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Informal definition of dynamically consistent problems

Informal definition

◮ For a sequence of dynamic optimization problems, we aim at
discussing a notion of consistency over time.

◮ At the very first time step t0, formulate an optimization
problem that yields optimal decision rules for all the
forthcoming time steps t0, t1, . . . ,T ;

◮ At the next time step t1, formulate a new optimization
problem starting at time t1 that yields a new sequence of
optimal decision rules. This process can be continued until
the final time T is reached.

◮ A family of optimization problems is said to be dynamically
consistent if the optimal strategies obtained when solving the
original problem remain optimal for all subsequent problems.
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Informal definition of dynamically consistent problems

Decision at time t0

t0 tk

u0,0

u
(1)
0,k

u
(2)
0,k

u
(3)
0,k

State

TimeT

depends on
decisions computed
at later times for
possible future
states.
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Informal definition of dynamically consistent problems

Time consistent decision at time tk

uk,k

t0 tk

u0,k

u0,0

State

TimeT

Decision uk,k
computed using a
problem formulated
at time tk knowing
“where I am” at
time tk or decision
u.0,k computed at
time t0 and to be
applied at time tk
for the “same
position” should be
the same.
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Informal definition of dynamically consistent problems

An example: deterministic shortest path

If A → B → C → D → E is optimal then C → D → E is optimal.
Arriving at C , If I behave rationally I should not deviate from the
originally chosen route starting at A.

t=0

t=1
t=2

A

B

C

D

E
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Dynamic Programming and dynamically consistent problems

Dynamic Programming and dynamically consistent
problems

◮ Dynamic Programing gives dynamically consistent controls

◮ It gives a family of problems indexed by time: the solution of
problem at time t uses the solution of problem at time t + 1:

Vk(x) = min
u

E
[

Lk
(

x , u,Wk+1

)

+ Vk+1

(

ftk (x , u,Wk+1)
)]

Choose control at time tk optimizing the sum of a current cost
and of a running cost. The running cost has an interpretation
as the optimal cost function of a problem at time tk+1.
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Dynamic Programming and dynamically consistent problems

Dynamic Programming and dynamically consistent
problems (2)

◮ The problem at time tk+1 is the following:

Vk+1(x) = min
X,U

E





T−1
∑

t=tk+1

Lt
(

Xt ,Ut ,Wt+1

)

+ K
(

XT

)

|Xtk+1
= x



 ,

s.t. Xt+1 = ft
(

Xt ,Ut ,Wt+1

)

, ∀t = tk+1, . . . ,T − 1,

Ut � Xt ∀t = tk+1, . . . ,T − 1.

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG

Dynamic Consistency for Stochastic Optimal Control Problems



Introduction Distributed formulation SOC with constraints Reduction to finite-dimensional problem

Deterministic case

Deterministic case

uk,k

t0 tk

u0,k

u0,0

State

TimeT

Exact state match
at time tk
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Deterministic case

Deterministic case

uk,k

t0 tk

u0,k

u0,0

State

TimeT

Independence of the ini-
tial condition.
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Deterministic case

Deterministic case

uk,k

t0 tk

u0,k

u0,0

State

TimeT

Taking care of all
possible initial
states at time tk
through state
feedback.
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Deterministic case

A first example in the deterministic case (1)

min
(ut0 ,...,uT−1 , xt0 ,...,xT )

T−1
∑

t=t0

Lt
(

xt , ut
)

+K
(

xT
)

, (Dt0)

subject to xt+1 = ft
(

xt , ut
)

, xt0 given.

Suppose a solution to this problem exists:  (u♯t0 , . . . , u
♯
T−1):

controls indexed by time t, (xt0 , x
♯
t1
, . . . , x

♯
T ): optimal path for

the state variable.

No need for more information since the model is deterministic.

◮ these controls depend on the hidden parameter xt0 ,

◮ these controls are usually not optimal for x ′t0 6= xt0 .
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Deterministic case

A first example in the deterministic case (2)
Consider the natural subsequent problems for every ti ≥ t0:

min
(uti ,...,uT−1 , xti ,...,xT )

T−1
∑

t=ti

Lt
(

xt , ut
)

+ K
(

xT
)

, (Dti )

subject to xt+1 = ft
(

xt , ut
)

, xti given.

One makes the two following observations.

1. Independence of the initial condition. In the very particular case
where the solution to Problem (Dti ) does not depend on xti ,
Problems {(Dti )}ti are dynamically consistent.

