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A partnership between mathematicians and thermicians

I Efficacity is a research institute for energy transition —
an original mix of companies and academic researchers

I This presentation sums up a common work between
CERMICS and Efficacity

I This cooperation develops optimization algorithms
for real problems concerning the energy transition



Usually houses import electricity from the grid
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But more and more houses are equipped with solar panel
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Is it worth to add a local grid to exchange electricity?
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Is it worth to connect different houses together inside a district?

Challenges:

I Handle electrical exchanges between houses

We turn to mathematical optimization to answer the question



Outline of the presentation

A brief recall of the single house problem

Optimization problem for a district

Numerical resolution

Conclusions and perspectives



Outline of the presentation

A brief recall of the single house problem

Optimization problem for a district
District topology
Resolution methods and online simulation
Assessment of strategies

Numerical resolution
Resolution and comparison
Optimal trajectories of storages

Conclusions and perspectives



Two goals for the control of a house

HOUSE 

I Satisfy thermal comfort

I Optimize operational costs



For each house, we consider the electrical system. . .
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. . . and the thermal enveloppe
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We introduce states, controls and noises
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I Stock variables Xt =
(
Bt ,Ht , θ

i
t , θ

w
t

)
I Bt , battery level (kWh)
I Ht , hot water storage (kWh)
I θi

t , inner temperature (◦C)
I θw

t , wall’s temperature (◦C)

I Control variables Ut =
(
F+

B,t ,F
−
B,t ,FT ,t ,FH,t

)
I F+

B,t , energy stored in the battery
I F−

B,t , energy taken from the battery
I FT ,t , energy used to heat the hot water tank
I FH,t , thermal heating

I Uncertainties Wt =
(
DE

t ,D
DHW
t ,Pext

t , θe
t

)
I DE

t , electrical demand (kW)
I DDHW

t , domestic hot water demand (kW)
I Pext

t , external radiations (kW)
I θe

t , external temperature (◦C)



Discrete time state equations

So we have the four state equations (all linear):
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which will be denoted:

Xt+1 = ft(Xt ,Ut ,Wt+1)



Prices and temperature setpoints vary along time
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I Tf = 24h, ∆T = 15mn

I Electricity peak and off-peak
hours

I πE
t = 0.09 or 0.15 euros/kWh

I Temperature set-point
θ̄i

t = 16◦C or 20◦C



The costs we have to pay

I Cost to import electricity from the network

− bE
t max{0,−FNE ,t+1}︸ ︷︷ ︸

selling

+πE
t max{0,FNE ,t+1}︸ ︷︷ ︸

buying

where we define the recourse variable (electricity balance):

FNE ,t+1︸ ︷︷ ︸
Network

= DE
t+1︸︷︷︸

Demand

+F+
B,t − F−

B,t︸ ︷︷ ︸
Battery

+ FH,t︸︷︷︸
Heating

+ FT ,t︸︷︷︸
Tank

− Fpv,t︸︷︷︸
Solar panel

I Virtual Cost of thermal discomfort: κth( θi
t − θ̄i

t︸ ︷︷ ︸
deviation from setpoint

)
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Instantaneous and final costs for a single house

I The instantaneous convex costs are

Lt(Xt ,Ut ,Wt+1) = −bE
t max{0,−FNE ,t+1}︸ ︷︷ ︸

buying

+πE
t max{0,FNE ,t+1}︸ ︷︷ ︸

selling

+ κth(θi
t − θ̄i

t)︸ ︷︷ ︸
discomfort

I We add a final linear cost

K (XTf
) = −πHHTf

− πBBTf

to avoid empty stocks at the final horizon Tf



That gives the following stochastic optimization problem

min
X ,U

J(X ,U) = E

Tf −1∑
t=0

Lt(Xt ,Ut ,Wt+1)︸ ︷︷ ︸
instantaneous cost

+K(XTf )︸ ︷︷ ︸
final cost


s.t Xt+1 = ft(Xt ,Ut ,Wt+1) Dynamic

X [ ≤ Xt ≤ X ]

U[ ≤ Ut ≤ U]

X0 = Xini

σ(Ut) ⊂ σ(W1, . . . ,Wt) Non-anticipativity

This stochastic multistage optimization problem, corresponding to a single
house, is solvable using standard Stochastic Dynamic Programming (SDP)



Outline of the presentation

A brief recall of the single house problem

Optimization problem for a district
District topology
Resolution methods and online simulation
Assessment of strategies

Numerical resolution
Resolution and comparison
Optimal trajectories of storages

Conclusions and perspectives



Outline of the presentation

A brief recall of the single house problem

Optimization problem for a district
District topology
Resolution methods and online simulation
Assessment of strategies

Numerical resolution
Resolution and comparison
Optimal trajectories of storages

Conclusions and perspectives



We have three different houses
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Our (small) district:

I House 1: solar panel + battery

I House 2: solar panel

I House 3: nothing

For the three houses:

I 10 stocks (= 4 + 3 + 3)

I 8 controls (= 4 + 2 + 2)

I 8 uncertainties
(2 uncertainties in common)

The total demand to the network
is bounded:

3∑
k=1

F k
NE ,t+1 ≤ F ]NE



We want to compare two configurations
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Exchange in a local grid

How much costs decrease
while allowing houses to exchange energy

through a local grid?

