
APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• Review of discounted problem theory

• Review of shorthand notation

• Algorithms for discounted DP

• Value iteration

• Policy iteration

• Optimistic policy iteration

• Q-factors and Q-learning

• A more abstract view of DP

• Extensions of discounted DP

• Value and policy iteration

• Asynchronous algorithms

DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x

“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk
J0)(x), Jµ(x) = lim

k→∞

(Tk
µJ0)(x)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

, ∀ x

Jµ(x) = E
w

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)}

, ∀ x

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(x) ∈ arg min
u∈U(x)

E
w

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

, ∀ x

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

MAJOR PROPERTIES

• Monotonicity property: For any functions J and
J ′ on the state space X such that J(x) ≤ J ′(x)
for all x ∈ X, and any µ

(TJ)(x) ≤ (TJ ′)(x), (TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X.

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
x

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)− J ′(x)
∣

∣,

max
x

∣

∣(TµJ)(x)−(TµJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)−J ′(x)
∣

∣.

• Compact Contraction Notation:

‖TJ−TJ ′‖ ≤ α‖J−J ′‖, ‖TµJ−TµJ ′‖ ≤ α‖J−J ′‖,

where for any bounded function J , we denote by
‖J‖ the sup-norm

‖J‖ = max
x∈X

∣

∣J(x)
∣

∣.

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

(T k
µJµk)(x) = E

w

{

g
(

x, µ(x), w
)

+ αJµk

(

f(x, µk(x), w)
)}

, ∀ x

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µk+1(x) ∈ arg min
u∈U(x)

E
w

{

g(x, u, w) + αJµk

(

f(x, u, w)
)}

, ∀ x

or Tµk+1Jµk = TJµk

• For finite state space policy evaluation is equiv-
alent to solving a linear system of equations

• Dimension of the system is equal to the number
of states.

• For large problems, exact PI is out of the ques-
tion (even though it terminates finitely)

INTERPRETATION OF VI AND PI

J J∗ = TJ∗

0 Prob. = 1

J J∗ = TJ∗

0 Prob. = 1

∗ TJ

Prob. = 1 Prob. =

∗ TJ

Prob. = 1 Prob. =

1 J J

TJ 45 Degree Line
Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

J Jµ1 = Tµ1Jµ1

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

TJ Tµ1J J

Policy Improvement Exact Policy Evaluation (Exact if

J0

J0

J0

J0

= TJ0

= TJ0

= TJ0

Do not Replace Set S

= T 2J0

Do not Replace Set S

= T 2J0

n Value Iterations

JUSTIFICATION OF POLICY ITERATION

• We can show that Jµk+1 ≤ Jµk for all k

• Proof: For given k, we have

Tµk+1Jµk = TJµk ≤ TµkJµk = Jµk

Using the monotonicity property of DP,

Jµk ≥ Tµk+1Jµk ≥ T 2
µk+1Jµk ≥ · · · ≥ lim

N→∞
TN
µk+1Jµk

• Since
lim

N→∞
TN
µk+1Jµk = Jµk+1

we have Jµk ≥ Jµk+1 .

• If Jµk = Jµk+1 , then Jµk solves Bellman’s equa-
tion and is therefore equal to J∗

• So at iteration k either the algorithm generates
a strictly improved policy or it finds an optimal
policy

• For a finite spaces MDP, there are finitely many
stationary policies, so the algorithm terminates
with an optimal policy

APPROXIMATE PI

• Suppose that the policy evaluation is approxi-
mate,

‖Jk − Jµk‖ ≤ δ, k = 0, 1, . . .

and policy improvement is approximate,

‖Tµk+1Jk − TJk‖ ≤ ε, k = 0, 1, . . .

where δ and ε are some positive scalars.

• Error Bound I: The sequence {µk} generated
by approximate policy iteration satisfies

lim sup
k→∞

‖Jµk − J∗‖ ≤
ε + 2αδ

(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

• Error Bound II: If in addition the sequence {µk}
terminates at µ,

‖Jµ − J∗‖ ≤
ε + 2αδ

1− α

OPTIMISTIC POLICY ITERATION

• Optimistic PI (more efficient): This is PI, where
policy evaluation is done w/ a finite number of VI

• So we approximate the policy evaluation

Jµ ≈ Tm
µ J

for some number m ∈ [1,∞)

• Shorthand definition: For some integers mk

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . .

• If mk ≡ 1 it becomes VI

• If mk = ∞ it becomes PI

• Can be shown to converge (in an infinite number
of iterations)

Q-LEARNING I

• We can write Bellman’s equation as

J∗(x) = min
u∈U(x)

Q∗(x, u), ∀ x,

where Q∗ is the unique solution of

Q∗(x, u) = E

{

g(x, u, w) + α min
v∈U(x)

Q∗(x, v)

}

with x = f(x, u, w)

• Q∗(x, u) is called the optimal Q-factor of (x, u)

• We can equivalently write the VI method as

Jk+1(x) = min
u∈U(x)

Qk+1(x, u), ∀ x,

where Qk+1 is generated by

Qk+1(x, u) = E

{

g(x, u, w) + α min
v∈U(x)

Qk(x, v)

}

with x = f(x, u, w)

Q-LEARNING II

• Q-factors are no different than costs

• They satisfy a Bellman equation Q = FQ where

(FQ)(x, u) = E

{

g(x, u, w) + α min
x∈U(x)

Q(x, v)

}

where x = f(x, u, w)

• VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs

• They require equal amount of computation ...
they just need more storage

• Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

µ∗(x) = min
u∈U(x)

Q∗(x, u)

• Once Q∗(x, u) are known, the model [g and
E{·}] is not needed. Model-free operation.