2. True deterministic world. Suppose that the initial condition for
Problem (Dti ) is given by x

♯
ti
= fti

(

x
♯
ti−1

, u
♯
ti−1

)

(exact model),
then Problems {(Dti )}ti are dynamically consistent.

Otherwise, adding disturbances to the problem brings inconsistency.Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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Deterministic case

A first example in the deterministic case (3)

Solve now Problem (Dt0) using Dynamic Programming (DP):

 (φ♯
t0
, . . . , φ

♯
T−1): controls depending on both t and x .

The following result is a direct application of the DP principle.

3. Right amount of information. Suppose that one is looking for
strategies as feedback functions φ♯

t depending on state x .
Then Problems {(Dti )}ti are dynamically consistent.

As a first conclusion, time consistency is recovered provided we let
the decision rules depend upon a sufficiently rich information.
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Deterministic case

Independence of the initial condition

for every t = t0, . . . ,T − 1, functions lt : Ut → R and gt : Ut → R,
and assume that xt is scalar. Let K be a scalar constant and
consider the following deterministic optimal control problem:

min
x ,u

T−1
∑

t=t0

lt (ut) xt + KxT ,

s.t. xt0 given,

xt+1 = gt (ut) xt , ∀t = t0, . . . ,T − 1.
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Deterministic case

Independence of the initial condition (2)
Variables xt can be recursively replaced using dynamics gt leading
to:

min
u

T−1
∑

t=t0

lt (ut) gt−1 (ut−1) . . . gt0 (ut0) xt0+KgT−1 (uT−1) . . . gt0 (ut0) xt0 .

◮ The optimal cost is linear with respect to xt0 .

◮ Suppose that xt0 only takes positive values. Then xt0 has no
influence on the minimizer.

◮ Remains true at subsequent time steps provided that dynamics
are such that xt remains positive for every time step.

◮ The dynamic consistency property holds true.

◮ This example which may look very special but we will see later
on that it is analogous to familiar SOC problems.
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Deterministic case

The guiding principle of the lecture

To obtain Dynamical Consistency, let the decision rules depend
upon a sufficiently rich information set.
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A classical SOC Problem

A classical SOC Problem
Control variables U = (Ut)t=t0,...,T−1. Noise variables
W = (Wt)t=t1,...,T . Markovian setting: noise
variables Xt0

,Wt1
, . . . ,WT are independent.

The problem (St0) starting at t0 writes:

min
X,U

E

[

T−1
∑

t=t0

Lt
(

Xt ,Ut ,Wt+1

)

+ K
(

XT

)

]

,

s.t. Xt0
given,

Xt+1 = ft
(

Xt ,Ut ,Wt+1

)

,

Ut � Xt0
,Wt1

, . . . ,Wt , ∀t = t0, . . . ,T − 1,

(1)

We know that there is no loss of optimality in looking for the
optimal strategy as a state feedback control U♯

t = φt(Xt).
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A classical SOC Problem

Stochastic optimal control: the classical case (2)
Can be solved using Dynamic Programming:

V
♯
T (x) = K (x),

V
♯
t (x) = min

u∈U
E

(

Lt(x , u,Wt+1) + V
♯
t+1

(

ft(x , u,Wt+1)
)

)

.

It is clear while inspecting the DP equation that optimal strategies
{φ♯

t}t≥t0 remain optimal for the subsequent optimization problems:

min
(Uti

,...,U
T−1

, Xti
,...,X

T
)

E

( T−1
∑

t=ti

Lt(Xt ,Ut ,Wt+1) + K (XT )

)

,

subject to: Xti
given, (Sti )

Xt+1 = ft(Xt ,Ut ,Wt+1),

Ut � (Xti
,Wti+1, . . . ,Wt).

In consequence, problems {(St )}t are dynamically consistent.
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Equivalent distributed formulation

An equivalent distributed formulation

◮ Ξt a linear space of R-valued measurable functions on Xt .

◮ Υt space of signed measures on Xt .

◮ We consider a dual pairing between Ξt and Υt by considering
the bilinear form:

〈ξ, µ〉 =

∫

Xt

ξ(x)dµ(x) for ξ ∈ Ξt and µ ∈ Υt .

◮ When Xt is a random variable taking values in Xt and
distributed according to µt . Then

〈ξt , µt〉 = E
(

ξt(Xt)
)

.
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Equivalent distributed formulation

Fokker-Planck equation: state probability law dynamics
For a given feedback laws φt : Xt → Ut we define T

φt

t : Ξt+1 → Ξt :

(

T
φt

t ξt+1

)

(x)
def
= E

(

ξt+1(Xt+1)
∣

∣ Xt = x
)

∀x ∈ Xt .

