Progressive Hedging

Jean-Philippe Chancelier and SOWG
CERMICS, École des Ponts ParisTech

Interface course, CIRM, Luminy
November 2019

Presentation Outline

A toy example in energy management

The newsvendor problem

Background on the Lagrangian

The Progressive Hedging algorithm

Outline of the presentation

A toy example in energy management

The newsvendor problem

Background on the Lagrangian

The Progressive Hedging algorithm

We consider two energy production units

We consider two energy production units

- a "cheap" limited one which can produce a quantity q_{0}, with $0 \leq q_{0} \leq q_{0}^{\sharp}$, at cost $c_{0} q_{0}$
- an "expensive" unlimited one which can produce quantity q_{1}, with $0 \leq q_{1}$, at cost $c_{1} q_{1}$, with $c_{1}>c_{0}$

We handle conomic dispatch as a cost-minimization problem under supply-demand balance

- On the consumption side, the demand is $D \geq 0$
- We express the supply-demand balance objective as ensuring at least the demand, that is,

$$
q_{0}+q_{1} \geq D
$$

- This objective is to be achieved at least cost, so that the optimization problem is

$$
\min _{q_{0}, q_{1}} \underbrace{c_{0} q_{0}+c_{1} q_{1}}_{\text {total costs }}
$$

We express so-called "measurability" constraints

- the quantity q_{0} is decided before the demand D materializes
- open-loop control
- the quantity q_{1} is decided after knowing the demand D (recourse)
- feedback control $q_{1}=\gamma(D)$

We arrive at a stochastic optimization problem

- We introduce a probability space $(\Omega, \mathcal{F}, \mathbb{P})$
- The demand D is a random variable, with known probability distribution
- We consider the stochastic optimization problem

$$
\begin{aligned}
& \min _{\boldsymbol{q}_{0}, \boldsymbol{q}_{1}} \mathbb{E}\left[c_{0} q_{0}+c_{1} \boldsymbol{q}_{1}\right] \\
& \text { under the constraints } \\
& 0 \\
& 0 \leq q_{0} \leq q_{0}^{\sharp} \\
& 0
\end{aligned}
$$

Outline of the presentation

A toy example in energy management

The newsvendor problem

Background on the Lagrangian

The Progressive Hedging algorithm

We recall the one day newsvendor problem

- We recall that the minimization problem

$$
\min _{u \in \mathbb{R}_{+}} J(u)=\mathbb{E}_{\boldsymbol{W}}[j(u, \boldsymbol{W})]
$$

where

$$
j(u, w)=c_{M} w+\left(c-c_{M}\right) u+\left(c_{M}+c_{S}\right)(u-w)_{+}
$$

- can be written as a linear program

We consider a finite probability space

- We suppose that the demand W
can take a finite number S of possible values $w_{s}, s \in \mathbb{S}$
- where s denotes a scenario in the finite set $\mathbb{S}(S=\operatorname{card}(\mathbb{S}))$
- and we denote π_{s} the probability of scenario s, with

$$
\sum_{s \in \mathbb{S}} \pi_{s}=1 \text { and } \pi_{s} \geq 0, \forall s \in \mathbb{S}
$$

We write the one day newsvendor problem as a linear program

$$
\begin{aligned}
\min _{u \in \mathbb{U},\left(r_{s}\right)_{s \in S} \in \mathbb{V}} & \sum_{s \in S} \pi_{s}\left(c_{M} w_{s}+\left(c-c_{M}\right) u+\left(c_{M}+c_{S}\right) r_{s}\right) \\
& \text { subject to } \\
& r_{s} \geq u-w_{s}, \quad \forall s \in S \\
& r_{s} \geq 0, \quad \forall s \in S \\
& u \geq 0
\end{aligned}
$$

- From a nonlinear optimization problem
- with scalar decision variable $u \in \mathbb{R}_{+}$
- To a linear program with
- $1+|S|$ decision variables $:\left(u,\left(r_{s}\right)_{s \in S}\right) \in \mathbb{R}^{1+|S|}$
- $2|S|+1$ constraints

