The optimal harvesting problem under price uncertainty Summer School CEA-EDF-INRIA 2012 - Stochastic Optimization

Bernardo Pagnoncelli¹ & Adriana Piazza²

¹ Escuela de Negocios Universidad Adolfo Ibáñez Santiago, Chile

² Departamento de Matemática Universidad Técnica Federico Santa María Valparaíso, Chile

July 5th, 2012

< A >

... [We] obtain the result that uncertainty lengthens the optimal rotation. [...] Under the mean reverting price process, optimal harvesting becomes more sensitive to price level,[...] Including risk aversion completely changes the harvesting policy.

Tahvonen & Kallio (2006)

(4) (2) (4)

- The optimal harvesting problem with uncertainty has been considerably studied, but the vast majority of papers
 - present numerical solutions
 - assuming single stands, random walk price process and risk neutrality

we consider forest growth as a deterministic and pure aging process.

- The optimal harvesting problem with uncertainty has been considerably studied, but the vast majority of papers
 - present numerical solutions
 - assuming single stands, random walk price process and risk neutrality

we consider forest growth as a deterministic and pure aging process.

- The optimal harvesting problem with uncertainty has been considerably studied, but the vast majority of papers
 - present numerical solutions
 - assuming single stands, random walk price process and risk neutrality

we consider forest growth as a deterministic and pure aging process.

- The optimal harvesting problem with uncertainty has been considerably studied, but the vast majority of papers
 - present numerical solutions
 - assuming single stands, random walk price process and risk neutrality

we consider forest growth as a deterministic and pure aging process.

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

They all want to solve the same problem: optimal decision making over time, often under uncertainty.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

• Stochastic Dynamic Programming. Or ...

- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

They all want to solve the same problem: optimal decision making over time, often under uncertainty.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

They all want to solve the same problem: optimal decision making over time, often under uncertainty.

・ 同 ト ・ ラ ト ・ ラ

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

They all want to solve the same problem: optimal decision making over time, often under uncertainty.

伺下 イラト イラ

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

They all want to solve the same problem: optimal decision making over time, often under uncertainty.

伺下 イラト イラ

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

They all want to solve the same problem: optimal decision making over time, often under uncertainty.

伺 ト イ ヨ ト イ ヨ

- Stochastic Dynamic Programming. Or ...
- Markov Decision Process, or
- Multistage Stochastic Programming, or
- Intertemporal Consumption, or
- Life-Cycle Consumption, or...

They all want to solve the same problem: optimal decision making over time, often under uncertainty.

- 王王 - 王

 Extensive research in portfolio selection, hydrothermal scheduling, production planning and others.

- Popular algorithms include the Nested L-Shaped (Birge '85), SDDP (Pereira and Pinto '91), Progressive Hedging (Rockafellar and Wets '91), SAA (Shapiro '03, '06), ADP (Powell '07).
- We will see that harvesting constraints are unique and are not equivalent to stocks' buy-and-sell constraints and to the hydric balance equation.
- General purpose algorithms are not readily applicable.

マロト イラト イラ

- Extensive research in portfolio selection, hydrothermal scheduling, production planning and others.
- Popular algorithms include the Nested L-Shaped (Birge '85), SDDP (Pereira and Pinto '91), Progressive Hedging (Rockafellar and Wets '91), SAA (Shapiro '03, '06), ADP (Powell '07).
- We will see that harvesting constraints are unique and are not equivalent to stocks' buy-and-sell constraints and to the hydric balance equation.
- General purpose algorithms are not readily applicable.

マロト イラト イラ

- Extensive research in portfolio selection, hydrothermal scheduling, production planning and others.
- Popular algorithms include the Nested L-Shaped (Birge '85), SDDP (Pereira and Pinto '91), Progressive Hedging (Rockafellar and Wets '91), SAA (Shapiro '03, '06), ADP (Powell '07).
- We will see that harvesting constraints are unique and are not equivalent to stocks' buy-and-sell constraints and to the hydric balance equation.
- General purpose algorithms are not readily applicable.