Using state dynamics and Markovian setting we obtain:

(

T
φt

t ξt+1

)

(x) = E

(

ξt+1

(

ft(x , φt(x),Wt+1)
)

)

∀x ∈ Xt .

Denoting by
(

T
φt

t

)⋆
the adjoint operator of Tφt

t

〈

T
φ
t ξ , µ

〉

=
〈

ξ ,
(

T
φ
t

)⋆
µ
〉

The state probability law driven by the chosen feedback follows:

µt+1 =
(

T
φt

t

)⋆
µt ∀t = t0, . . . ,T − 1, µt0 given .
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Equivalent distributed formulation

Revisiting the expected cost

◮ Next we introduce the operator Λφt

t : Xt → R :

Λφt

t (x)
def
= E

(

Lt
(

x , φt (x) ,Wt+1

) )

meant to be the expected cost at time t for each possible
state value when feedback function φt is applied.

◮ Using Λφt

t we have:

E
(

Lt
(

Xt , φt

(

Xt

)

,Wt+1

) )

= E
(

Λφt

t (Xt)
)

=
〈

Λφt

t , µt

〉

.

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG

Dynamic Consistency for Stochastic Optimal Control Problems



Introduction Distributed formulation SOC with constraints Reduction to finite-dimensional problem

Equivalent distributed formulation

Equivalent deterministic infinite-dimensional problem

We obtain an equivalent deterministic infinite-dimensional optimal
control problem (Dt0):

min
Φ,µ

T−1
∑

t=t0

〈

ΛΦt
t , µt

〉

+ 〈K , µT 〉 ,

s.t. µt0 given,

µt+1 =
(

T
Φt
t

)⋆

µt , ∀t = t0, . . . ,T − 1,

Very similar to the Independence of the initial condition example

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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Equivalent distributed formulation

Solving (Dt0) using Dynamic Programming

VT (µ) = 〈K , µ〉 .

VT−1(µ) = min
φ

〈

Λφ
T−1 , µ

〉

+ VT

(

(

A
φ
T−1

)⋆
µ
)

.

Optimal feedback Γ♯T−1 : µ → φ
♯
µ(·) a priori depends on x and µ.

VT−1(µ) = min
φ

〈

Λφ
T−1 + A

φ
T−1K , µ

〉

,

= min
φ(·)

∫

X

(

Λφ
T−1 + A

φ
T−1K

)

(x)µ(dx).

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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Equivalent distributed formulation

Solving (Dt0) using Dynamic Programming (2)

Interchanging minimization and expectation operators leads to:

◮ optimal Γ♯T−1 does not depend on µ : Γ♯T−1 ≡ φ
♯
T−1,

◮ VT−1 again depends on µ in a multiplicative manner.
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Constraints typology

Constraints in stochastic optimal control
Different kinds of constraints in stochastic optimization:

almost-sure constraint : g(XT ) ≤ a P-a.s.,

chance constraint : P
(

g(XT ) ≤ a
)

≥ p,

expectation constraint : E
(

g(XT )
)

≤ a,

. . .

A chance constraint can be modelled as an expectation constraint:
P
(

g(XT ) ≤ a
)

= E
(

1Xad(XT )
)

,

(with X
ad =

{

x ∈ X, g(x) ≤ a
}

).
Chance constraints bring both theoretical and numerical difficulties,

especially convexity [Prékopa, 1995]. However the difficulty we are
interested in is common to chance and expectation constraints. In

the sequel, we concentrate on adding an expectation constraint.
Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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Constraints typology

Probability constraint on state trajectories

Time

Water level

P
{

Xt ≥ x t , t ∈ [0,T ]
}

≥ a

Minimal water level

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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Constraints typology

Transformed into a Probability constraints on final state :

E

[

g(X̃
T
)
]

≤ a

◮ Motivated by a joint probability constraint:

P
{

γt
(

Xt

)

≥ bt , ∀t = t0, . . . ,T
}

≥ a.

