Stochastic Dynamic Programming

V. Leclère (ENPC) F. Pacaud, T.Rigaut (Efficacity)

March 14, 2017

Practical aspects

Discussion

Contents

Multistage stochastic programming

- From two-stage to multistage programming
- Compressing information inside a state

2 Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle

3 Practical aspects

- Curses of dimensionality
- Markov chain setting
- Practitioners techniques

4 Discussion

Contents

Multistage stochastic programming

- From two-stage to multistage programming
- Compressing information inside a state

2 Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle

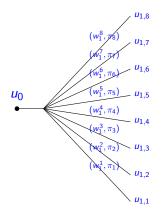
3 Practical aspects

- Curses of dimensionality
- Markov chain setting
- Practitioners techniques

4 Discussion

Practical aspects

Where do we come from: two-stage programming



• We take decisions in two stages

$$u_0 \rightsquigarrow \mathbf{W}_1 \rightsquigarrow \mathbf{U}_1$$
 ,

with U_1 : recourse decision .

• On a tree, it resumes to solve the extensive formulation:

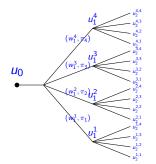
$$\min_{u_0,u_{1,s}}\sum_{s\in\mathbb{S}}\pi_s[\langle c_s\,,u_0\rangle+\langle p_s\,,u_{1,s}\rangle]\;.$$

We have as many $u_{1,s}$ as scenarios!

Practical aspects

Discussion

Extending two-stage to multistage programming



$$\begin{split} \min_{\mathbf{U}} \ & \mathbb{E}\big(j(\mathbf{U},\mathbf{W})\big) \\ \mathbf{U} &= (\mathbf{U}_0,\cdots,\mathbf{U}_T) \\ \mathbf{W} &= (\mathbf{W}_1,\cdots,\mathbf{W}_T) \end{split}$$

We take decisions in \mathcal{T} stages $\mathbf{W}_0 \rightsquigarrow \mathbf{U}_0 \rightsquigarrow \mathbf{W}_1 \rightsquigarrow \mathbf{U}_1 \rightsquigarrow \cdots \rightsquigarrow \mathbf{W}_{\mathcal{T}} \rightsquigarrow \mathbf{U}_{\mathcal{T}}$.

Practical aspects

Discussion

Introducing the non-anticipativity constraint

We do not know what holds behind the door.

Non-anticipativity

At time t, decisions are taken sequentially, only knowing the past realizations of the perturbations.

Mathematically, this is equivalent to say that at time t, the decision \mathbf{U}_t is

a function of past noises

$$\mathbf{U}_t = \pi_t(\mathbf{W}_0, \cdots, \mathbf{W}_t) ,$$

taken knowing the available information,

$$\sigma(\mathbf{U}_t) \subset \sigma(\mathbf{W}_0, \cdots, \mathbf{W}_t) \ .$$

Practical aspects

Multistage extensive formulation approach

Assume that $w_t \in \mathbb{R}^{n_w}$ can take n_w values and that $U_t(x)$ can take n_u values.

Then, considering the extensive formulation approach, we have

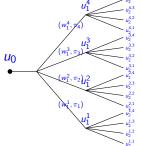
• n_w^T scenarios.

• $(n_w^{T+1}-1)/(n_w-1)$ nodes in the tree.

• Number of variables in the optimization problem is roughly

 $n_u \times (n_w^{T+1}-1)/(n_w-1) \approx n_u n_w^T.$

The complexity grows exponentially with the number of stage. :-(A way to overcome this issue is to compress information!



 (w_1^4)

 (w_1^2, π_2)

 u_0

Dynamic Programming

Practical aspects

Discussion

Multistage extensive formulation approach

Assume that $w_t \in \mathbb{R}^{n_w}$ can take n_w values and that $U_t(x)$ can take n_u values.

Then, considering the extensive formulation approach, we have

• n_w^T scenarios.

• $(n_w^{T+1}-1)/(n_w-1)$ nodes in the tree.