- Extensive research in portfolio selection, hydrothermal scheduling, production planning and others.
- Popular algorithms include the Nested L-Shaped (Birge '85), SDDP (Pereira and Pinto '91), Progressive Hedging (Rockafellar and Wets '91), SAA (Shapiro '03, '06), ADP (Powell '07).
- We will see that harvesting constraints are unique and are not equivalent to stocks' buy-and-sell constraints and to the hydric balance equation.
- General purpose algorithms are not readily applicable.

If price is uncertain,

is it better to harvest everything available now or is it worth waiting for prices to rise???

A 10

→ Ξ →

- Before the maturity age: harvest forbidden
- After the maturity age: trees do not grow

State at time t

$$\mathbb{X}(t) = \begin{pmatrix} \bar{x}(t) \\ x_n(t) \\ \hline \\ x_{n-1}(t) \\ \vdots \\ x_2(t) \\ x_1(t) \end{pmatrix}$$

 $x_a(t)$: surface occupied by trees of age *a* at time *t* $\bar{x}(t)$: surface occupied by trees beyond maturity at time *t*

- Before the maturity age: harvest forbidden
- After the maturity age: trees do not grow

State at time t

$$\mathbb{X}(t) = \begin{pmatrix} \bar{x}(t) \\ x_n(t) \\ \hline x_{n-1}(t) \\ \vdots \\ x_2(t) \\ x_1(t) \end{pmatrix}$$

 $x_a(t)$: surface occupied by trees of age *a* at time *t* $\bar{x}(t)$: surface occupied by trees beyond maturity at time *t*

不得 トイラトイラ

$$(p(1), \mathbb{X}(1)) \rightsquigarrow c(1) \rightsquigarrow \mathbb{X}(2) \rightsquigarrow p(2) \rightsquigarrow c(2) \rightsquigarrow \mathbb{X}(3) \rightsquigarrow$$

 $\cdots \rightsquigarrow c(T-1) \rightsquigarrow \mathbb{X}(T) \rightsquigarrow p(T) \rightsquigarrow c(T).$

<ロト <回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

At every time *t*:

• Knowing p(t) and $\mathbb{X}(t)$ we must choose how much to harvest: c(t)

 $(0 \leq c(t) \leq \overline{x}(t) + x_n(t)).$

At time t, depending on c(t)

• Benefit c(t)p(t)

• State
$$\mathbb{X}(t) = \begin{pmatrix} \bar{x} \\ x_3 \\ x_2 \\ x_1 \end{pmatrix} \longrightarrow \mathbb{X}(t+1) = \begin{pmatrix} \bar{x} + x_3 - c(t) \\ x_2 \\ x_1 \\ c(t) \end{pmatrix}$$

At every time *t*:

• Knowing p(t) and $\mathbb{X}(t)$ we must choose how much to harvest: c(t)

$$(0 \leq c(t) \leq \overline{x}(t) + x_n(t)).$$

At time t, depending on c(t)

• Benefit c(t)p(t)

• State
$$\mathbb{X}(t) = \begin{pmatrix} \bar{x} \\ x_3 \\ x_2 \\ x_1 \end{pmatrix} \longrightarrow \mathbb{X}(t+1) = \begin{pmatrix} \bar{x} + x_3 - c(t) \\ x_2 \\ x_1 \\ c(t) \end{pmatrix}$$

• Example: *n* = 3, *S* = 6:

$$\begin{pmatrix} 1\\2\\1\\2 \end{pmatrix} \rightarrow \begin{pmatrix} 3\\1\\2\\0 \end{pmatrix} \rightarrow \begin{pmatrix} 0\\2\\0\\4 \end{pmatrix}$$
$$c(1) = 0 \qquad c(2) = 4$$

• Total benefit:

 $c(1)p(1) + \delta c(2)p(2) = \delta 4 p(2)$ $\delta \in (0, 1)$ discount factor.