• Later we will see how stochastic/sampling meth-
ods can be used to calculate (approximations of)
Q∗(x, u) using a simulator of the system (no model
needed)

A MORE GENERAL/ABSTRACT VIEW

• Given a real vector space Y with a norm ‖ · ‖
(i.e., ‖y‖ ≥ 0 for all y ∈ Y , ‖y‖ = 0 if and only if
y = 0, ‖ay‖ = |a|‖y‖ for all scalars a and y ∈ Y ,
and ‖y + z‖ ≤ ‖y‖+ ‖z‖ for all y, z ∈ Y)

• A function F : Y *→ Y is said to be a contrac-
tion mapping if for some ρ ∈ (0, 1), we have

‖Fy − Fz‖ ≤ ρ‖y − z‖, for all y, z ∈ Y.

ρ is called the modulus of contraction of F .

• Important example: Let X be a set (e.g., state
space in DP), v : X *→ , be a positive-valued
function. Let B(X) be the set of all functions
J : X *→ , such that J(x)/v(x) is bounded over
x.

• We define a norm on B(X), called the weighted
sup-norm, by

‖J‖ = max
x∈X

|J(x)|

v(x)
.

• Important special case: The discounted prob-
lem mappings T and Tµ [for v(x) ≡ 1, ρ = α].

A DP-LIKE CONTRACTION MAPPING

• Let X = {1, 2, . . .}, and let F : B(X) *→ B(X)
be a linear mapping of the form

(FJ)(i) = bi +
∑

j∈X

aij J(j), ∀ i = 1, 2, . . .

where bi and aij are some scalars. Then F is a
contraction with modulus ρ if and only if

∑

j∈X |aij | v(j)

v(i)
≤ ρ, ∀ i = 1, 2, . . .

• Let F : B(X) *→ B(X) be a mapping of the
form

(FJ)(i) = min
µ∈M

(FµJ)(i), ∀ i = 1, 2, . . .

where M is parameter set, and for each µ ∈ M ,
Fµ is a contraction mapping from B(X) to B(X)
with modulus ρ. Then F is a contraction mapping
with modulus ρ.

• Allows the extension of main DP results from
bounded cost to unbounded cost.

CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If
F : B(X) *→ B(X) is a contraction with modulus
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X)
such that

J∗ = FJ∗.

Furthermore, if J is any function in B(X), then
{F kJ} converges to J∗ and we have

‖F kJ − J∗‖ ≤ ρk‖J − J∗‖, k = 1, 2,

• This is a special case of a general result for
contraction mappings F : Y *→ Y over normed
vector spaces Y that are complete: every sequence
{yk} that is Cauchy (satisfies ‖ym − yn‖ → 0 as
m,n → ∞) converges.

• The space B(X) is complete (see the text for a
proof).

GENERAL FORMS OF DISCOUNTED DP

• We consider an abstract form of DP based on
monotonicity and contraction

• Abstract Mapping: Denote R(X): set of real-
valued functions J : X *→ ,, and let H : X ×U ×
R(X) *→ , be a given mapping. We consider the
mapping

(TJ)(x) = min
u∈U(x)

H(x, u, J), ∀ x ∈ X.

• We assume that (TJ)(x) > −∞ for all x ∈ X,
so T maps R(X) into R(X).

• Abstract Policies: Let M be the set of “poli-
cies”, i.e., functions µ such that µ(x) ∈ U(x) for
all x ∈ X.

• For each µ ∈ M, we consider the mapping
Tµ : R(X) *→ R(X) defined by

(TµJ)(x) = H
(

x, µ(x), J
)

, ∀ x ∈ X.

• Find a function J∗ ∈ R(X) such that

J∗(x) = min
u∈U(x)

H(x, u, J∗), ∀ x ∈ X

EXAMPLES

• Discounted problems (and stochastic shortest
paths-SSP for α = 1)

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)
)}

• Discounted Semi-Markov Problems

H(x, u, J) = G(x, u) +
n
∑

y=1

mxy(u)J(y)

where mxy are “discounted” transition probabili-
ties, defined by the transition distributions

• Shortest Path Problems

H(x, u, J) =

{

axu + J(u) if u .= d,
axd if u = d

where d is the destination. There is also a stochas-
tic version of this problem.