• Number of variables in the optimization problem is roughly

 $n_u \times (n_w^{T+1}-1)/(n_w-1) \approx n_u n_w^T.$

The complexity grows exponentially with the number of stage. :-(

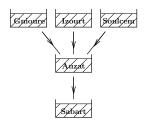
A way to overcome this issue is to compress information!

Dynamic Programming

Practical aspects

Discussion

Illustrating extensive formulation with the damsvalley example



- 5 interconnected dams
- 5 controls per timesteps
- 52 timesteps (one per week, over one year)
- $n_w = 10$ noises for each timestep

We obtain 10^{52} scenarios, and $\approx 5.10^{52}$ constraints in the extensive formulation ... Estimated storage capacity of the Internet: 10^{24} bytes.

Practical aspects

Discussion

Contents

Multistage stochastic programming From two-stage to multistage programming

• Compressing information inside a state

2 Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle

3 Practical aspects

- Curses of dimensionality
- Markov chain setting
- Practitioners techniques

4 Discussion

Practical aspects

Discussion

Compressing information inside a state

Due to non-anticipativity constraint, decisions are function of previous history:

$$\sigma(\mathbf{U}_t) = \pi_t(\mathbf{W}_0, \cdots, \mathbf{W}_t) \ .$$

As the number of timesteps increases, the computation of the policy π_t becomes more and more complicated.

A solution is to compute decisions as function of a sufficient aggregated information called state (and denoted by X_t):

$$\sigma(\mathbf{U}_t) = \psi_t(\mathbf{X}_t) \ .$$

This is equivalent to find a sufficient statistic for the process $(\mathbf{W}_0, \cdots, \mathbf{W}_t)$.

Practical aspects

Discussion

Contents

Multistage stochastic programming

- From two-stage to multistage programming
- Compressing information inside a state

2 Dynamic Programming

• Stochastic optimal control problem

• Dynamic Programming principle

3 Practical aspects

- Curses of dimensionality
- Markov chain setting
- Practitioners techniques

4 Discussion

Dynamic Programming

Practical aspects

Discussion

Stochastic Controlled Dynamic System

A discrete time controlled stochastic dynamic system is defined by its *dynamic*

$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1})$$

and initial state

$$\boldsymbol{\mathsf{X}}_0 = \boldsymbol{\mathsf{W}}_0$$

The variables

- X_t is the *state* of the system,
- U_t is the *control* applied to the system at time t,
- W_t is an exogeneous noise.

Usually, $\mathbf{X}_t \in \mathbb{X}_t$ and \mathbf{U}_t begiongs to a set depending upon the state: $\mathbf{U}_t \in \mathbb{U}_t(\mathbf{X}_t)$.

Multistage stochastic	programming

Examples

- Stock of water in a dam:
 - X_t is the amount of water in the dam at time t,
 - \mathbf{U}_t is the amount of water turbined at time t,
 - \mathbf{W}_{t+1} is the inflow of water in [t, t+1].
- Boat in the ocean:
 - X_t is the position of the boat at time t,
 - \mathbf{U}_t is the direction and speed chosen for [t, t + 1[,
 - \mathbf{W}_{t+1} is the wind and current for [t, t+1[.
- Subway network:
 - X_t is the position and speed of each train at time t,
 - \mathbf{U}_t is the acceleration chosen at time t,
 - \mathbf{W}_{t+1} is the delay due to passengers and incident on the network for [t, t+1[.

Dynamic Programming

Practical aspects

Discussion

Optimization Problem

We want to solve the following optimization problem

$$\begin{array}{ll} \min & \quad \mathbb{E}\Big(\sum_{t=0}^{T-1} L_t\big(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}\big) + \mathcal{K}\big(\mathbf{X}_T\big)\Big) \\ s.t. & \quad \mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}), \qquad \mathbf{X}_0 = \mathbf{W}_0 \\ & \quad \mathbf{U}_t \in \mathbb{U}_t(\mathbf{X}_t) \\ & \quad \sigma(\mathbf{U}_t) \subset \sigma\big(\mathbf{W}_0, \cdots, \mathbf{W}_t\big) \end{array}$$

We want to minimize the expectation of the sum of costs.