イロト イポト イヨト イヨト

Deterministic case with constant price $p(t) = \bar{p}$.

Optimization problem:

$$V_1(p(1), \mathbb{X}(1)) = \begin{cases} Max_{c(1),...,c(T)} & \sum_{t=1}^T \delta^{t-1}\bar{p} c(t). \\ \text{s.t.} & \text{feasibility constraints.} \end{cases}$$

- The greedy policy is optimal (Rapaport et al., 2003.)
- Always harvest everything available.

$$\begin{pmatrix} 1\\2\\1\\2 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\2\\3\\1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\2\\3\\1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\3\\1\\2 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} \longrightarrow \dots$$

$$c(1)=3 \qquad c(2)=1 \qquad c(3)=2 \qquad c(4)=3 \qquad c(5)=1$$

Deterministic case with constant price $p(t) = \bar{p}$.

Optimization problem:

$$V_1(p(1), \mathbb{X}(1)) = \begin{cases} Max_{c(1),...,c(T)} & \sum_{t=1}^T \delta^{t-1}\bar{p} c(t). \\ \text{s.t.} & \text{feasibility constraints.} \end{cases}$$

- The greedy policy is optimal (Rapaport et al., 2003.)
- Always harvest everything available.

$$\begin{pmatrix} 1\\2\\1\\2 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\2\\3\\1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\2\\3\\1 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\3\\1\\2 \end{pmatrix} \longrightarrow \begin{pmatrix} 0\\1\\2\\3 \end{pmatrix} \longrightarrow \dots$$

$$c(1)=3 \qquad c(2)=1 \qquad c(3)=2 \qquad c(4)=3 \qquad c(5)=1$$

Optimization problem - risk neutral framework

• Objective function :
$$\mathbb{E}\left[\sum_{t=1}^{T} \delta^{t-1} p(t) c(t)\right]$$

Optimization problem: $V_{1}(p(1), \mathbb{X}(1)) = \begin{cases} Max_{c(1),...,c(T)} & \mathbb{E}\left[\sum_{t=1}^{T} \delta^{t-1} p(t) c(t)\right].\\ \text{s.t.} & \text{feasibility constraints.} \end{cases}$

Dynamic programming equations:

$$V_t(p(t), \mathbb{X}(t)) = \begin{cases} Max_{c(t)} & \mathbb{E}\left[p(t)c(t) + \delta V_{t+1}(\cdot, \cdot) \middle| p(t)\right] \\ \text{s.t.} & \text{feasibility constraints} \end{cases}$$

Optimization problem - risk neutral framework

• Objective function :
$$\mathbb{E}\left[\sum_{t=1}^{T} \delta^{t-1} p(t) c(t)\right]$$

Optimization problem:

$$V_1(p(1), \mathbb{X}(1)) = \begin{cases} Max_{c(1),...,c(T)} & \mathbb{E}\left[\sum_{t=1}^T \delta^{t-1} p(t)c(t)\right].\\ \text{s.t.} & \text{feasibility constraints.} \end{cases}$$

Dynamic programming equations:

$$V_t(p(t), \mathbb{X}(t)) = \begin{cases} Max_{c(t)} & \mathbb{E}[p(t)c(t) + \delta V_{t+1}(\cdot, \cdot)|p(t)] \\ \text{s.t.} & \text{feasibility constraints} \end{cases}$$

Geometric Brownian Motion

Drift: $\mu \in I\!\!R$

Volatility: $\sigma \in I\!R_+$

 $\mathbb{E}[p(t+1)|p(t)] = -p(t)e^{\mu}$

æ.

Theorem

If condition $1 \ge \delta e^{\mu}$ holds, the optimal policy is Greedy.