◮ Introducing a new binary state variable Yt ∈ {0, 1}:

Yt0
= 1, Yt+1 = Yt × 1{

γt+1

(

X
t+1

)

≥bt+1

},

E
[

YT

]

= 1× P
{

γt
(

Xt

)

≥ bt , ∀t = t0, . . . ,T
}

≥ a
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Constraints typology

Problem setting with expectation constraint

Control variables U = (Ut)t=t0,...,T−1. Noise variables
W = (Wt)t=t1,...,T . Markovian setting: noises
variables Xt0

,Wt1
, . . . ,WT are independent.

The problem starting at t0 writes:

min
X,U

E

[

T−1
∑

t=t0

Lt
(

Xt ,Ut ,Wt+1

)

+ K
(

XT

)

]

,

s.t. Xt0
given,

Xt+1 = ft
(

Xt ,Ut ,Wt+1

)

,

Ut � Xt0
,Wt1

, . . . ,Wt , ∀t = t0, . . . ,T − 1,

E
[

g
(

XT

)]

≤ a, a ∈ R

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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Constraints typology

Problem at time ti

min
X,U

E

[

T−1
∑

t=ti

Lt
(

Xt ,Ut ,Wt+1

)

+ K
(

XT

)

]

,

s.t. Xt+1 = ft
(

Xt ,Ut ,Wt+1

)

, Xti
given,

Ut � Xti
,Wti+1

, . . . ,Wt , ∀t = ti , . . . ,T − 1,

E
[

g
(

XT

)]

≤ a.

◮ Not dynamically consistent with the usual state variable. With
new appropriate state variable, one regains dynamical
consistency.

◮ Optimal strategy at time t is a function of Φt0,t : X → U since
information structure is not modified by the last constraint.
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Constraints typology

Equivalent deterministic infinite-dimensional problem

We obtain an equivalent deterministic infinite-dimensional optimal
control problem.

min
Φ,µ

T−1
∑

t=t0

〈

ΛΦt
t , µt

〉

+ 〈K , µT 〉 + χ
{〈g,µ〉≤a}

(µT )

s.t. µt0 given,

µt+1 =
(

T
Φt
t

)⋆

µt , ∀t = t0, . . . ,T − 1,

〈g , µT 〉 ≤ a.

The last constraint implies that the optimal feedback laws depend
on the initial condition µt0 and we
do not have dynamical consistency.

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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A toy example with finite probabilities

Simple case-study: a discrete controlled Markov chain

◮ The state space X = {1, 2, 3}: Discrete possible values of a
reservoir level. x = 1 (resp. x = 3) the lower (resp. upper)
level of the reservoir.

◮ The control action u takes values in U = {0, 1}, the value 1
corresponding to using some given water release to produce
some electricity.

◮ The noise variable: stochastic inflow takes its values
in W = {−1, 0, 1}.

◮ The discrete probability law of each noise variable Wt being
characterized by the weights {̟−, ̟0, ̟+}.

◮ Finally, the reservoir dynamics is:

Xt+1 = min
(

x ,max(x ,Xt −Ut +Wt+1)
)

.

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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A toy example with finite probabilities

Simple case-study: a discrete controlled Markov chain

Let µt be the discrete probability law associated with the state
random variable Xt , the initial probability law µt0 being given. In
such a discrete case, it is easy to compute the transition matrix Pu

giving the Markov chain transitions for each possible value u of the
control, with the following interpretation:

Pu
ij = P

(

Xt+1 = j
∣

∣Xt = i ,Ut = u
)

= P

(

{

min
(

x ,max(x , i − u +Wt+1)
)

= j
}

)

.

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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A toy example with finite probabilities

Simple case-study: a discrete controlled Markov chain

We obtain for the reservoir problem:

P0 =





̟−+̟0 ̟+ 0
̟− ̟0 ̟+

0 ̟− ̟0+̟+



 , P1 =





1 0 0
̟−+̟0 ̟+ 0
̟− ̟0 ̟+





and we denote by Pu
i the i th row of matrix Pu.

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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A toy example with finite probabilities

Simple case-study: a discrete controlled Markov chain
Let φt : X → U be a feedback law at time t. We denote by Φt

the set of admissible feedbacks at time t. In our discrete case,
card(Φt) = card(U)card(X) = 8 for all t. The transition matrix Pφt

associated with such a feedback is obtained by properly selecting
rows of the transition matrices Pu, namely:

Pφt =







P
φt(1)
1

P
φt(2)
2

P
φt(3)
3






.

Then the dynamics given by the Fokker-Planck equation writes:

µt+1 =
(

Pφt
)⊤

µt ,

and the state µt involved in this dynamic equation is a
three-dimensional column vector µt = (µ1,t , µ2,t , µ3,t)

⊤

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG
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A toy example with finite probabilities

◮ The cost at time t is supposed to be linear, equal to ptUt , pt
being a (negative) deterministic price.