- ⁽²⁾ The system follows a dynamic given by the function f_t .
- There are constraints on the controls.

The controls are functions of the past noises (= non-anticipativity).

Dynamic Programming

Practical aspects

Discussion

Optimization Problem

We want to solve the following optimization problem

$$\begin{array}{ll} \min & \quad \mathbb{E}\Big(\sum_{t=0}^{T-1} L_t\big(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}\big) + K\big(\mathbf{X}_T\big)\Big) \\ s.t. & \quad \mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}), \qquad \mathbf{X}_0 = \mathbf{W}_0 \\ & \quad \mathbf{U}_t \in \mathbb{U}_t(\mathbf{X}_t) \\ & \quad \sigma(\mathbf{U}_t) \subset \sigma\big(\mathbf{W}_0, \cdots, \mathbf{W}_t\big) \end{array}$$

• We want to minimize the expectation of the sum of costs.

- 2 The system follows a dynamic given by the function f_t .
- There are constraints on the controls.

 The controls are functions of the past noises (= non-anticipativity).

Optimization Problem with independence of noises

If noises at time independent, the optimization problem is equivalent to

$$\begin{array}{ll} \min & \quad \mathbb{E}\Big(\sum_{t=0}^{T-1} L_t\big(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}\big) + \mathcal{K}\big(\mathbf{X}_T\big)\Big) \\ s.t. & \quad \mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}), \qquad \mathbf{X}_0 = \mathbf{W}_0 \\ & \quad \mathbf{U}_t \in \mathbb{U}_t(\mathbf{X}_t) \\ & \quad \mathbf{U}_t = \psi_t(\mathbf{X}_t) \\ \end{array}$$

Practical aspects

Discussion

Contents

Multistage stochastic programming

- From two-stage to multistage programming
- Compressing information inside a state

2 Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle

3 Practical aspects

- Curses of dimensionality
- Markov chain setting
- Practitioners techniques

4 Discussion

Dynamic Programming

Practical aspects

Discussion

Bellman's Principle of Optimality

Richard Ernest Bellman (August 26, 1920 – March 19, 1984)

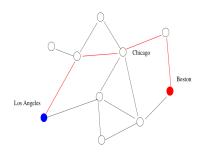
An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision (Richard Bellman)

Dynamic Programming

Practical aspects

Discussion

The shortest path on a graph illustrates Bellman's Principle of Optimality



For an auto travel analogy, suppose that the fastest route from Los Angeles to Boston passes through **Chicago**.

The principle of optimality translates to obvious fact that the Chicago to Boston portion of the route is also the fastest route for a trip that starts from Chicago and ends in Boston. (Dimitri P. Bertsekas)

Idea behind dynamic programming

If noises are time independent, then

- The cost to go at time *t* depends only upon the current state.
- We can compute recursively the cost to go for each position, starting from the terminal state and computing optimal trajectories backward.

Optimal cost-to-go of being in state x at time t is:

$$V_t(x) = \min_{u \in \mathbb{U}_t(x)} \mathbb{E}\left(\underbrace{L_t(x, u, \mathbf{W}_{t+1})}_{t+1} + \underbrace{V_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})}_{t+1}\right)$$

instantaneous cost

cost to be in X_{t+1} at time

At time t, V_{t+1} gives the cost of the future. Dynamic Programming is a time decomposition method.

Idea behind dynamic programming

If noises are time independent, then

- The cost to go at time *t* depends only upon the current state.
- We can compute recursively the cost to go for each position, starting from the terminal state and computing optimal trajectories backward.

Optimal cost-to-go of being in state x at time t is:

$$V_t(x) = \min_{u \in \mathbb{U}_t(x)} \mathbb{E}\left(\underbrace{L_t(x, u, \mathbf{W}_{t+1})}_{\text{instantaneous cost}} + \underbrace{V_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})}_{\text{cost to be in } \mathbf{X}_{t+1} \text{ at time } t+1}\right).$$

At time t, V_{t+1} gives the cost of the future. Dynamic Programming is a time decomposition method.