Proof: The coefficient of *c* in the Bellman eq.

$$V_t(\rho(t), \mathbb{X}(t)) = Max_c \left\{ \rho(t)c + \delta \mathbb{E}_{\rho(t+1)} \left[V_{t+1}(\rho(t+1), \mathbb{X}(t+1)) \middle| \rho(t) \right] \right\}$$

is
$$p(t)(1-\delta e^{\mu})\sum_{k=0}^{K}\delta^{kn}e^{(kn)\mu}\geq 0$$

イロト イポト イヨト イヨト

• But what is the intuition behind this result?

future < present

$$\begin{split} \delta \mathbb{E}[p(t+1)|p(t)] &\leq p(t), t = 1, \dots, T-1, \\ \delta p(t) e^{\mu} &\leq p(t), t = 1, \dots, T-1, \end{split}$$

which is equivalent to

 $\delta e^{\mu} \leq 1.$

э

۲

• But what is the intuition behind this result?

$\textit{future} \leq \textit{present}$

$$\begin{split} \delta \mathbb{E}[p(t+1)|p(t)] &\leq p(t), t = 1, \dots, T-1, \\ \delta p(t) e^{\mu} &\leq p(t), t = 1, \dots, T-1, \end{split}$$

which is equivalent to

 $\delta e^{\mu} \leq 1.$

(0)

۲

• But what is the intuition behind this result?

future \leq present

$$\begin{split} \delta \mathbb{E}[p(t+1)|p(t)] &\leq p(t), t = 1, \dots, T-1, \\ \delta p(t) e^{\mu} &\leq p(t), t = 1, \dots, T-1, \end{split}$$

which is equivalent to

 $\delta e^{\mu} \leq 1.$

(0)

۲

• But what is the intuition behind this result?

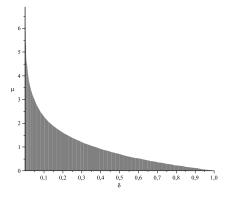
future \leq present

$$\begin{split} \delta \mathbb{E}[p(t+1)|p(t)] &\leq p(t), t = 1, \dots, T-1, \\ \delta p(t) e^{\mu} &\leq p(t), t = 1, \dots, T-1, \end{split}$$

which is equivalent to

 $\delta e^{\mu} \leq 1.$

(0)



Shaded area:

 $1 - \delta e^{\mu} > 0$ holds

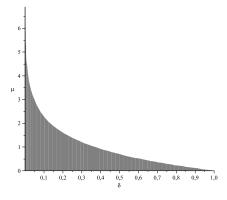
Greedy policy is optimal

(every state & price realization)

э

- ∃ →

What if $1 - \delta e^{\mu} < 0$?



Shaded area:

 $1 - \delta e^{\mu} > 0$ holds

Greedy policy is optimal

(every state & price realization)

3 🕨 🖌 3

What if $1 - \delta e^{\mu} < 0$?

Another optimal policy for GBM

- If $1 \delta e^{\mu} < 0$, it is optimal to postpone the harvest.
 - Harvesting is allowed only at: T, T n, T 2n, ...
 - Every mature tree is cut

$$c(t) = \begin{cases} \bar{x}(t) + x_n(t) & \text{if } t = T - kn \\ 0 & \text{else} \end{cases}$$

Example with T = 8 and n = 3, S = 6.

Proof, using backwards induction on *t*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Another optimal policy for GBM

- If $1 \delta e^{\mu} < 0$, it is optimal to postpone the harvest.
 - Harvesting is allowed only at: T, T n, T 2n, ...
 - Every mature tree is cut

$$c(t) = \begin{cases} \bar{x}(t) + x_n(t) & \text{if } t = T - kn \\ 0 & \text{else} \end{cases}$$

Example with T = 8 and n = 3, S = 6.

Proof, using backwards induction on t.

