of Xt

2 Decision. Complexity is exponential in the dimension of Ut

3 Expectation. Complexity is exponential in the dimension of
Wt
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Illustrating dynamic programming with the damsvalley
example

SoulcemGnioure Izourt

Auzat

Sabart
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Illustrating the curse of dimensionality

We are in dimension 5 (not so high in the world of big data!) with
52 timesteps (common in energy management) plus 5 controls and
5 independent noises.

1 We discretize each state’s dimension in 100 values:
|Xt | = 1005 = 1010

2 We discretize each control’s dimension in 100 values:
|Ut | = 1005 = 1010

3 We use optimal quantization to discretize the noises’ space in
10 values: |Wt | = 10

Number of flops: O(52× 1010 × 1010 × 10) ≈ O(1023).
In the TOP500, the best computer computes 1017 flops/s.
Even with the most powerful computer, it takes at least 12 days to
solve this problem.
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DP on a Markov Chain

Sometimes it is easier to represent a problem as a controlled
Markov Chain

Dynamic Programming equation can be computed directly,
without expliciting the control.

Let’s work out an example...
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Controlled Markov Chain

A controlled Markov Chain is controlled stochastic dynamic
system with independent noise (Wt)t∈Z, where the dynamic
and the noise are left unexplicited.

What is given is the transition probability

πut (x , y) := P
(

Xt+1 = y | Xt = x ,Ut = u
)
.

In this case the cost are given as a function of the current
stage, the next stage and the control.

The Dynamic Programming Equation then reads (assume
finite state)

Vt(x) = min
u

∑
y∈Xt+1

πut (x , y)
[
Lu
t (x , y) + Vt+1(y)

]
.
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Example

Consider a machine that has two states : running (R) and broken
(B). If it is broken we need to fix it (F) for a cost of 100. If it is
running there are two choices: maintaining it (M), or not
maintaining (N). If we maintain, the cost is 25 and the machine
stay running with probability πM(R,R) = 1; if we do not maintain
there is a probability of πN(R,B) = 0.5 of breaking it (or keep it
running). We need to have it running for 3 periods.
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Controlled Markov Chain

V0 V1 V2 V3 V4

R 0
B 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R min
{

25 + 0, 0 + (0 + 0)/2
}

0
B 100 + 0 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R min
{

25 + 0, 0 + (0 + 100)/2
}

0 0
B 100 + 0 100 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R min
{

25 + 25, 0 + (25 + 100)/2
}

25 0 0
B 100 + 25 100 100 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R min
{

25 + 50, 0 + (50 + 125)/2
}

50 25 0 0
B 100 + 50 125 100 100 0
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Controlled Markov Chain

V0 V1 V2 V3 V4

R 75 50 25 0 0
B 150 125 100 100 0
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Computing a decision online

Algorithm: Offline value functions precomputation + Online open
loop reoptimization

Offline: We produce value functions with Bellman equation:

Vt(x) = min
u∈Ut

E
(

Lt(x , u,Wt+1) + Vt+1(ft(x , u,Wt+1))
)

Online: At time t, knowing xt we plug the computed value
function Vt+1 as future cost

ut ∈ arg min
u∈Ut

E
(

Lt(xt , u,Wt+1) + Vt+1(ft(xt , u,Wt+1))
)
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Independence of noises

The Dynamic Programming equation requires only the
time-independence of noises.

This can be relaxed if we consider an extended state.

Consider a dynamic system driven by an equation

Yt+1 = ft(Yt ,Ut , εt+1)

where the random noise εt is an AR-1 process :

εt = αtεt−1 + βt + Wt ,

{Wt}t∈Z being independent.

Then Yt is called the physical state of the system and DP can
be used with the information state Xt = (Yt , εt).

Generically speaking, if the noise Wt is exogeneous (not
affected by decisions Ut), then we can always apply Dynamic
Programming with the state (Xt ,W1, . . . ,Wt).
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State augmentation limits

Because of the curse of dimensionality it might be impossible to
take into account correlation by augmenting the state variable.