Practical aspects

Dynamic Programming Principle

Assume that the noises \mathbf{W}_t are time-independent and exogeneous. The Bellman's equation writes

$$\begin{cases} V_{\mathcal{T}}(x) = \mathcal{K}(x) \\ V_{t}(x) = \min_{u \in \mathbb{U}_{t}(x)} \mathbb{E} \Big(L_{t}(x, u, \mathbf{W}_{t+1}) + V_{t+1} \circ \underbrace{f_{t}(x, u, \mathbf{W}_{t+1})}_{"\mathbf{X}_{t+1}"} \Big) \end{cases}$$

Decisions are taken as $\mathbf{U}_t = \pi_t(\mathbf{X}_t)$, with

$$\pi_t(x) \in \underset{u \in \mathbb{U}_t(x)}{\arg\min} \mathbb{E}\left(\underbrace{L_t(x, u, \mathbf{W}_{t+1})}_{\text{current cost}} + \underbrace{V_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})}_{\text{future costs}}\right),$$

Practical aspects

Discussion

Dynamic Programming Principle

Assume that the noises \mathbf{W}_t are time-independent and exogeneous. The Bellman's equation writes

$$\begin{cases} V_{\mathcal{T}}(x) = \mathcal{K}(x) \\ V_{t}(x) = \min_{u \in \mathbb{U}_{t}(x)} \mathbb{E} \Big(L_{t}(x, u, \mathbf{W}_{t+1}) + V_{t+1} \circ \underbrace{f_{t}(x, u, \mathbf{W}_{t+1})}_{"\mathbf{X}_{t+1}"} \Big) \end{cases}$$

Decisions are taken as $\mathbf{U}_t = \pi_t(\mathbf{X}_t)$, with

$$\pi_t(x) \in \underset{u \in \mathbb{U}_t(x)}{\operatorname{arg\,min}} \mathbb{E}\left(\underbrace{L_t(x, u, \mathbf{W}_{t+1})}_{\operatorname{current\,cost}} + \underbrace{V_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})}_{\operatorname{future\,costs}}\right),$$

Dynamic Programming

Practical aspects

Discussion

Interpretation of Bellman Value Function

The Bellman's value function $V_{t_0}(x)$ can be interpreted as the value of the problem starting at time t_0 from the state x. More precisely we have

$$V_{t_0}(\mathbf{x}) = \min \qquad \mathbb{E}\left(\sum_{t=t_0}^{T-1} L_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}) + K(\mathbf{X}_T)\right)$$

s.t.
$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}), \qquad \mathbf{X}_{t_0} = \mathbf{x}$$

$$\mathbf{U}_t \in \mathbb{U}_t(\mathbf{X}_t)$$

$$\sigma(\mathbf{U}_t) \subset \sigma(\mathbf{W}_0, \cdots, \mathbf{W}_t)$$

Ex: Economists can view V as a way to evaluate a stock (= value of water for a dam)

Dynamic Programming

Practical aspects

Discussion

Interpretation of Bellman Value Function

The Bellman's value function $V_{t_0}(x)$ can be interpreted as the value of the problem starting at time t_0 from the state x. More precisely we have

$$V_{t_0}(\mathbf{x}) = \min \qquad \mathbb{E}\left(\sum_{t=t_0}^{T-1} L_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}) + \mathcal{K}(\mathbf{X}_T)\right)$$

s.t.
$$\mathbf{X}_{t+1} = f_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1}), \qquad \mathbf{X}_{t_0} = \mathbf{x}$$

$$\mathbf{U}_t \in \mathbb{U}_t(\mathbf{X}_t)$$

$$\sigma(\mathbf{U}_t) \subset \sigma(\mathbf{W}_0, \cdots, \mathbf{W}_t)$$

Ex: Economists can view V as a way to evaluate a stock (= value of water for a dam)