・ 同 ト ・ ヨ ト ・ ヨ ト

Ornstein-Uhlenbeck

Definition:	$dp_t = \eta(\bar{p} - p_t)dt + \sigma dW_t$
Equilibrium:	<i>ρ</i>
Rate of mean-reversion:	$\eta\in I\!\!R_+$
Volatility:	$\sigma\in I\!\!R_+$
$\mathbb{E}[p(t+1) p(t)] =$	$p(t)e^{-\eta}+ar{p}(1-e^{-\eta})$

イロト イポト イヨト イヨト

æ

$$\delta \mathbb{E}_{|p(t)}[p(t+1)] \leq p(t),$$

$$\delta[p(t)e^{-\eta} + \bar{p}(1-e^{-\eta})] \leq p(t),$$

which is equivalent to

$$\frac{p(t)}{\bar{p}} \ge \frac{\delta(1 - e^{-\eta})}{(1 - \delta e^{-\eta})} := r.$$
(1)

< 同 > < 三 > < 三 >

$$\delta \mathbb{E}_{|\boldsymbol{p}(t)}[\boldsymbol{p}(t+1)] \leq \boldsymbol{p}(t),$$

$$\delta [\boldsymbol{p}(t)\boldsymbol{e}^{-\eta} + \bar{\boldsymbol{p}}(1-\boldsymbol{e}^{-\eta})] \leq \boldsymbol{p}(t),$$

which is equivalent to

$$\frac{p(t)}{\bar{p}} \ge \frac{\delta(1 - e^{-\eta})}{(1 - \delta e^{-\eta})} := r.$$
(1)

< 同 > < 三 > < 三 >

$$\delta \mathbb{E}_{|\boldsymbol{p}(t)}[\boldsymbol{p}(t+1)] \leq \boldsymbol{p}(t),$$

$$\delta [\boldsymbol{p}(t)\boldsymbol{e}^{-\eta} + \bar{\boldsymbol{p}}(1-\boldsymbol{e}^{-\eta})] \leq \boldsymbol{p}(t),$$

which is equivalent to

$$\frac{p(t)}{\bar{p}} \ge \frac{\delta(1 - e^{-\eta})}{(1 - \delta e^{-\eta})} := r.$$
(1)

< 同 > < 三 > < 三 >

$$\delta \mathbb{E}_{|\boldsymbol{p}(t)}[\boldsymbol{p}(t+1)] \leq \boldsymbol{p}(t),$$

$$\delta [\boldsymbol{p}(t)\boldsymbol{e}^{-\eta} + \bar{\boldsymbol{p}}(1-\boldsymbol{e}^{-\eta})] \leq \boldsymbol{p}(t),$$

which is equivalent to

$$\frac{\rho(t)}{\bar{p}} \ge \frac{\delta(1 - e^{-\eta})}{(1 - \delta e^{-\eta})} := r.$$
(1)

・ 同 ト ・ ヨ ト ・ ヨ

Theorem

If there is t such that $p(t) \ge r\bar{p}$, then $c^*(t) = \bar{x}(t) + x_n(t)$

- If $p(t) \ge r\bar{p}$ the optimal decision at that particular time *t* is to harvest everything available
- If $p(t) < r\bar{p}$, then $c^*(t) = ?$

Numerical experiments:

- We use $r\bar{p}$ as a reservation price.
- Results within 5% of the optimum for some parameter values.

< ロ > < 同 > < 回 > < 回 >

Theorem

If there is t such that $p(t) \ge r\bar{p}$, then $c^*(t) = \bar{x}(t) + x_n(t)$

- If *p*(*t*) ≥ *r*p̄ the optimal decision at that particular time *t* is to harvest everything available
- If $p(t) < r\bar{p}$, then $c^*(t) = ?$

Numerical experiments:

- We use $r\bar{p}$ as a reservation price.
- Results within 5% of the optimum for some parameter values.