We express the measurability constraint (I)

As the control $u \in \mathbb{U}$ must be the same for all realizations of the demand w_{s}, we introduce a new control $u_{s} \in \mathbb{U}$ for each scenario (duplication of variables) and force all the control to be equal, that is, we add a constraint $u_{s}=\bar{u}$ for all $s \in S$

$$
\begin{aligned}
\min _{\left.\bar{u} \in \mathbb{U},\left(u_{s}\right)_{s \in s \in \mathbb{U}^{s},\left(r_{s}\right)}\right)_{s \in S} \in \mathbb{V}^{s}} & \sum_{s \in S} \pi_{s}\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right) \\
& \text { subject to } \\
& r_{s} \geq u_{s}-w_{s}, \forall s \in S \\
& r_{s} \geq 0, \quad \forall s \in S \\
& u_{s} \geq 0 \\
& u_{s}=\bar{u}, \forall s \in S
\end{aligned}
$$

We express the measurability constraint (II)

As $u_{s}=\bar{u}$ for all $s \in S$ implies that $\bar{u}=\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}$, we obtain

$$
\begin{aligned}
\min _{\left(u_{s}\right)_{s \in s} \in \mathbb{U}^{S},\left(r_{s}\right)_{s \in s} \in \mathbb{V}^{s}} & \sum_{s \in S} \pi_{s}\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right) \\
& \text { subject to } \\
& r_{s} \geq u_{s}-w_{s}, \forall s \in S \\
& r_{s} \geq 0, \forall s \in S \\
& u_{s} \geq 0 \\
& u_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}=0 \quad, \quad \forall s \in S
\end{aligned}
$$

We dualize the constraint and use multipliers

- For all $s \in S$, we dualize the constraint $u_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}=0$
- Using the property that

$$
\sum_{s \in S} \pi_{s}\left\langle\lambda_{s}, u_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}\right\rangle=\sum_{s \in S} \pi_{s}\left\langle\lambda_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} \lambda_{s^{\prime}}, u_{s}\right\rangle
$$

- we obtain a dual problem (a lower bound of the original problem)

$$
\begin{aligned}
& \min _{u_{s} \in \mathbb{U}^{S},\left(r_{s}\right)_{s \in S} \in \mathbb{V}^{S}} \sum_{s \in S} \pi_{s}\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right. \\
& \left.\quad+\left\langle\lambda_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} \lambda_{s^{\prime}}, u_{s}\right\rangle\right) \\
& r_{s} \geq u_{s}-w_{s}, \quad \forall s \in S \\
& r_{s} \geq 0, \quad \forall s \in S \\
& u_{s} \geq 0
\end{aligned}
$$

There are decomposed subproblems scenario by scenario

For given multipliers, the problem is decomposed scenario by scenario as, for scenario s, we have to solve

$$
\begin{aligned}
& \min _{u_{s} \in \mathbb{U}, r_{s} \in \mathbb{V}}\left(c_{M} w_{s}\right.+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s} \\
&\left.+\left\langle\lambda_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} \lambda_{s^{\prime}}, u_{s}\right\rangle\right) \\
& r_{s} \geq u_{s}-w_{s} \\
& r_{s} \geq 0 \\
& u_{s} \geq 0
\end{aligned}
$$

- We obtain $|S|$ linear problems (LP) to solve in parallel
- Each LP has 2 variables and 3 constraints

How to chose multipliers in order to recover a solution of the original problem ?