◮ No final cost (K ≡ 0).

◮ The reservoir level at final time T must be equal to x with a
probability level at least equal to π.

The distributed formulation associated with the reservoir control
problem is:

min
{φt∈Φt}

T−1
t=t0

T−1
∑

t=t0

pt
〈

φt , µt

〉

, (6a)

subject to: µt+1 =
(

Pφt
)⊤

µt , µt0 given , (6b)
〈

1{x} , µT

〉

≥ π , (6c)

with 1{x}(x) = 1 if x = x , and 0 otherwise.
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A toy example with finite probabilities

◮ The previous problem can be solved using DP: the state
equation is a two-dimensional (µ1,t + µ2,t + µ3,t = 1)

◮ Suppose now that the number of reservoir discrete levels is n
(rather than 3), with n big enough: the resolution of the
distributed formulation suffers from the curse of
dimensionality ((n − 1)-dimensional state),

◮ The ultimate curse being to consider that the level takes
values in the interval [x , x ], so that the µt ’s are continuous
probability laws.

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG

Dynamic Consistency for Stochastic Optimal Control Problems



Introduction Distributed formulation SOC with constraints Reduction to finite-dimensional problem

Back to time consistency

Back to Dynamical Consistency

We can use Dynamic Programing:
Let Vt(µt) be the optimal cost of the problem starting at time t

with initial condition µt .

VT (µ) =

{

〈K , µ〉 if 〈g , µ〉 ≤ a,

+∞ otherwise,

and, for every t = t0, . . . ,T − 1 and every probability law µ on X :

Vt (µ) = min
Φt

〈

ΛΦt
t , µ

〉

+ Vt+1

((

T
Φt
t

)⋆

µ
)

.

Optimal feedback functions Φt depend on µt . Consistency
recovered for strategies depending on Xt and µt .
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Back to time consistency

Back to Dynamical Consistency (2)

◮ Optimal feedback functions Φt depend on µt

min
Φt

〈

ΛΦt
t , µ

〉

+ Vt+1

((

T
Φt
t

)⋆

µ
)

.

◮ But it also depends on Xt because of the distributed
formulation Ut = φt(Xt) !

◮ Consistency recovered for strategies depending on Xt and µt .

◮ The new state variable to consider (Xt , µt) is an infinite
dimensional object !
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An equivalent problem with added state and control

Equivalent problem: added state process Z and control V

min
(U,V,X,Z)

E

( T−1
∑

t=t0

Lt(Xt ,Ut ,Wt+1) + K (XT )

)

,

Xt0
= xt0 , Xt+1 = ft(Xt ,Ut ,Wt+1) ,

Zt0
= 0 , Zt+1 = Zt + Vt ,

◮ Almost sure final constraint: g(XT )− ZT ≤ a ..

◮ Measurability constraints: Ut � Ft , Vt � Ft+1 .

◮ Additional time constraints: E
(

Vt

∣

∣ Ft

)

= 0 .
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An equivalent problem with added state and control

Equivalent problem (2)

◮ Let (Ut0
, . . . ,UT−1) and (Xt0

, . . . ,XT ) satisfying the
constraints of Initial problem.

◮ We define (Vt0
, . . . ,VT−1) and (Zt0

, . . . ,ZT ) as follow:

Vt = E
(

g(XT )
∣

∣ Ft+1

)

− E
(

g(XT )
∣

∣ Ft

)

, Zt+1 = Zt + Vt .

Noting that the σ-field Ft0 is the minimal σ-field and that the
random variable XT is FT -measurable, we have:

ZT = g(XT )− E
(

g(XT )
)

.

◮ Hence, U, X, V and Z satisfy the set of constraints of the
new problem.
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An equivalent problem with added state and control

Equivalent problem (3)
◮ Let (Ut0

, . . . ,UT−1), (Xt0
, . . . ,XT ), (Vt0

, . . . ,VT−1)
and (Zt0

, . . . ,ZT ) satisfying the constraints of (V,Z)-problem
be given.

◮ Then, ZT =
∑T−1

t=t0
Vt .

◮ Thus we have:

E
(

ZT

)

=
T−1
∑

t=t0

E

(

E
(

Vt

∣

∣ Ft

)

)

= 0.

