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Linear 2-stage stochastic program

Consider the following problem

min
u0,u1

E
[
c>u0 + q>u1

]
s.t. Au0 = b, u0 ≥ 0

Tu0 + Wu1 = h, u1 ≥ 0, P− a.s.

u0 ∈ Rn, σ(u1) ⊂ σ(q,T,W, h︸ ︷︷ ︸
ξ

)

Which we rewrite

min
u0≥0

c>u0 + E
[
Q(u0, ξ)

]
s.t. Au0 = b

with

Q(u0, ξ) := min
u1≥0

q>ξ u1

s.t. Wξu1 = hξ − Tξu0



Linear 2-stage stochastic program: extensive formulation

The associated extensive formulation reads

min c>u0 +
S∑

s=1

πs qs · us
1

s.t. Au0 = b, u0 ≥ 0

T su0 + W sus
1 = hs , us

1 ≥ 0 , ∀s ∈ [[1, S ]]

Which we rewrite

min
u0

c>u0 +
S∑

s=1

πsQs(u0)

s.t. Au0 = b, u0 ≥ 0

with

Qs(u0) := min
u1≥0

qs · u1

s.t. W su1 = hs − T su0



Relatively complete recourse

I We assume here relatively complete recourse (RCR)
(without this assumption, we would need feasability cuts,
as explained in a forthcoming slide)

I Here, relatively complete recourse means that, for u0 ≥ 0,

Au0 = b =⇒ Qs(u0) < +∞ , ∀s ∈ [[1,S ]]

that is,

Au0 = b ⇒
{
us1 ≥ 0

∣∣T su0 + W sus1 = hs
}
6= ∅ , ∀s ∈ [[1,S ]]

I Interpret what RCR means



The value functions are polyhedral

I Recall that

Qs(u0) := min
us

1∈Rn
qs · us1

s.t. W sus1 = hs − T su0, us1 ≥ 0

I can also be written
(through strong duality by relatively complete recourse assumption)

(Du0 ) Qs(u0) = max
λs∈Rm

λs ·
(
hs − T su0

)
s.t. (W s)>λs ≤ qs

I Let P be the polyhedron
{
λs | (W s)>λs ≤ qs

}
of admissible dual

value (independent of u0), and ext(P) the (finite) set of its extremal
point. We have that Qs(u0) = max

λs∈ext(P)
λs ·

(
hs − T su0

)
, and thus

Qs is polyhedral.



Decomposition of linear 2-stage stochastic program

We rewrite the extended formulation as

min c>u0 +
∑
s

πsθs

s.t. Au0 = b, u0 ≥ 0

θs ≥ Qs(u0) u0 ∈ Rn , ∀s ∈ [[1,S ]]

I As Qs(u0) is a polyhedral function of u0, θs ≥ Qs(u0) can be
rewritten as θ ≥ αs

k · u0 + βs
k , ∀k ∈ K s

I and the decomposition approach consists in
constructing iteratively cut coefficients αs

k and βs
k



Obtaining (optimality) cuts I

I Recall that

Qs(u0) := min
us

1∈Rn
qs · us1

s.t. W sus1 = hs − T su0, us1 ≥ 0

I can also be written
(through strong duality by relatively complete recourse assumption)

(Du0 ) Qs(u0) = max
λs∈Rm

λs ·
(
hs − T su0

)
s.t. (W s)>λs ≤ qs



Obtaining (optimality) cuts II

I Let λsu0
be an optimal solution of the linear program

(Du0 ) Qs(u0) = max
λs∈Rm

λs ·
(
hs − T su0

)
s.t. (W s)>λs ≤ qs

I Considering another control u′0, we have

(Du′
0
) Qs(u′0) = max

λs∈Rm
λs ·

(
hs − T su′0

)
s.t. (W s)>λs ≤ qs

I As λsu0
is admissible for (Du0 ), it is also admissible for (Du′

0
), hence

Qs(u′0) ≥ λsu0
·
(
hs − T su′0

)



Obtaining (optimality) cuts III

I To sum up we have seen that, for any admissible first stage solution,
we can construct an exact cut for Qs

by solving the dual of the second stage problem

I More precisely, lettting uk0 ≥ 0 be such that Auk0 = b,
and λsk be an optimal dual solution, we set

αs
k := −(T s)>λsk and βs

k := (λsk)>hs

I and we get
Qs(u′0) ≥ αs

k · u′0 + βs
k , ∀u′0 ≥ 0 , Au′0 = b

Qs(uk0 ) = αs
k · uk0 + βs

k



L-shaped method (multi-cut version)

1. Start with a collection of K × S cuts, such that Qs(u0) ≥ αs
k · u0 + βs

k

2. Solve the master problem, with optimal primal solution uK+1
0

min
u0≥0

c>u0 +
S∑

s=1

πsθs

s.t. Au0 = b

θs ≥ αs
ku0 + βs

k , ∀k ∈ [[1,K ]] , ∀s ∈ [[1, S ]]

3. Solve S “slave” (dual) problems, with optimal dual solution λs
K+1

Qs(uK+1
0 ) = max

λs∈Rm
λs ·

(
hs − T suK+1

0

)
s.t. W s · λs ≤ qs

4. Construct S new cuts with

αs
K+1 := −(T s)>λs

K+1, βs
K+1 := hs · λs

K+1



L-shaped method (multi-cut version): bounds

At any iteration of the L-shaped method, we can easily determine upper and
lower bounds of the original problem

Upper bound. As uK
0 is an admissible first stage solution, and Qs(uK

0 ) is the
value of a slave problem, thus the value of the admissible
solution uk

0 is simply given by

UB = c>uK
0 +

S∑
s=1

πsQs(uK
0 )

Lower bound. As Qs
K (u0) ≥ maxk≤K α

s
k · u0 + βs

k , the value of the master
problem is always a lower bound over the value of the SP
problem

LB = c>uK
0 +

S∑
s=1

πsθsK



L-shaped method (single-cut version)

1. Start with a collection of K cuts, such that Q(u0) ≥ αk · u0 + βk

2. Solve the master problem, with optimal primal solution uK+1
0

min
u0≥0

c>u0 + θ

s.t. Au0 = b

θ ≥ αku0 + βk ∀k ∈ [[1,K ]]

3. Solve S slave dual problems, each with optimal dual solution λs
K+1

max
λs∈Rm

λs ·
(
hs − T suK+1

0

)
s.t. W s · λs ≤ qs

4. Construct a new cut with

αK+1 := −
S∑

i=1

πs (T s)>λs , βK+1 :=
S∑

i=1

πs hs · λs



Feasibility cuts (complementary material)

I The relatively complete recourse (RCR) property, here Q(u0) < +∞,
is equivalent to the property that the effective domain dom(Q)
of the convex function Q is the whole space

I However, without the relatively complete recourse assumption,
we still have that Q is polyhedral, thus so is the effective domain dom(Q)

I Without RCR, we need to add feasibility cuts in the following way

I If Qs(uk
0 ) = +∞, there exists an unbounded ray of the dual problem

max
λs∈Rm

λs ·
(
hs − T suk

0

)
s.t. W s · λs ≤ qs

more precisely, there exists a vector λ
k

such that,

for all t ≥ 0, we have W s · tλk ≤ qs

I Then, for u0 to be admissible, we need that

λ
k ·
(
hs − T su0

)
≤ 0

which is a feasibility cut



Convergence

Theorem
In the linear case, the L-Shaped algorithm terminates in finitely many
steps, and yields the optimal solution

The proof is done by noting that only finitely many cuts can be added,
and that not being able to add a cut proves that the algorithm has
converged