Outline of the presentation

> A toy example in energy management

> The newsvendor problem

Background on the Lagrangian

The Progressive Hedging algorithm

A generic minimization problem

$$
\min _{u \in \mathcal{U}, \Theta(u) \in-C} f(u)
$$

- $\Theta: \mathbb{U} \rightarrow \mathbb{K}$, vector space \mathbb{K} in duality with \mathbb{K}^{\star}
- example : $\mathbb{K}=\mathbb{K}^{*}=\mathbb{R}^{n}$ with usual $\langle x, y\rangle$
- $C \in \mathbb{K}$ a closed convex, which is salient, that is, $C \cap-C=\{0\}$
- $C^{\star} \in \mathbb{K}^{\star}$, where $C^{\star}=\left\{u^{\star} \in \mathbb{U}^{\star} \mid\left\langle u^{\prime}, u\right\rangle \geq 0 \forall u \in C\right\}$
- example : $\Theta(u)=K u$, where $K: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$, $K u=0 \sim K u \in-C$, with $C=\{0\}, C^{\star}=\mathbb{R}^{n}$
- example: $K u \leq 0 \sim K u \in-C$, with $C=\mathbb{R}_{+}^{n}, C^{\star}=\mathbb{R}_{+}^{n}$

Lagrangian

We introduce the Lagrangian

$$
\begin{aligned}
L(u, \lambda): \mathbb{U} \times \mathbb{K}^{\star} & \rightarrow \overline{\mathbb{R}} \\
(u, \lambda) & \rightarrow f(u)+\langle\lambda, \Theta(u)\rangle
\end{aligned}
$$

We consider the Lagrangian restricted to $u \in \mathcal{U}$ and $\lambda \in C^{*}$

Three equivalent minimization problems

- The three following problems have the same solutions

$$
\begin{gathered}
\min _{u \in \mathcal{U}, \Theta(u) \in-C} f(u) \\
\min _{u \in \mathcal{U}}\left(f(u)+\delta_{-C}(\Theta(u))\right) \\
\min _{u \in \mathcal{U}} \sup _{\lambda \in C^{\star}} L(u, \lambda)
\end{gathered}
$$

- where

$$
\delta_{A}(u)= \begin{cases}0 & \text { if } u \in A \\ +\infty & \text { if } u \notin A\end{cases}
$$

Sketch of proof (S) ignore on first read

$$
\delta_{-C}(\Theta(u))=\sup _{\lambda \in C^{\star}}\langle\lambda, \Theta(u)\rangle
$$

- If $\Theta(u) \in-C$, then $\langle\lambda, \Theta(u)\rangle \leq 0$ for all $\lambda \in C^{\star}$, and $\langle\lambda, \Theta(u)\rangle=0$ when $\lambda=0 \in C^{\star}$: hence

$$
\sup _{\lambda \in C^{\star}}\langle\lambda, \Theta(u)\rangle=0
$$

- (As C is a closed convex cone, we have $C^{\star \star}=C$ Thus, if $\langle\lambda, \Theta(u)\rangle \leq 0$ for all $\lambda \in C^{\star}$, we have that $\Theta(u) \in C^{\star \star}$, and thus $\Theta(u) \in C$)
- If $\Theta(u) \notin C$, then there exists $\lambda_{0} \in C^{\star}$ such that $\left\langle\lambda_{0}, \Theta(u)\right\rangle<0$
Using the fact that C^{\star} is a cone, we get

$$
\sup _{\lambda \in C^{\star}}\langle\lambda, \Theta(u)\rangle \geq \sup _{\mu \in \mathbb{R}_{+}}\left\langle\lambda_{0}, \Theta(u)\right\rangle=+\infty
$$

We introduce the so-called dual function

- We always have that

$$
\sup _{\lambda \in C^{\star}} \inf _{u \in \mathcal{U}} L(u, \lambda) \leq \inf _{u \in \mathcal{U}} \sup _{\lambda \in C^{\star}} L(u, \lambda)=\min _{u \in \mathcal{U}, \Theta(u) \in-C} f(u)
$$

- We can obtain a a lower bound by maximizing the dual function

$$
\sup _{\lambda \in C^{\star}} \phi(\lambda) \quad \text { where } \quad \phi(\lambda)=\inf _{u \in \mathcal{U}} L(u, \lambda)
$$

- A possible algorithm is to maximize $\phi(\lambda)$ by the projected gradient algorithm

$$
\lambda^{(k+1)}=P_{C^{\star}}\left(\lambda^{(k)}+\rho \Theta\left(u^{(k+1)}\right)\right)
$$