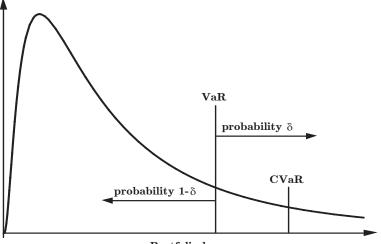
・ 同 ト ・ ヨ ト ・ ヨ ト

Variance		VaR	CVaR
1952		1994	1999
Markowitz CAPM	J.P. Morgan	Artzner et.al	
	Jorion	Coherency	

<ロ> <部> < き> < き> < 。</p>

2

How bad is bad? Conditional Value-at-Risk



Portfolio loss

- Conditional Value-at-Risk, Average Value-at-Risk, Expected Tail Loss and Expected Shortfall are all the same thing!
- Formally, we define $\operatorname{CVaR}_{\alpha}[X] = \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{\alpha} \mathbb{E} \left[X t \right]_{+} \right\} =$ (Cont. case) = $\mathbb{E} \left[X \mid X > \operatorname{VaR}_{\alpha} \right]$.
- The Value-at-Risk:

$$\operatorname{VaR}_{\alpha}[X] = \inf\{x : \mathbb{P}(X \le x) \ge 1 - \alpha\}, \quad \alpha \in (0, 1).$$

• What happens when we incorporate the CVaR in our forestry model?

・ 同 ト ・ ヨ ト ・ ヨ

- Conditional Value-at-Risk, Average Value-at-Risk, Expected Tail Loss and Expected Shortfall are all the same thing!
- Formally, we define $\text{CVaR}_{\alpha}[X] = \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{\alpha} \mathbb{E} \left[X t \right]_{+} \right\} = (\text{ Cont. case }) = \mathbb{E} \left[X \mid X > \text{VaR}_{\alpha} \right].$

• The Value-at-Risk:

$$\operatorname{VaR}_{\alpha}[X] = \inf\{x : \mathbb{P}(X \le x) \ge 1 - \alpha\}, \quad \alpha \in (0, 1).$$

• What happens when we incorporate the CVaR in our forestry model?

不得 トイラトイラ

- Conditional Value-at-Risk, Average Value-at-Risk, Expected Tail Loss and Expected Shortfall are all the same thing!
- Formally, we define $\text{CVaR}_{\alpha}[X] = \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{\alpha} \mathbb{E} \left[X t \right]_{+} \right\} = (\text{ Cont. case }) = \mathbb{E} \left[X \mid X > \text{VaR}_{\alpha} \right].$

• The Value-at-Risk:

$$\operatorname{VaR}_{\alpha}[X] = \inf\{x : \mathbb{P}(X \le x) \ge 1 - \alpha\}, \quad \alpha \in (0, 1).$$

• What happens when we incorporate the CVaR in our forestry model?

・ 同 ト ・ ヨ ト ・ ヨ

- Conditional Value-at-Risk, Average Value-at-Risk, Expected Tail Loss and Expected Shortfall are all the same thing!
- Formally, we define $\text{CVaR}_{\alpha}[X] = \inf_{t \in \mathbb{R}} \left\{ t + \frac{1}{\alpha} \mathbb{E} \left[X t \right]_{+} \right\} = (\text{ Cont. case }) = \mathbb{E} \left[X \mid X > \text{VaR}_{\alpha} \right].$
- The Value-at-Risk:

$$\mathsf{VaR}_{\alpha}[X] = \inf\{x : \mathbb{P}(X \le x) \ge 1 - \alpha\}, \quad \alpha \in (0, 1).$$

• What happens when we incorporate the CVaR in our forestry model?

・吊 ・ ・ ヨ ト ・ ヨ ト

1)
$$\rho(X + c) = \rho(X) + c.$$

2)
$$X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$$
.

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y)$$
.

イロト イポト イヨト イヨト

1)
$$\rho(X + c) = \rho(X) + c$$
.

2)
$$X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$$
.

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y)$$
.

イロト イポト イヨト イヨト

1)
$$\rho(X + c) = \rho(X) + c$$
.