• Minimax Problems

H(x, u, J) = max
w∈W (x,u)

[

g(x, u, w)+αJ
(

f(x, u, w)
)]

ASSUMPTIONS

• Monotonicity assumption: If J, J ′ ∈ R(X) and
J ≤ J ′, then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• Contraction assumption:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X).

− For some α ∈ (0, 1), and all µ and J, J ′ ∈
B(X), we have

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖

• We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions

• With just the monotonicity assumption (as in
the SSP or other undiscounted problems) we can
still show various forms of the basic results under
appropriate assumptions

RESULTS USING CONTRACTION

• Proposition 1: The mappings Tµ and T are
weighted sup-norm contraction mappings with mod-
ulus α over B(X), and have unique fixed points
in B(X), denoted Jµ and J∗, respectively (cf.
Bellman’s equation).

Proof: From the contraction property of H .

• Proposition 2: For any J ∈ B(X) and µ ∈ M,

lim
k→∞

T k
µJ = Jµ, lim

k→∞
T kJ = J∗

(cf. convergence of value iteration).

Proof: From the contraction property of Tµ and
T .

• Proposition 3: We have TµJ∗ = TJ∗ if and
only if Jµ = J∗ (cf. optimality condition).

Proof: TµJ∗ = TJ∗, then TµJ∗ = J∗, implying
J∗ = Jµ. Conversely, if Jµ = J∗, then TµJ∗ =
TµJµ = Jµ = J∗ = TJ∗.

RESULTS USING MON. AND CONTRACTION

• Optimality of fixed point:

J∗(x) = min
µ∈M

Jµ(x), ∀ x ∈ X

• Furthermore, for every ε > 0, there exists µε ∈
M such that

J∗(x) ≤ Jµε(x) ≤ J∗(x) + ε, ∀ x ∈ X

• Nonstationary policies: Consider the set Π of
all sequences π = {µ0, µ1, . . .} with µk ∈ M for
all k, and define

Jπ(x) = lim inf
k→∞

(Tµ0Tµ1 · · ·TµkJ)(x), ∀ x ∈ X,

with J being any function (the choice of J does
not matter)

• We have

J∗(x) = min
π∈Π

Jπ(x), ∀ x ∈ X

THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk

• Optimistic PI: This is PI, where policy evalu-
ation is carried out by a finite number of VI

− Shorthand definition: For some integers mk

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . .

− If mk ≡ 1 it becomes VI

− If mk = ∞ it becomes PI

− For intermediate values of mk, it is generally
more efficient than either VI or PI

ASYNCHRONOUS ALGORITHMS

• Motivation for asynchronous algorithms

− Faster convergence

− Parallel and distributed computation

− Simulation-based implementations

• General framework: Partition X into disjoint
nonempty subsets X1, . . . , Xm, and use separate
processor & updating J(x) for x ∈ X#

• Let J be partitioned as

J = (J1, . . . , Jm),

where J# is the restriction of J on the set X#.

• Synchronous algorithm:

J t+1
(x) = T (J t

1, . . . , J
t
m)(x), x ∈ X#, & = 1, . . . ,m

• Asynchronous algorithm: For some subsets of
times R#,

J t+1
(x) =

{

T (Jτ"1(t)
1 , . . . , Jτ"m(t)

m)(x) if t ∈ R#,
J t
#(x) if t /∈ R#

where t− τ#j(t) are communication “delays”

ONE-STATE-AT-A-TIME ITERATIONS

• Important special case: Assume n “states”, a
separate processor for each state, and no delays

• Generate a sequence of states {x0, x1, . . .}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

• Asynchronous VI:

J t+1
=

{

T (J t
1, . . . , J

t
n)(&) if & = xt,

J t
if & .= xt,

where T (J t
1, . . . , J

t
n)(&) denotes the &-th compo-

nent of the vector

T (J t
1, . . . , J

t
n) = TJ t,

and for simplicity we write J t
instead of J t

#(&)

• The special case where

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .}

is the Gauss-Seidel method

• We can show that J t → J∗ under the contrac-
tion assumption

ASYNCHRONOUS CONV. THEOREM I

• Assume that for all &, j = 1, . . . ,m, R# is infinite
and limt→∞ τ#j(t) = ∞

• Proposition: Let T have a unique fixed point J∗,
and assume that there is a sequence of nonempty
subsets

{

S(k)
}

⊂ R(X) with S(k + 1) ⊂ S(k) for
all k, and with the following properties:

(1) Synchronous Convergence Condition: Ev-
ery sequence {Jk} with Jk ∈ S(k) for each
k, converges pointwise to J∗. Moreover, we
have

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1,

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k)× · · ·× Sm(k),

where S#(k) is a set of real-valued functions
on X#, & = 1, . . . ,m.

Then for every J ∈ S(0), the sequence {J t} gen-
erated by the asynchronous algorithm converges
pointwise to J∗.

ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:

S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

(0) S2(0)
TJ

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

• Convergence mechanism:

S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

J1 Iterations

Iterations J2 Iteration

Key: “Independent” component-wise improve-
ment. An asynchronous component iteration from
any J in S(k) moves into the corresponding com-
ponent portion of S(k + 1)