Saddle point

- Let $f: \mathbb{X} \times \mathbb{Y} \rightarrow \overline{\mathbb{R}}$ and $X \times Y \subset \mathbb{X} \times \mathbb{Y}$ $\left(x^{\sharp}, y^{\sharp}\right) \in \mathbb{X} \times \mathbb{Y}$ is a saddle point of f on $\mathbb{X} \times \mathbb{Y}$ if

$$
\forall(x, y) \in X \times Y, f\left(x^{\sharp}, y\right) \leq f\left(x^{\sharp}, y^{\sharp}\right) \leq f\left(x, y^{\sharp}\right)
$$

- Result : $\left(x^{\sharp}, y^{\sharp}\right) \in \mathbb{X} \times \mathbb{Y}$ is a saddle point of f if and only if

$$
\begin{aligned}
f\left(x^{\sharp}, y^{\sharp}\right)=\sup _{y \in \mathbb{Y}} f\left(x^{\sharp}, y\right) & =\min _{x \in \mathbb{X}} \sup _{y \in \mathbb{Y}} f(x, y) \\
& =\max _{y \in \mathbb{Y}} \inf _{x \in \mathbb{X}} f(x, y)=\inf _{x \in \mathbb{X}} f\left(x, y^{\sharp}\right)
\end{aligned}
$$

- supinf and inf sup commute
- we have supinf $=$ maxinf and \inf sup $=\min$ sup

Saddle points of the Lagrangian

- If $\left(u^{\star}, \lambda^{\star}\right)$ is a saddle point of $L(u, \lambda)$ on $\mathcal{U} \times C^{\star}$, then u^{\star} is solution of the primal problem $\min _{u \in \mathcal{U}, \Theta(u) \in-C} f(u)$
- $\left(u^{\star}, \lambda^{\star}\right)$ is a saddle point if and only if

$$
\max _{\lambda \in C^{\star}} \inf _{u \in \mathcal{U}} L(u, \lambda)=\min _{u \in \mathcal{U}} \sup _{\lambda \in C^{\star}} L(u, \lambda)
$$

- In the convex case (+ technical conditions), if u^{\star} is solution of the primal problem, there exists λ^{\star} such that $\left(u^{\star}, \lambda^{\star}\right)$ is a saddle point of the Lagrangian

Outline of the presentation

A toy example in energy management

The newsvendor problem

Background on the Lagrangian

The Progressive Hedging algorithm

Back to the newsvendor problem

$$
\begin{aligned}
\left.\min _{\left(u_{s}, r_{s}\right)}\right)_{s \in S \in(\mathbb{U} \times \mathbb{V})^{s}} & \sum_{s \in S} \pi_{s} \overbrace{\left(c_{M} w_{s}+\left(c-c_{M}\right) u_{s}+\left(c_{M}+c_{S}\right) r_{s}\right)}^{f_{s}\left(\left(u_{s}, r_{s}\right)\right)} \\
& \text { subject to } \\
& \left(u_{s}, r_{s}\right) \in \overline{\mathcal{U}}_{s} \subset \mathbb{U} \times \mathbb{V} \\
& u_{s}-\sum_{s^{\prime} \in S} \pi_{s^{\prime}} u_{s^{\prime}}=0 \quad, \forall s \in S
\end{aligned}
$$

where $\overline{\mathcal{U}}_{s} \subset \mathbb{U} \times \mathbb{V}$ is defined by

$$
\begin{aligned}
& r_{s} \geq u_{s}-w_{s}, \quad \forall s \in S \\
& r_{s} \geq 0, \quad \forall s \in S \\
& u_{s} \geq 0
\end{aligned}
$$