2)
$$X \leq Y \Rightarrow \rho(X) \leq \rho(Y)$$
.

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y)$$
.

イロト イポト イヨト イヨト

1)
$$\rho(X + c) = \rho(X) + c$$
.

$$2) X \leq Y \Rightarrow \rho(X) \leq \rho(Y).$$

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y)$$
.

イロト イポト イヨト イヨト

1)
$$\rho(X + c) = \rho(X) + c$$
.

$$2) X \leq Y \Rightarrow \rho(X) \leq \rho(Y).$$

3)
$$\rho(\lambda X) = \lambda \rho(X)$$
 for $\lambda \ge 0$.

4)
$$\rho(X + Y) \le \rho(X) + \rho(Y).$$

Risk averse case, GBM

If prices evolve according to a GBM and condition

$$\delta e^{\mu} rac{1}{lpha} \Phi(\Phi^{-1}(lpha) - \sigma) \leq 1$$

holds, the greedy policy is optimal.

Observation: If the condition is not satisfied the optimal policy is analogous to the one we obtained for the risk neutral case.

(4) (2) (4)

Risk averse case, GBM

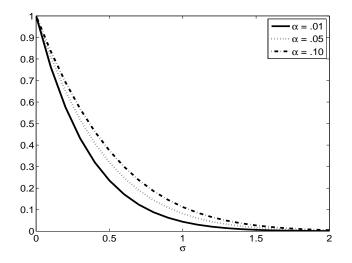
If prices evolve according to a GBM and condition

$$\delta oldsymbol{e}^{\mu} rac{1}{lpha} \Phi(\Phi^{-1}(lpha) - \sigma) \leq 1$$

holds, the greedy policy is optimal.

Observation: If the condition is not satisfied the optimal policy is analogous to the one we obtained for the risk neutral case.

ヨトィヨ



E

-

æ

Risk averse case, O-U

If prices evolve according to an O-U process and

$$p(t) \geq \bar{p}r - \frac{\delta}{1 - \delta e^{-\eta}} \frac{\sigma}{\sqrt{2\pi}} \sqrt{\frac{(1 - e^{-2\eta})}{2\eta}} \frac{e^{-z_{\alpha}^2/2}}{\alpha} = p_r^{O-U}$$

holds at time t, the greedy policy is optimal at time t.

Some observations:

- When η → ∞ ⇒, the reservation price goes to δp̄ ⇒ Greedy policy is optimal.
- When $\alpha \rightarrow 1 \Rightarrow$, reservation prices coincide.
- When $\sigma \downarrow$, reservation prices coincide.
- When $\sigma \uparrow$, reservations prices are smaller than $\bar{p}r$.

伺下 イヨト イ

Risk averse case, O-U

If prices evolve according to an O-U process and

$$p(t) \geq \bar{p}r - \frac{\delta}{1 - \delta e^{-\eta}} \frac{\sigma}{\sqrt{2\pi}} \sqrt{\frac{(1 - e^{-2\eta})}{2\eta}} \frac{e^{-z_{\alpha}^2/2}}{\alpha} = p_r^{O-U}$$

holds at time t, the greedy policy is optimal at time t.

Some observations:

- When η → ∞ ⇒, the reservation price goes to δp̄ ⇒ Greedy policy is optimal.
- When $\alpha \rightarrow 1 \Rightarrow$, reservation prices coincide.
- When $\sigma \downarrow$, reservation prices coincide.
- When $\sigma \uparrow$, reservations prices are smaller than $\bar{p}r$.

伺下 イヨト イヨト

- Multistage least cost plus damage
- Inclusion of forest fires
- Include diameter as a state variable, instead of (or in addition to) age
- Growth as a stochastic process and consider natural mortality

・ 同 ト ・ ヨ ト ・ ヨ ト

Merci!

< ロ > < 部 > < き > < き > <</p>

2

5900