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Usually houses import electricity from the grid



But more and more houses are equipped with solar panel
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Is it worth to add a local grid to exchange electricity?



Is it worth to connect different houses together inside a district?

Challenges:

» Handle electrical exchanges between houses

We turn to mathematical optimization to answer the question
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Outline of the presentation

A brief recall of the single house problem



Two goals for the control of a house

HOUSE

> Satisfy thermal comfort

» Optimize operational costs




For each house, we consider the electrical system. ..
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...and the thermal enveloppe
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We introduce states, controls and noises

> Stock variables X; = (B;, H;, 01, 60Y)
> B, battery level (kWh)
> H,, hot water storage (kWh)
> 0., inner temperature (°C)

@v $ > 4/, wall's temperature (°C)

@7 —3) » Control variables U, = (Fg’t7 Fg.e Fre, Fh,¢)

o/l > £+ .
. . l& Fg .1 energy stored in the battery
= > Fg,, energy taken from the battery
» Fr:, energy used to heat the hot water tank
» FH.:, thermal heating

> Uncertainties W, = (Df, DPHY, P2, 07)
> DE, electrical demand (kW)
> DPHW | domestic hot water demand (kW)

> P, external radiations (kW)
> 47, external temperature (°C)




Discrete time state equations

So we have the four state equations (all linear):
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which will be denoted:

‘Xt+1 - ft(Xt, Ut» Wt+1) ‘




Prices and temperature setpoints vary along time

T =24h, AT = 15mn
Electricity peak and off-peak
hours

7E = 0.09 or 0.15 euros/kWh

Temperature set-point
9l =16°C or 20°C



The costs we have to pay

» Cost to import electricity from the network

— th max{0, —FnE,t+1} + Wf max{0, Fyg,t+1}

selling buying
where we define the recourse variable (electricity balance):

FNEt+1 = DtE+1 + F;;t —Fg+ Fue +Fre— Foue
—— L =~ =~ ~—

Network Demand Battery Heating Tank Solar panel

» Virtual Cost of thermal discomfort: ren( Hi — (J_’t )
——

deviation from setpoint

Rth
Piecewise linear cost
Penalize temperature if
below given setpoint




Instantaneous and final costs for a single house

» The instantaneous convex costs are

Le(Xe, Ur, Wii1) = —bE max{0, —Fng t11} +7F max{0, Fne ¢1+1}

buying selling

+ ren(01 — 61)
N———

discomfort

» We add a final linear cost
K(X7,) = —n""Hr, — 78B7,

to avoid empty stocks at the final horizon Ty



That gives the following stochastic optimization problem

Tr—1
min  JX,U)=E ; Le(Xe, Up, Wiesr) + K(X7,)
instantaneous cost final cost
s.t Xt+1 = ft(Xt, Ut7 Wt+1) Dynamic

X" < X < X

U< U < U

Xo = Xini

O'(Ut) C O’( Wi, ..., Wt) Non-anticipativity

This stochastic multistage optimization problem, corresponding to a single
house, is solvable using standard Stochastic Dynamic Programming (SDP)
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Optimization problem for a district
District topology



We have three different houses

Our (small) district:
» House 1: solar panel + battery

HOUSE
» House 2: solar panel
‘ » House 3: nothing
T For the three houses:
» 10 stocks (=4 4+ 3 + 3)
o > 8 controls (= 4 + 2 + 2)
g > 8 uncertainties
(2 uncertainties in common)

The total demand to the network
is bounded:

3

k 4
ZFNE,H—l < Fre
k=1

!m



We want to compare two configurations
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No exchange between houses Exchange in a local grid

How much costs decrease
while allowing houses to exchange energy
through a local grid?



We want to compare two configurations
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P — (Y
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No exchange between houses Exchange in a local grid

How much costs decrease
while allowing houses to exchange energy
through a local grid?

We show that adding a grid decreases costs by 23 % during summer!



The grid adds three controls to the problem




How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:
> 06 timesteps (= 4 x 24)
» 10 stocks
» 11 controls

>

8 uncertainties



How to solve this stochastic optimal control problem?
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» 11 controls
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The state dimension is high (=10), the problem is not tractable
by a straightforward use of dynamic programming because of
the curse of dimensionality! :-(



How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:
> 06 timesteps (= 4 x 24)
» 10 stocks

» 11 controls

>

8 uncertainties

The state dimension is high (=10), the problem is not tractable
by a straightforward use of dynamic programming because of
the curse of dimensionality! :-(

We will compare two methods that overcome this curse:
1. Model Predictive Control (MPC)
2. Stochastic Dual Dynamic Programming (SDDP)
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A brief recall on Dynamic Programming