Data for a minimization problem

- $\mathbb{U}=\prod_{s=1}^{n} \mathbb{U}_{s}$ with generic element $u=\left\{u_{s}\right\}_{s=1, \ldots, n}$
- equipped with a scalar product $\left\langle u, u^{\prime}\right\rangle=\sum_{s=1}^{n} \pi_{s}\left\langle u_{s}, u_{s}^{\prime}\right\rangle_{s}\left(\pi_{s}>0\right.$ for all $\left.i \in\{1, \ldots, n\}\right)$
- $\Pi: \mathbb{U} \rightarrow \mathbb{V} \subset \mathbb{U}$ an orthognal projection on \mathbb{V}, a subspace of \mathbb{U} $\mathbb{V}=\{u \in \mathbb{U} \mid K u=0\}$ where $K=I d-\Pi$
- $f: \mathbb{U} \rightarrow \mathbb{R} \cup+\infty$ such that $f(u)=\sum_{s=1}^{n} \pi_{s} f_{s}\left(u_{s}\right)$
- $\mathcal{U} \subset \mathbb{U}$ such that $\mathcal{U}=\prod_{s=1}^{n} \mathcal{U}_{s}$ with $\mathcal{U}_{s} \subset \mathbb{U}_{s}$

Minimization problem

- The minimization problem is

$$
\min _{u \in \mathcal{U} \cap \mathbb{V}} f(u)=\min _{\left\{u_{s}\right\}_{s=1, \ldots, n} \in \mathcal{U} \cap \mathbb{V}} \sum_{s=1}^{n} \pi_{s} f_{s}\left(u_{s}\right)
$$

- Without the coupling constraint $u \in \mathbb{V}$, we would have

$$
\min _{u \in \mathcal{U}} f(u)=\sum_{s=1}^{n} \pi_{s} \min _{u_{s} \in \mathcal{U}_{s}} f_{s}\left(u_{s}\right)
$$

- The coupling constraint $u \in \mathbb{V}$ can be written $K u=0$

Abstract Version of P.H.

- Measurability constraint is $K u=0$, where $K=I d-\Pi$
- $\Pi: \mathbb{U} \rightarrow \mathbb{U}$ is a projection

$$
\Pi\left(\left(u_{1}, \ldots, u_{n}\right)\right)=\left(\left(\sum_{i=1}^{n} \pi_{i} u_{i}\right), \ldots,\left(\sum_{i=1}^{n} \pi_{i} u_{i}\right)\right)
$$

- The subspace \mathbb{V} is

$$
\mathbb{V}=\left\{\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{U} \mid u_{1}=\ldots=u_{n}\right\}
$$

- The orthogonal subspace \mathbb{V}^{\perp} is

$$
\mathbb{V}^{\perp}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{U} \mid \sum_{i=1}^{n} \pi_{i} \lambda_{i}=0\right\}
$$

Abstract Version of P.H (II)

- The Lagrangian $L: \mathbb{U} \times \mathbb{U}^{\star} \rightarrow \overline{\mathbb{R}}$, associated with $K u=0$ is

$$
L(u, v)=f(u)+\langle K u, v\rangle
$$

- We can in fact consider

$$
\begin{aligned}
L: \mathbb{U} \times \mathbb{U}^{\star} & \rightarrow \overline{\mathbb{R}} \\
(u, v) & \mapsto L(u, v)=f(u)+\langle u, v\rangle
\end{aligned}
$$

for $u \in \mathcal{U}$ and $\lambda \in K(\mathbb{U})$ (equivalent to $\sum_{s=1}^{n} \pi_{s} \lambda_{s}=0$)

(\$) ignore on first read

- $v \in \mathbb{U}, v=(I d-\Pi) v+\Pi v$, with $(I d-\Pi) v \in \mathbb{V}$ and $\Pi v \in \mathbb{V}^{\perp}$
- $L(x, v)=f(u)+\langle K u, K v+\Pi v\rangle=f(u)+\langle K u, K v\rangle=$ $L(x, K v)$
- We can restrict the dual space to $K(\mathbb{U})$ by considering $L: \mathbb{U} \times K(\mathbb{U}) \rightarrow \overline{\mathbb{R}}$, that is, using dual variables u^{\prime} satisfying $\Pi u^{\prime}=0$
- Assuming that $v \in K(\mathbb{U})$, we have

$$
\begin{aligned}
& L(x, v)=f(u)+\langle K u, v\rangle=f(u)+\left\langle K u, K u^{\prime}\right\rangle= \\
& f(u)+\left\langle u, K \circ K u^{\prime}\right\rangle=f(u)+\left\langle u, K u^{\prime}\right\rangle=f(u)+\langle u, v\rangle
\end{aligned}
$$

