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We consider two energy production units

We consider two energy production units

I a “cheap” limited one
which can produce a quantity q0, with 0 ≤ q0 ≤ q]0,
at cost c0q0

I an “expensive” unlimited one
which can produce quantity q1, with 0 ≤ q1,
at cost c1q1, with c1 > c0



We handle conomic dispatch as a cost-minimization
problem under supply-demand balance

I On the consumption side, the demand is D ≥ 0

I We express the supply-demand balance objective
as ensuring at least the demand, that is,

q0 + q1 ≥ D

I This objective is to be achieved at least cost,
so that the optimization problem is

min
q0,q1

c0q0 + c1q1︸ ︷︷ ︸
total costs



We express so-called “measurability” constraints

I the quantity q0 is decided before the demand D materializes
I open-loop control

I the quantity q1 is decided after knowing the demand D
(recourse)

I feedback control q1 = γ(D)



We arrive at a stochastic optimization problem

I We introduce a probability space (Ω,F ,P)

I The demand D is a random variable,
with known probability distribution

I We consider the stochastic optimization problem

min
q0,q1

E[c0q0 + c1q1]

under the constraints

0 ≤ q0 ≤ q]0
0 ≤ q1

D ≤ q0 + q1

q1 depends upon D
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We recall the one day newsvendor problem

I We recall that the minimization problem

min
u∈R+

J(u) = EW [j(u,W )]

where

j(u,w) = cMw + (c − cM)u + (cM + cS)(u − w)+

I can be written as a linear program



We consider a finite probability space

I We suppose that the demand W
can take a finite number S of possible values ws , s ∈ S

I where s denotes a scenario in the finite set S (S=card(S))

I and we denote πs the probability of scenario s, with∑
s∈S

πs = 1 and πs ≥ 0 , ∀s ∈ S



We write the one day newsvendor problem
as a linear program

min
u∈U,(rs)s∈S∈VS

∑
s∈S

πs
(
cMws + (c − cM)u + (cM + cS)rs

)
subject to

rs ≥ u − ws , ∀s ∈ S

rs ≥ 0 , ∀s ∈ S

u ≥ 0

I From a nonlinear optimization problem
I with scalar decision variable u ∈ R+

I To a linear program with
I 1 + |S | decision variables :

(
u, (rs)s∈S

)
∈ R1+|S|

I 2|S |+ 1 constraints



We express the measurability constraint (I)

As the control u ∈ U must be the same
for all realizations of the demand ws ,
we introduce a new control us ∈ U for each scenario
(duplication of variables) and force all the control to be equal,
that is, we add a constraint us = u for all s ∈ S

min
u∈U,(us)s∈S∈US ,(rs)s∈S∈VS

∑
s∈S

πs
(
cMws + (c − cM)us + (cM + cS)rs

)
subject to

rs ≥ us − ws , ∀s ∈ S

rs ≥ 0 , ∀s ∈ S

us ≥ 0

us = u , ∀s ∈ S



We express the measurability constraint (II)

As us = u for all s ∈ S implies that u =
∑

s′∈S πs′us′ , we obtain

min
(us)s∈S∈US ,(rs)s∈S∈VS

∑
s∈S

πs
(
cMws + (c − cM)us + (cM + cS)rs

)
subject to

rs ≥ us − ws , ∀s ∈ S

rs ≥ 0 , ∀s ∈ S

us ≥ 0

us −
∑
s′∈S

πs′us′ = 0 , ∀s ∈ S



We dualize the constraint and use multipliers
I For all s ∈ S , we dualize the constraint us −

∑
s′∈S πs′us′ = 0

I Using the property that∑
s∈S

πs
〈
λs , us −

∑
s′∈S

πs′us′
〉

=
∑
s∈S

πs
〈
λs −

∑
s′∈S

πs′λs′ , us
〉

I we obtain a dual problem (a lower bound of the original
problem)

min
us∈US ,(rs)s∈S∈VS

∑
s∈S

πs

(
cMws + (c − cM)us + (cM + cS)rs

+
〈
λs −

∑
s′∈S

πs′λs′ , us
〉)

rs ≥ us − ws , ∀s ∈ S

rs ≥ 0 , ∀s ∈ S

us ≥ 0



There are decomposed subproblems scenario by scenario
For given multipliers, the problem is decomposed
scenario by scenario as, for scenario s, we have to solve

min
us∈U,rs∈V

(
cMws + (c − cM)us + (cM + cS)rs

+
〈
λs −

∑
s′∈S

πs′λs′ , us
〉)

rs ≥ us − ws

rs ≥ 0

us ≥ 0

I We obtain |S | linear problems (LP) to solve in parallel

I Each LP has 2 variables and 3 constraints

How to chose multipliers in order to recover
a solution of the original problem ?
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A generic minimization problem

min
u∈U ,Θ(u)∈−C

f (u)

I Θ : U→ K, vector space K in duality with K?