◮ If follows that g(XT )− ZT ≤ a ⇒ E
(

g(XT )
)

≤ a, and
therefore the processes (Ut0

, . . . ,UT−1) and (Xt0
, . . . ,XT )

satisfy the constraints of Initial problem

To conclude, since the two problems share the same sets as
admissible constraints and share the same criteria to optimize, they
are equivalent.
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An equivalent problem with added state and control

Equivalent problem (4)

1. Dynamic Programming will give feedbacks as functions of
(Xt ,Zt).

2. The new problem is more intricate:
◮ added state and added control,
◮ Vt depends on Wt+1 (Hazard–Decision)
◮ some new constraints on the controls are to be taken into

account.

3. E
(

g(XT )
∣

∣ Ft

)

: perception of the risk constraint at time t.

4. V
♯
t = E

(

g(XT )
∣

∣ Ft+1

)

− E
(

g(XT )
∣

∣ Ft

)

: variation between
time t and time t + 1 of this perception.

5. Z
♯
t : cumulative variation over time of the risk constraint.
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Dynamic programing

Dynamic programing

In order to use Dynamic programming on problem (7), we will first
recall on a simplified model how Dynamic Programming works on
a classical SOP.

min
X,U

E

[

T−1
∑

t=t0

Lt
(

Xt ,Ut ,Wt+1

)

+ K
(

XT

)

]

,

s.t. Xt0
given,

Xt+1 = ft
(

Xt ,Ut ,Wt+1

)

,

Ut � Ft ∀t = t0, . . . ,T − 1 ,

Then we will show the modifications induced by hazard-decision
control or E

(

Vt

∣

∣ Ft

)

= 0 .
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Dynamic programing

Dynamic programing steps in classical framework

1. Rewrites criterion using conditional expectations:

E

(

E

(

L0(X0,U0) + E

(

L1(X1,U1) + K (X2)
∣

∣

∣ F1

) ∣

∣

∣ F0

)

)

2. minimization with respect to Ut and Xt enters up to the
conditional expectation with respect to Ft .

3. Recursive computation from the most internal problem to the
outer one (t = t0). The most internal (t = T − 1):

min
U
T−1

�FT−1

E

(

h(XT−1,UT−1,WT )
∣

∣

∣ FT−1

)

.

h(x , u,w) = LT−1(x , u) + K
(

fT−1(x , u,w)
)
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Dynamic programing

Hazard–Decision framework

◮ Hazard–Decision: Ut � Ft+1

◮ Interchange of expectation and minimization can be done one
step further.

E

(

min
U
T−1

�FT

h(XT−1,UT−1,WT )
∣

∣

∣ FT−1

)

.

with

h(x , u,w) = LT−1(x , u,w) + K
(

fT−1(x , u,w)
)

◮ Optimal feedback U
♯
T−1 can be chosen as a

(XT−1,WT )-measurable function.

Pierre Carpentier, Jean-Philippe Chancelier, Michel De Lara, SOWG

Dynamic Consistency for Stochastic Optimal Control Problems



Introduction Distributed formulation SOC with constraints Reduction to finite-dimensional problem

Dynamic programing

Hazard–Decision framework with constraint

◮ Control constraint: E
(

Ut

∣

∣ Ft

)

= 0 .

◮ We are led to the following problem at time t = T − 1:

min
U
T−1

�FT

E

(

h(XT−1,UT−1,WT )
∣

∣

∣
FT−1

)

,

subject to: E
(

UT−1

∣

∣ FT−1

)

= 0 .

◮ Optimal feedback U
♯
T−1 can still be chosen as a

(XT−1,WT )-measurable function?

◮ Yes and the proof is actually available when FT−1 is
generated by finite valued random variables.
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Dynamic programing

Back to the equivalent problem
The Hazard-Decision (V) and Decision-Hazard (U) controls.

◮ Initialization of the Bellman function at time T :

VT (x , z) = K (x) + χ
Gad

(x , z) ,

χ
Gad

characteristic function of G ad =
{

(x , z) | g(x)− z ≤ a
}

;

◮ Bellman function at time t:

Vt(x , z) = min
u∈U

min
V�W

t+1

E

(

h(x , u, z ,V,Wt+1)
)

,

subject to: E
(

V
)

= 0 .

h(x , u, z , v ,w)
def
= Lt(x , u,w) + Vt+1

(

ft(x , u,w), z + v
)

U
♯
t
� (Xt ,Zt) and V

♯
t
� (Xt ,Zt ,Wt+1).
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