Contents

Multistage stochastic programming

- From two-stage to multistage programming
- Compressing information inside a state

2 Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle
- 3 Practical aspects
 - Curses of dimensionality
 - Markov chain setting
 - Practitioners techniques

4 Discussion

Dynamic Programming Algorithm - Discrete Case

Data: Problem parameters **Result:** optimal control and value; $V_T \equiv K$; for $t: T - 1 \rightarrow 0$ do for $x \in \mathbb{X}_t$ do $V_t(x) = \min_{u \in U_t(x)} \mathbb{E} (L_t(x, u, \mathbf{W}_{t+1}) + V_t(f_t(x, u, \mathbf{W}_{t+1})))$

Algorithm 1: We iterate over the discretized state space

Practical aspects

Discussion

Dynamic Programming Algorithm - Discrete Case

```
Data: Problem parameters
Result: optimal control and value;
V_T \equiv K:
for t: T-1 \rightarrow 0 do
    for x \in \mathbb{X}_t do
          V_t(x) = \infty;
         for u \in U_t(x) do
              v_u = \mathbb{E} \Big( L_t(x, u, \mathbf{W}_{t+1}) + V_t(f_t(x, u, \mathbf{W}_{t+1})) \Big) if
                v_u < V_t(x) then
             V_t(x) = v_u;
\pi_t(x) = u;
```

Algorithm 2: We iterate over the discretized control space

Dynamic Programming

Practical aspects

Discussion

Dynamic Programming Algorithm - Discrete Case

```
Data: Problem parameters
Result: optimal control and value;
V_T \equiv K:
for t: T-1 \rightarrow 0 do
    for x \in \mathbb{X}_t do
         V_t(x) = \infty;
         for u \in U_t(x) do
             v_{\mu} = 0:
              for w \in \mathbb{W}_t do
               | v_u = v_u + \mathbb{P}\{w\} (L_t(x, u, w) + V_{t+1}(f_t(x, u, w)));
              if v_{\mu} < V_t(x) then
              V_t(x) = v_u ;
\pi_t(x) = u ;
```

Algorithm 3: Classical stochastic dynamic programming algorithm

3 curses of dimensionality

$Complexity = O(T \times |\mathbb{X}_t| \times |\mathbb{U}_t| \times |\mathbb{W}_t|)$

This is linear in the number of time steps :-)

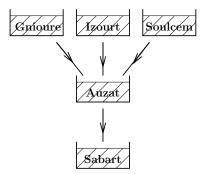
But we have 3 curses of dimensionality :-(:

- **1** State. Complexity is exponential in the dimension of X_t
- **2** Decision. Complexity is exponential in the dimension of \mathbb{U}_t
- Sector Expectation. Complexity is exponential in the dimension of \mathbb{W}_t

Dynamic Programming 00000000000 Practical aspects

Discussion

Illustrating dynamic programming with the damsvalley example



Illustrating the curse of dimensionality

We are in dimension 5 (not so high in the world of big data!) with 52 timesteps (common in energy management) plus 5 controls and 5 independent noises.

• We discretize each state's dimension in 100 values: $|X_t| = 100^5 = 10^{10}$

 We discretize each control's dimension in 100 values: $|\mathbb{U}_t| = 100^5 = 10^{10}$

• We use optimal quantization to discretize the noises' space in 10 values: $|W_t| = 10$

Number of flops: $\mathcal{O}(52 \times 10^{10} \times 10^{10} \times 10) \approx \mathcal{O}(10^{23})$. In the TOP500, the best computer computes 10^{17} flops/s. Even with the most powerful computer, it takes at least 12 days to solve this problem.

Practical aspects

Discussion

Contents

Multistage stochastic programming

- From two-stage to multistage programming
- Compressing information inside a state

2 Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle

3 Practical aspects

• Curses of dimensionality

Markov chain setting

Practitioners techniques

4 Discussion

DP on a Markov Chain

- Sometimes it is easier to represent a problem as a controlled Markov Chain
- Dynamic Programming equation can be computed directly, without expliciting the control.
- Let's work out an example...