- We thus consider $L(u, v)=f(u)+\langle u, v\rangle$

Augmented Lagrangian

"Augmented Lagrangian methods were developed in part to bring robustness to the dual ascent method, and in particular, to yield convergence without assumptions like strict convexity or finiteness of $f^{\prime \prime}$

$$
\min _{\Theta(u)=0} f(u) \sim L_{r}(u, v)=f(u)+\langle v, \Theta(u)\rangle+\frac{r}{2}\|\Theta(u)\|_{2}^{2}
$$

The augmented Lagrangian can be viewed as the (unaugmented) Lagrangian associated with the minimization problem

$$
\min _{\Theta(u)=0} f(u)+\frac{r}{2}\|\Theta(u)\|_{2}^{2}
$$

Augmented Lagrangian

- The augmented Lagrangian associated with $K u=0$ is

$$
L_{r}(u, v)=L(u, v)+r / 2\|K u\|^{2}
$$

- As $K u=u-\Pi u$, we get

$$
L_{r}(u, v)=f(u)+\langle u, v\rangle+r / 2\|u-\Pi u\|^{2}
$$

- Since $\Pi u=\sum_{i=1}^{n} \pi_{i} u_{i}$, we obtain product terms $u_{i} u_{j}$ after developing the square

Therefore, at first look, we lose the decomposition property!

The Progressive Hedging Algorithm

1. Given $u^{k} \in \mathcal{U}, \lambda^{k}$ such that $\Pi \lambda^{k}=0$
2. Compute $\bar{u}^{k+1}=\Pi u^{k}$
3. Compute u^{k+1} solution of

$$
u^{k+1} \in \underset{u \in \mathcal{U}}{\operatorname{Argmin}} f(u)+\left\langle u, \lambda^{k}\right\rangle+r / 2\left\|u-\bar{u}^{k+1}\right\|^{2}
$$

- From Linear Programming to Quadratic Programming
- But we can linearize a quadratic term

4. Update multiplier with $\lambda^{k+}=\lambda^{k}+r K u^{k+1}$. $\left(\right.$ Note that $\left.\Pi \lambda^{k+1}=\Pi \lambda^{k}+r \Pi K u^{k+1}=0\right)$

Abstract Version of P.H (III)

- Compute u^{k+1} solution of

$$
u^{k+1} \in \underset{u \in \mathcal{U}}{\operatorname{Argmin}} f(u)+\left\langle u, \lambda^{k}\right\rangle+r / 2\left\|u-\bar{u}^{k+1}\right\|^{2}
$$

- leads to scenario decomposition as

$$
u_{s}^{k+1} \in \underset{u_{s} \in \mathcal{U}_{s}}{\operatorname{Argmin}} f\left(u_{s}\right)+\left\langle u_{s}, \lambda_{s}^{k}\right\rangle+r / 2\left\|u_{s}-\bar{u}^{k+1}\right\|^{2}
$$

As $u^{k+1} \in \mathcal{U}$ and $\bar{u}^{k+1} \in \mathbb{V}$, thus $\left\|u^{k+1}-\bar{u}^{k+1}\right\|^{2}$ is used to measure how far u^{k+1} is from $\mathcal{U} \cap \mathbb{V}$

Convergence of Progressive Hedging

Rockafellar, R.T., Wets R. J-B.

Scenario and policy aggregation in optimization under uncertainty, Mathematics of Operations Research, 16, pp. 119-147, 1991

- Extends easily to N -stage problems
- With integer variables, the P.H. is used as heuristic (many extensions to improve the integer variable case)