I example : K = K∗ = Rn with usual 〈x , y〉
I C ∈ K a closed convex,

which is salient, that is, C ∩ −C = {0}
I C ? ∈ K?, where C ? = {u? ∈ U? | 〈u′ , u〉 ≥ 0 ∀u ∈ C}

I example : Θ(u) = Ku, where K : Rp → Rn,
Ku = 0 ; Ku ∈ −C ,
with C = {0}, C? = Rn

I example : Ku ≤ 0 ; Ku ∈ −C , with C = Rn
+, C? = Rn

+



Lagrangian

We introduce the Lagrangian

L(u, λ) : U×K? → R
(u, λ)→ f (u) + 〈λ ,Θ(u)〉

We consider the Lagrangian restricted to u ∈ U and λ ∈ C ?



Three equivalent minimization problems

I The three following problems have the same solutions

min
u∈U ,Θ(u)∈−C

f (u)

min
u∈U

(
f (u) + δ−C

(
Θ(u)

))

min
u∈U

sup
λ∈C?

L(u, λ)

I where

δA(u) =

{
0 if u ∈ A

+∞ if u 6∈ A



Sketch of proof > ignore on first read

δ−C
(
Θ(u)

)
= sup

λ∈C?
〈λ ,Θ(u)〉

I If Θ(u) ∈ −C , then 〈λ ,Θ(u)〉 ≤ 0 for all λ ∈ C ?,
and 〈λ ,Θ(u)〉 = 0 when λ = 0 ∈ C ? : hence

sup
λ∈C?

〈λ ,Θ(u)〉 = 0

I (As C is a closed convex cone, we have C ?? = C
Thus, if 〈λ ,Θ(u)〉 ≤ 0 for all λ ∈ C ?,
we have that Θ(u) ∈ C ??, and thus Θ(u) ∈ C )

I If Θ(u) 6∈ C , then there exists λ0 ∈ C ? such that
〈λ0 ,Θ(u)〉 < 0
Using the fact that C ? is a cone, we get

sup
λ∈C?

〈λ ,Θ(u)〉 ≥ sup
µ∈R+

〈λ0 ,Θ(u)〉 = +∞



We introduce the so-called dual function

I We always have that

sup
λ∈C?

inf
u∈U

L(u, λ) ≤ inf
u∈U

sup
λ∈C?

L(u, λ) = min
u∈U ,Θ(u)∈−C

f (u)

I We can obtain a a lower bound
by maximizing the dual function

sup
λ∈C?

φ(λ) where φ(λ) = inf
u∈U

L(u, λ)

I A possible algorithm is to
maximize φ(λ) by the projected gradient algorithm

λ(k+1) = PC?

(
λ(k) + ρΘ(u(k+1))

)



Saddle point

I Let f : X× Y→ R and X × Y ⊂ X× Y
(x ], y ]) ∈ X× Y is a saddle point of f on X× Y if

∀(x , y) ∈ X × Y , f (x ], y) ≤ f (x ], y ]) ≤ f (x , y ])

I Result : (x ], y ]) ∈ X× Y is a saddle point of f if and only if

f (x ], y ]) = sup
y∈Y

f (x ], y) = min
x∈X

sup
y∈Y

f (x , y)

= max
y∈Y

inf
x∈X

f (x , y) = inf
x∈X

f (x , y ])

I sup inf and inf sup commute
I we have sup inf = max inf and inf sup = min sup



Saddle points of the Lagrangian

I If (u?, λ?) is a saddle point of L(u, λ) on U × C ?,
then u? is solution of the primal problem minu∈U ,Θ(u)∈−C f (u)

I (u?, λ?) is a saddle point if and only if

max
λ∈C?

inf
u∈U

L(u, λ) = min
u∈U

sup
λ∈C?

L(u, λ)

I In the convex case (+ technical conditions),
if u? is solution of the primal problem,
there exists λ? such that
(u?, λ?) is a saddle point of the Lagrangian
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Back to the newsvendor problem

min
(us ,rs)s∈S∈(U×V)S

∑
s∈S

πs

fs
(

(us ,rs)
)︷ ︸︸ ︷(

cMws + (c − cM)us + (cM + cS)rs
)

subject to

(us , rs) ∈ U s ⊂ U× V

us −
∑
s′∈S

πs′us′ = 0 , ∀s ∈ S

where U s ⊂ U× V is defined by

rs ≥ us − ws , ∀s ∈ S

rs ≥ 0 , ∀s ∈ S

us ≥ 0



Data for a minimization problem

I U =
∏n

s=1 Us with generic element u = {us}s=1,...,n

I equipped with a scalar product
〈u , u′〉 =

∑n
s=1 πs 〈us , u′s〉s (πs > 0 for all i ∈ {1, . . . , n})

I Π : U→ V ⊂ U an orthognal projection on V, a subspace of U
V = {u ∈ U | Ku = 0} where K = Id − Π

I f : U→ R ∪+∞ such that f (u) =
∑n

s=1 πs fs(us)

I U ⊂ U such that U =
∏n

s=1 Us with Us ⊂ Us



Minimization problem

I The minimization problem is

min
u∈U∩V

f (u) = min
{us}s=1,...,n∈U∩V

n∑
s=1

πs fs(us)

I Without the coupling constraint u ∈ V, we would have

min
u∈U

f (u) =
n∑

s=1

πs min
us∈Us

fs(us)

I The coupling constraint u ∈ V can be written Ku = 0



Abstract Version of P.H.