Dynamic Programming

Practical aspects

Discussion

Controlled Markov Chain

- A controlled Markov Chain is controlled stochastic dynamic system with independent noise (W_t)_{t∈Z}, where the dynamic and the noise are left unexplicited.
- What is given is the transition probability

$$\pi_t^u(x,y) := \mathbb{P}\Big(\mathbf{X}_{t+1} = y \mid \mathbf{X}_t = x, \mathbf{U}_t = u\Big).$$

- In this case the cost are given as a function of the current stage, the next stage and the control.
- The Dynamic Programming Equation then reads (assume finite state)

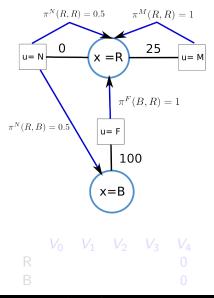
$$V_t(x) = \min_u \sum_{y \in \mathbb{X}_{t+1}} \pi_t^u(x, y) \Big[L_t^u(x, y) + V_{t+1}(y) \Big].$$

Example

Consider a machine that has two states : running (R) and broken (B). If it is broken we need to fix it (F) for a cost of 100. If it is running there are two choices: maintaining it (M), or not maintaining (N). If we maintain, the cost is 25 and the machine stay running with probability $\pi^{M}(R, R) = 1$; if we do not maintain there is a probability of $\pi^{N}(R, B) = 0.5$ of breaking it (or keep it running). We need to have it running for 3 periods.

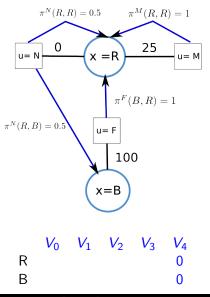
Dynamic Programming 00000000000 Practical aspects

Discussion



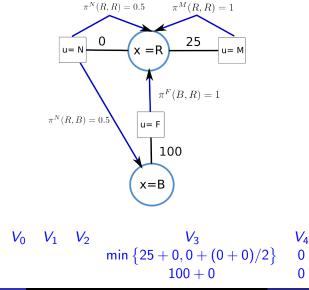
Dynamic Programming 00000000000 Practical aspects

Discussion



Practical aspects

Controlled Markov Chain



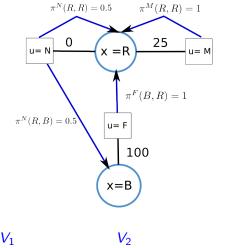
Leclère, Pacaud, Rigaut

R В 0

0

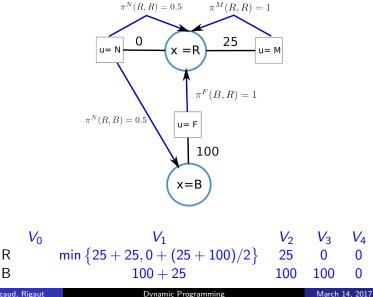
Dynamic Programming 00000000000 Practical aspects

Discussion



Practical aspects

Controlled Markov Chain



Leclère, Pacaud, Rigaut

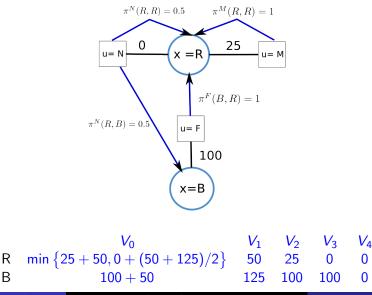
Dynamic Programming

27 / 31

Dynamic Programming 00000000000 Practical aspects

Discussion

Controlled Markov Chain



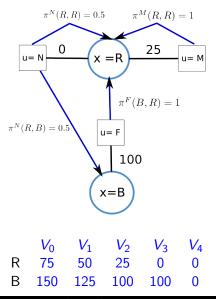
Leclère, Pacaud, Rigaut

Dynamic Programming

March 14, 2017 27 / 31

Dynamic Programming 00000000000 Practical aspects

Discussion



Contents

Multistage stochastic programming

- From two-stage to multistage programming
- Compressing information inside a state