Practitioners often ignore noise dependence for the value functions
computation but use dependence information during online
reoptimization.

We present this technique in a following industrial case
presentation
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Conclusion

Multistage stochastic programming fails to handle large
number of timesteps.

Dynamic Programming overcomes this difficulty while
compressing information inside a state X.

Dynamic Programming computes backward a set of value
functions

{
Vt

}
, corresponding to the optimal cost of being at

a given position at time t.

Numerically, DP is limited by the curse of dimensionality and
its performance are deeply related to the discretization of the
look-up table used.

Other methods exist to compute the value functions without
look-up table (Approximate Dynamic Programming, SDDP).
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Independence of noises: AR-1 case

Consider a dynamic system driven by an equation
Yt+1 = ft(Yt ,Ut , εt+1) where the random noise εt is an
AR-1 process : εt = αtεt−1 + βt + Wt+1, {Wt}t∈Z being
independent.

Define the information state Xt = (Yt , εt).

Then we have

Xt+1 =

(
ft(Yt ,Ut , αtεt + βt + Wt+1)

αtεt + βt + Wt+1

)
= f̃t(Xt ,Ut ,Wt+1)

And we have the following DP equation

Vt(
y
ε ) = min

u∈Ut(x)
E
(

Lt(y , u, αtε+ βt + Wt+1︸ ︷︷ ︸
”εt+1”

)+Vt+1◦f̃t
(
x , u,Wt+1

)︸ ︷︷ ︸
”Xt+1”

)
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Dynamic Programming : Discretization-Interpolation

The DP equation holds :

Vt(x) = min
u∈Ut(x)

E
(

Lt(x , u,Wt+1 + Vt+1 ◦ ft(x , u,Wt+1)
)
.

But computation is impractical in a continuous space.
Simplest solution : discretization and interpolation.

We choose a finite set XD
t ⊂ Xt where we will compute (an

approximation of) the Bellman value Vt .

We approximate the Bellman value at time t by interpolating
these value.
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Dynamic Programming : Discretization-Interpolation

Data: Problem parameters, discretization,
one-stage solver, interpolation operator;

Result: approximation of optimal value;
ṼT ≡ K ;
for t : T − 1→ 0 do

for x ∈ XD
t do

Ṽt(x) := min
u∈Ut(x)

E
(

Lt(x , u,Wt+1)+Ṽt+1◦ft
(
x , u,Wt+1

))
;

Define Ṽt by interpolating {Ṽt(x) | x ∈ XD
t };

Algorithm 4: Dynamic Programming Algorithm (Continuous)

The strategy obtained is given by

πt(x) ∈ arg min
u∈Ut(x)

E
(

Lt(x , u,Wt+1) + Ṽt+1 ◦ ft
(
x , u,Wt+1

))
.
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Numerical considerations

The discrete case algorithm a look-up table of optimal control
for every possible state offline.

In the continuous case we focus on computing offline an
approximation of the value function Vt and derive the optimal
control online by solving a one-step problem, solved only at
the current state :

πt(x) ∈ arg min
u∈Ut(x)

E
(

Lt(x , u,Wt+1) + Vt+1 ◦ ft
(
x , u,Wt+1

))

The field of Approximate DP gives methods for computing
those approximate value function (decomposed on a base of
functions).

The simpler one consisting in discretizing the state, and then
interpolating the value function.
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Independence of noises

The Dynamic Programming equation requires only the
time-independence of noises.

This can be relaxed if we consider an extended state.

Consider a dynamic system driven by an equation

Yt+1 = ft(Yt ,Ut , εt+1)

where the random noise εt is an AR-1 process :

εt = αtεt−1 + βt + Wt ,

{Wt}t∈Z being independent.

Then Yt is called the physical state of the system and DP can
be used with the information state Xt = (Yt , εt).

Generically speaking, if the noise Wt is exogeneous (not
affected by decisions Ut), then we can always apply Dynamic
Programming with the state (Xt ,W1, . . . ,Wt).
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