I Measurability constraint is Ku = 0, where K = Id − Π

I Π : U→ U is a projection

Π
(
(u1, . . . , un)

)
=
(
(

n∑
i=1

πiui ), . . . , (
n∑

i=1

πiui )
)

I The subspace V is

V =
{

(u1, . . . , un) ∈ U
∣∣ u1 = . . . = un

}
I The orthogonal subspace V⊥ is

V⊥ =
{

(λ1, . . . , λn) ∈ U
∣∣ n∑

i=1

πiλi = 0
}



Abstract Version of P.H (II)

I The Lagrangian L : U× U? → R, associated with Ku = 0 is

L(u, v) = f (u) + 〈Ku , v〉

I We can in fact consider

L : U× U? → R
(u, v) 7→ L(u, v) = f (u) + 〈u , v〉

for u ∈ U and λ ∈ K (U) (equivalent to
∑n

s=1 πsλs = 0)



> ignore on first read

I v ∈ U, v = (Id −Π)v + Πv , with (Id −Π)v ∈ V and Πv ∈ V⊥

I L(x , v) = f (u) + 〈Ku ,Kv + Πv〉 = f (u) + 〈Ku ,Kv〉 =
L(x ,Kv)

I We can restrict the dual space to K (U) by considering
L : U× K (U)→ R, that is,
using dual variables u′ satisfying Πu′ = 0

I Assuming that v ∈ K (U), we have
L(x , v) = f (u) + 〈Ku , v〉 = f (u) + 〈Ku ,Ku′〉 =
f (u) + 〈u ,K ◦ Ku′〉 = f (u) + 〈u ,Ku′〉 = f (u) + 〈u , v〉

I We thus consider L(u, v) = f (u) + 〈u , v〉



Augmented Lagrangian

“Augmented Lagrangian methods were developed in part to bring
robustness to the dual ascent method, and in particular, to yield
convergence without assumptions like strict convexity or finiteness
of f ”

min
Θ(u)=0

f (u) ; Lr (u, v) = f (u) + 〈v ,Θ(u)〉+
r

2
‖Θ(u)‖2

2

The augmented Lagrangian can be viewed as
the (unaugmented) Lagrangian associated with the minimization
problem

min
Θ(u)=0

f (u) +
r

2
‖Θ(u)‖2

2



Augmented Lagrangian

I The augmented Lagrangian associated with Ku = 0 is

Lr (u, v) = L(u, v) + r/2‖Ku‖2

.

I As Ku = u − Πu, we get

Lr (u, v) = f (u) + 〈u , v〉+ r/2‖u − Πu‖2

I Since Πu =
∑n

i=1 πiui , we obtain
product terms uiuj after developing the square

Therefore, at first look, we lose the decomposition property !



The Progressive Hedging Algorithm

1. Given uk ∈ U , λk such that Πλk = 0

2. Compute uk+1 = Πuk

3. Compute uk+1 solution of

uk+1 ∈ Argmin
u∈U

f (u) +
〈
u , λk

〉
+ r/2‖u − uk+1‖2

I From Linear Programming to Quadratic Programming
I But we can linearize a quadratic term

4. Update multiplier with λk+ = λk + rKuk+1.
(Note that Πλk+1 = Πλk + rΠKuk+1 = 0)



Abstract Version of P.H (III)

I Compute uk+1 solution of

uk+1 ∈ Argmin
u∈U

f (u) +
〈
u , λk

〉
+ r/2‖u − uk+1‖2

I leads to scenario decomposition as

uk+1
s ∈ Argmin

us∈Us
f (us) +

〈
us , λ

k
s

〉
+ r/2‖us − uk+1‖2

As uk+1 ∈ U and uk+1 ∈ V, thus ‖uk+1 − uk+1‖2

is used to measure how far uk+1 is from U ∩ V



Convergence of Progressive Hedging

Rockafellar, R.T., Wets R. J-B.
Scenario and policy aggregation in optimization under uncertainty,

Mathematics of Operations Research, 16, pp. 119-147, 1991

I Extends easily to N-stage problems

I With integer variables, the P.H. is used as heuristic
(many extensions to improve the integer variable case)
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