2 Dynamic Programming

- Stochastic optimal control problem
- Dynamic Programming principle

3 Practical aspects

- Curses of dimensionality
- Markov chain setting
- Practitioners techniques

4 Discussion

Practical aspects

Computing a decision online

Algorithm: Offline value functions precomputation + Online open loop reoptimization

Offline: We produce value functions with Bellman equation:

$$V_t(x) = \min_{u \in \mathbb{U}_t} \mathbb{E}\left(L_t(x, u, \mathbf{W}_{t+1}) + V_{t+1}(f_t(x, u, \mathbf{W}_{t+1}))\right)$$

Online: At time *t*, knowing x_t we plug the computed value function V_{t+1} as future cost

$$u_t \in \underset{u \in \mathbb{U}_t}{\arg\min} \mathbb{E} \Big(L_t(x_t, u, \mathbf{W}_{t+1}) + V_{t+1}(f_t(x_t, u, \mathbf{W}_{t+1})) \Big)$$

Independence of noises

- The Dynamic Programming equation requires only the time-independence of noises.
- This can be relaxed if we consider an extended state.
- Consider a dynamic system driven by an equation

$$\mathbf{Y}_{t+1} = f_t(\mathbf{Y}_t, \mathbf{U}_t, \boldsymbol{\varepsilon}_{t+1})$$

where the random noise ε_t is an AR-1 process :

$$\boldsymbol{\varepsilon}_t = \alpha_t \boldsymbol{\varepsilon}_{t-1} + \beta_t + \mathbf{W}_t,$$

 $\{\mathbf{W}_t\}_{t\in\mathbb{Z}}$ being independent.

- Then \mathbf{Y}_t is called the physical state of the system and DP can be used with the information state $\mathbf{X}_t = (\mathbf{Y}_t, \boldsymbol{\varepsilon}_t)$.
- Generically speaking, if the noise W_t is exogeneous (not affected by decisions U_t), then we can always apply Dynamic Programming with the state (X_t, W₁,..., W_t).

State augmentation limits

Because of the curse of dimensionality it might be impossible to take into account correlation by augmenting the state variable.

Practitioners often ignore noise dependence for the value functions computation but use dependence information during online reoptimization.

We present this technique in a following industrial case presentation

Multistage stochastic	programming

Conclusion

- Multistage stochastic programming fails to handle large number of timesteps.
- Dynamic Programming overcomes this difficulty while compressing information inside a state X.
- Dynamic Programming computes backward a set of value functions { V_t}, corresponding to the optimal cost of being at a given position at time t.
- Numerically, DP is limited by the curse of dimensionality and its performance are deeply related to the discretization of the look-up table used.
- Other methods exist to compute the value functions without look-up table (Approximate Dynamic Programming, SDDP).

Independence of noises: AR-1 case

- Consider a dynamic system driven by an equation $\begin{aligned} \mathbf{Y}_{t+1} &= f_t(\mathbf{Y}_t, \mathbf{U}_t, \boldsymbol{\varepsilon}_{t+1}) \text{ where the random noise } \boldsymbol{\varepsilon}_t \text{ is an} \\ \text{AR-1 process} : \ \boldsymbol{\varepsilon}_t &= \alpha_t \boldsymbol{\varepsilon}_{t-1} + \beta_t + \mathbf{W}_{t+1}, \ \{\mathbf{W}_t\}_{t \in \mathbb{Z}} \text{ being} \\ \text{ independent.} \end{aligned}$
- Define the information state $\mathbf{X}_t = (\mathbf{Y}_t, \boldsymbol{\varepsilon}_t)$.
- Then we have

$$\mathbf{X}_{t+1} = \begin{pmatrix} f_t(\mathbf{Y}_t, \mathbf{U}_t, \alpha_t \boldsymbol{\varepsilon}_t + \beta_t + \mathbf{W}_{t+1}) \\ \alpha_t \boldsymbol{\varepsilon}_t + \beta_t + \mathbf{W}_{t+1} \end{pmatrix} = \tilde{f}_t(\mathbf{X}_t, \mathbf{U}_t, \mathbf{W}_{t+1})$$