We show that adding a grid decreases costs by 23 % during summer!
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The grid adds three controls to the problem

HOUSE HOUSE 

HOUSE 



How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

I 96 timesteps (= 4 x 24)

I 10 stocks

I 11 controls

I 8 uncertainties

The state dimension is high (=10), the problem is not tractable
by a straightforward use of dynamic programming because of

the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)

2. Stochastic Dual Dynamic Programming (SDDP)



How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

I 96 timesteps (= 4 x 24)

I 10 stocks

I 11 controls

I 8 uncertainties

The state dimension is high (=10), the problem is not tractable
by a straightforward use of dynamic programming because of

the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)

2. Stochastic Dual Dynamic Programming (SDDP)



How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

I 96 timesteps (= 4 x 24)

I 10 stocks

I 11 controls

I 8 uncertainties

The state dimension is high (=10), the problem is not tractable
by a straightforward use of dynamic programming because of

the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)

2. Stochastic Dual Dynamic Programming (SDDP)



Outline of the presentation

A brief recall of the single house problem

Optimization problem for a district
District topology
Resolution methods and online simulation
Assessment of strategies

Numerical resolution
Resolution and comparison
Optimal trajectories of storages

Conclusions and perspectives



A brief recall on Dynamic Programming

Dynamic Programming
µt is the probability law of Wt and is being used to estimate expectation
and compute offline value functions with the backward equation:

VT (x) = K(x)

Vt (xt ) = min
Ut

Eµt

[
Lt (xt ,Ut ,Wt+1)︸ ︷︷ ︸

current cost

+ Vt+1

(
f (xt ,Ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming
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I Convex value functions Vt are approximated as
a supremum of a finite set of affine functions

I Affine functions (=cuts) are computed during
forward/backward passes, till convergence

I SDDP makes an extensive use of LP solver

Ṽt(x) = max
1≤k≤K

{
λk

t x + βk
t

}
≤ Vt(x)
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MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:

MPC

MPC considers the average. . .

SDDP
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MPC vs SDDP: online resolution

At the beginning of time period [τ, τ + 1], do

MPC

I Consider a rolling horizon [τ, τ + H[

I Consider a deterministic scenario of
demands (forecast)(
W τ+1, . . . ,W τ+H

)
I Solve the deterministic optimization

problem

min
X,U

τ+H∑
t=τ

Lt (Xt , Ut ,W t+1) + K(Xτ+H )


s.t. X· = (Xτ , . . . , Xτ+H )

U· = (Uτ , . . . , Uτ+H−1)

Xt+1 = f (Xt , Ut ,W t+1)

X[ ≤ Xt ≤ X]

U[ ≤ Ut ≤ U]

I Get optimal solution (U#
τ , . . . ,U

#
τ+H )

over horizon H = 24h

I Send only first control U#
τ to

assessor, and iterate at time τ + 1

SDDP

I We consider the approximated value

functions
(
Ṽt
)Tf

0

Ṽt︸︷︷︸
Piecewise affine functions

≤ Vt

I Solve the stochastic optimization
problem:

min
uτ

EWτ+1

[
Lτ (Xτ , uτ ,Wτ+1)

+ Ṽτ+1

(
fτ (Xτ , uτ ,Wτ+1)

)]
⇒ this problem resumes to solve a LP at each timestep

I Get optimal solution U
#
τ

I Send U
#
τ to assessor
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Out-of-sample comparison
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We compare SDDP and MPC with assessment scenarios
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Our stack is deeply rooted in Julia language

I Modeling Language: JuMP

I Open-source SDDP Solver:
StochDynamicProgramming.jl

I LP Solver: CPLEX 12.5

https://github.com/JuliaOpt/StochDynamicProgramming.jl

https://github.com/JuliaOpt/StochDynamicProgramming.jl
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Comparison of MPC and SDDP

We compare MPC and SDDP during one day in summer
over 200 assessment scenarios:
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SDDP is in average 6.9 %
better than MPC!



Operational costs obtained in simulation

We compare different configurations, during summer and winter:

Summer

Local Grid Elec. bill Self cons.
euros/day %

No 3.53 48.1 %
Yes 2.71 55.2 %

Winter

Local Grid Elec. bill Self cons.
euros/day %

No 54.2 1.7 %
Yes id. id.
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We work with real data

We consider one day during summer 2015 (data from Meteo France):
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We have 200 scenarios of demands during this day
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These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven



As we gain solar energy, surplus is traded in local grid
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The battery is used as a global storage inside the local grid

We observe that, in presence of the local grid,

I the battery is more widely used

I the saturation level is reached more often (need a bigger battery?)
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We minimize our average importation from the network
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Local grid = 19.4 kWh
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Conclusions

I We extend the results obtained with a single house to a small district

I This study can help to perform an economic analysis

I It pays to use stochastic optimization: SDDP is better than MPC

I We want to scale for optimizing large microgrids



Perspectives

Mix dynamic programming techniques like SDP or SDDP with spatial
decomposition like Dual Approximate Dynamic Programming (DADP)
to control large urban neighbourhood
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