Dynamic Programming

1 is the probability law of W; and is being used to estimate expectation
and compute offline value functions with the backward equation:

Vr(x) = K(x)
Vi(xe) = min By | Le(xe, Ues Wesa) + Ve (F(xe, U, Wes) ) |
t —_—

current cost

future costs



A brief recall on Dynamic Programming

Dynamic Programming
1 is the probability law of W; and is being used to estimate expectation
and compute offline value functions with the backward equation:

Vi (x) = K(x)
Vie(xt) = FTL\}in Eu, [Lt(Xt, U, We1) + Ve (f(Xt, Ut, Wt+1)> ]
¢ —_—————

current cost

future costs

Stochastic Dual Dynamic Programming

» Convex value functions V; are approximated as
a supremum of a finite set of affine functions

» Affine functions (=cuts) are computed during
forward /backward passes, till convergence

» SDDP makes an extensive use of LP solver
Vi(x) = lquaz(K{)\’t‘x + B} < Ve(x)




MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:

MPC

0 4 8 12 16 2 u
Time (h)

MPC considers the average. . .

SDDP

...and SDDP discrete laws



MPC vs SDDP: online resolution

At the beginning of time period [7, T + 1], do

MPC

Consider a rolling horizon [r, 7 + H|

Consider a deterministic scenario of
demands (forecast)

(Wri1,... ., Wrih)

Solve the deterministic optimization

problem
T4+H
> Le(Xe, U, We 1) + K(Xpypy)
=1
s.t. X.
u. =

min
X,U

=Xy Xegn)
(Ury o Upgo1)
Xey1 = f(Xe, Up, Wepq)
x> < x; < xt
vb << ut

Get optllmal solution (UZ, ..., U-r+H)
over horizon H = 24h

Send only first control Uf to
assessor, and iterate at time 7+ 1

SDDP

We consider the approximated value
functions (Vt);—f
Vs < Vi
~—~

Piecewise affine functions

Solve the stochastic optimization
problem:

min B, [Lr(Xr, ur, Wep)
+ Ve (fr(Xm ur, WT+1))]

= this problem resumes to solve a LP at each timestep

Get optimal solution Uf

Send U] to assessor
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Out-of-sample comparison




Out-of-sample comparison

Time (h)

Time (h)



Out-of-sample comparison

Assessmen
scenarios

Time (h)



We compare SDDP and MPC with assessment scenarios

. ASSESSOR .

cost += C(Xy, Uy, Wit1)

X1 = f(Xe, Uy, VVHJ)

t t+1 Time
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Our stack is deeply rooted in Julia language

» Modeling Language: JuMP

J
e o0 » Open-source SDDP Solver:
Ia StochDynamicProgramming. j1

> LP Solver: CPLEX 12.5

https://github.com/Julialpt/StochDynamicProgramming. j1


https://github.com/JuliaOpt/StochDynamicProgramming.jl

Outline of the presentation

Numerical resolution
Resolution and comparison



Comparison of MPC and SDDP

We compare MPC and SDDP during one day in summer
over 200 assessment scenarios:

a euros/day
MPC 2.882
s o SDDP 2.713

SDDP is in average 6.9 %
55 better than MPC!




Operational costs obtained in simulation

We compare different configurations, during summer and winter:

Summer

Local Grid Elec. bill  Self cons.

euros/day %
No 3.53 48.1 %
Yes 2.71 55.2 %
Winter
Local Grid Elec. bill  Self cons.
euros/day %
No 54.2 1.7 %

Yes id. id.
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We work with real data

We consider one day during summer 2015 (data from Meteo France):
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We have 200 scenarios of demands during this day

House 1 House 2 House 3
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These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven



As we gain solar energy, surplus is traded in local grid

Exchange Fi, [kW]
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The battery is used as a global storage inside the local grid

We observe that, in presence of the local grid,

» the battery is more widely used

» the saturation level is reached more often (need a bigger battery?)

No local grid

Vi i

WA \\Qv""\‘\\\
e
Al
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AVX /A/'A

N

Battery Level (kW]

Local grid




We minimize our average importation from the network

No local grid = 25.8 kWh Local grid = 19.4 kWh
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Conclusions

» We extend the results obtained with a single house to a small district
» This study can help to perform an economic analysis
» |t pays to use stochastic optimization: SDDP is better than MPC

> We want to scale for optimizing large microgrids



Perspectives

Mix dynamic programming techniques like SDP or SDDP with spatial
decomposition like Dual Approximate Dynamic Programming (DADP)
to control large urban neighbourhood

[ COORDINATOR ]
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