• And we have the following DP equation

$$V_t(\overset{y}{\varepsilon}) = \min_{u \in U_t(x)} \mathbb{E}\Big(L_t(y, u, \underbrace{\alpha_t \varepsilon + \beta_t + \mathbf{W}_{t+1}}_{"\varepsilon_{t+1}"}) + V_{t+1} \circ \underbrace{\tilde{f}_t(x, u, \mathbf{W}_{t+1})}_{"\mathbf{X}_{t+1}"}\Big)$$

• The DP equation holds :

$$V_t(x) = \min_{u \in U_t(x)} \mathbb{E}\Big(L_t(x, u, \mathbf{W}_{t+1} + V_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})\Big).$$

- But computation is impractical in a continuous space. Simplest solution : discretization and interpolation.
- We choose a finite set X^D_t ⊂ X_t where we will compute (an approximation of) the Bellman value V_t.
- We approximate the Bellman value at time *t* by interpolating these value.

Data: Problem parameters, discretization,
one-stage solver, interpolation operator;
Result: approximation of optimal value;
$$\tilde{V}_T \equiv K$$
;
for $t: T - 1 \rightarrow 0$ **do**
for $x \in \mathbb{X}_t^D$ **do**
 $\begin{bmatrix} \tilde{V}_t(x) := \min_{u \in U_t(x)} \mathbb{E} \left(L_t(x, u, \mathbf{W}_{t+1}) + \tilde{V}_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1}) \right);$
Define \tilde{V}_t by interpolating $\{\tilde{V}_t(x) \mid x \in \mathbb{X}_t^D\};$

Algorithm 4: Dynamic Programming Algorithm (Continuous)

The strategy obtained is given by

$$\pi_t(x) \in \underset{u \in U_t(x)}{\operatorname{arg\,min}} \mathbb{E}\Big(L_t(x, u, \mathbf{W}_{t+1}) + \tilde{V}_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})\Big).$$

Numerical considerations

- The discrete case algorithm a look-up table of optimal control for every possible state *offline*.
- In the continuous case we focus on computing offline an approximation of the value function V_t and derive the optimal control online by solving a one-step problem, solved only at the current state :

 $\pi_t(x) \in \underset{u \in U_t(x)}{\operatorname{arg\,min}} \mathbb{E}\left(L_t(x, u, \mathbf{W}_{t+1}) + V_{t+1} \circ f_t(x, u, \mathbf{W}_{t+1})\right)$

- The field of Approximate DP gives methods for computing those approximate value function (decomposed on a base of functions).
- The simpler one consisting in discretizing the state, and then interpolating the value function.

Independence of noises

- The Dynamic Programming equation requires only the time-independence of noises.
- This can be relaxed if we consider an extended state.
- Consider a dynamic system driven by an equation

$$\mathbf{Y}_{t+1} = f_t(\mathbf{Y}_t, \mathbf{U}_t, \boldsymbol{\varepsilon}_{t+1})$$

where the random noise ε_t is an AR-1 process :

$$\boldsymbol{\varepsilon}_t = \alpha_t \boldsymbol{\varepsilon}_{t-1} + \beta_t + \mathbf{W}_t,$$

 $\{\mathbf{W}_t\}_{t\in\mathbb{Z}}$ being independent.

- Then \mathbf{Y}_t is called the physical state of the system and DP can be used with the information state $\mathbf{X}_t = (\mathbf{Y}_t, \boldsymbol{\varepsilon}_t)$.
- Generically speaking, if the noise W_t is exogeneous (not affected by decisions U_t), then we can always apply Dynamic Programming with the state (X_t, W₁,..., W_t).