6.231 DYNAMIC PROGRAMMING
LECTURE 4

LECTURE OUTLINE

Review of approximation in value space
Approximate VI and PI

Projected Bellman equations

Matrix form of the projected equation
Simulation-based implementation
LSTD and LSPE methods

Optimistic versions

Multistep projected Bellman equations

Bias-variance tradeofl



DISCOUNTED MDP

e System: Controlled Markov chain with states
i =1,...,n and finite set of controls u € U (%)

e Transition probabilities: p;;(u)

pii(u)

Piill) ‘0‘0’ pjjlu

pjilu)

e Cost of a policy m = {uo, p1,...} starting at
state ¢:

J(i) = lim E{Zakg(ik,uk(ik),ikﬂ) |i—io}

N — o0
k=0

with « € [0, 1)
e Shorthand notation for DP mappings



“SHORTHAND” THEORY - A SUMMARY

e DBellman’s equation: J* =TJ*, J, =1,,J, or

n

J* (1) ZUggI(li)me(U)(g(z u,j) +aJ* (), Vi

e Optimality condition:
p: optimal <==> 1T, J*=TJ*

le.,

c ; J)rad (), Vi
u(i) € arg min Zpg (9(i,u, j)+at*(j)), Vi



THE TWO MAIN ALGORITHMS: VI AND PI

e Value iteration: For any J € R»

J*(i) = lim (TkJ)(7), Vi=1,...,n

k— o0

e Policy iteration: Given u*
— Policy evaluation: Find J ,» by solving

= > i (1) (9( 1" (1), 5) vk (7)), i=1,...

or Jluk B TMszMk:

— Policy improvement: Let p*+1! be such that

k—l—l . . .
/*L 6 argurenl}r(lz) pr 7’ u)])+a‘]uk (]))7 \V/Z

or Tlukz+1 J,u"“ = TJMI{:

e Policy evaluation is equivalent to solving an
n X n linear system of equations

e For large n, exact PI is out of the question
(even though it terminates finitely)



APPROXIMATION IN VALUE SPACE

e Approximate J* or J, from a parametric class
J(i,7), where 7 is the current state and r = (r1,...,7m)
is a vector of “tunable” scalars weights.

e By adjusting » we can change the “shape” of J
so that it is close to the true optimal J*.

e Any r € Rs defines a (suboptimal) one-step
lookahead policy

(i) = arg min Y pij(u)(g(i,u, j)+ad(j,r)), Vi
e We will focus mostly on linear architectures
j(r) — ®r

where ® is an n X s matrix whose columns are
viewed as basis functions

e Think n: HUGE, s: (Relatively) SMALL

e For J(r) = ®r, approximation in value space
means approximation of J* or J,, within the sub-
space

S={dr|r e Rs}



APPROXIMATE VI

e Approximates sequentially Jy(i) = (T%Jo)(4),
k=1,2,..., with Jx(¢,7%)

e The starting function Jy is given (e.g., Jop = 0)

e After alarge enough number N of steps, In (i, 7n)
is used as approximation J(¢,7) to J*(4)

e [Fitted Value Iteration: A sequential “fit” to

produce Jk+1 from Jg, i.e. , Jpr1 & T.J, or (for a
single policy ) Jypq1 ~ T Jk

— For a “small” subset S; of states ¢, compute

— “Fit” the function J~k+1(z’, rr+1) to the “small”
set of values (T'Jx)(¢), ¢ € Sk

— Simulation can be used for “model-free” im-
plementation

e Frror Bound: If the ﬁt~ 1S uniformly accurate
within 6 > 0 (i.e., max; |Jx+1(¢) — TJg(3)| < 9)
then

~ 2000

lim ksggo Z HfaXn(Jk(Z,"“k) — J* (@)) < (1—a)?




AN EXAMPLE OF FAILURE

e (Consider two-state discounted MDP with states
1 and 2, and a single policy.

— Deterministic transitions: 1 -> 2 and 2 -> 2
— Transition costs = 0, so J*(1) = J*(2) = 0.

e (Consider approximate VI scheme that approxi-
mates cost functions in S = {(r,2r) | r € R} with

a weighted least squares fit; here ® = (;)

o Given Ji = (1, 2rk), we find Jy11 = (Tgr1, 2rk11),
where for weights &1,&2 > 0, 711 is obtained as

Th41 = argmin [51 (T—(TJR)(l))2+§2 (QT_(TJR)(Q))Q}

e With straightforward calculation

rp+1 = afrg,  where 8 = 2(§+282)/(§1+4E2) > 1

e So if a > 1/, the sequence {ry} diverges and
so does {Ji }.

e Difficulty is that T is a contraction, but IIT
(= least squares fit composed with T') is not

e Norm mismatch problem



APPROXIMATE PI

Guess Initial Policy

l

Evaluate Approximate Cost

- Approximate Policy
Ju(r) = @r Using Simulation Evaluation

l

«—| Generate “Improved” Policy 1 Policy Improvement

e [Evaluation of typical policy p: Linear cost func-
tion approximation ju(’r) — ®r, where & is full
rank n X s matrix with columns the basis func-
tions, and ith row denoted ¢(i)’.

e Policy “improvement” to generate fi:

pili) = arg min > pis(u) (900, v, j) + ae(j)r)
j=1

e Lirror Bound: If

max | J (i, 7%) — Je (1) <6,  k=0,1,...
The sequence {u*} satisfies

lim sup max(J,x (i) — J*()) < (12_04(;)2

L4
k— o0 v




POLICY EVALUATION

e Let’s focus on policy evaluation: approximate
the cost of the current policy by using a simulation
method.

— Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

— Indirect policy evaluation - solving the pro-
jected equation ®r = IIT,(®r) where II is
projection w/ respect to a suitable weighted
Euclidean norm

J | Ty(®r)
| |
I | Projection
| Projection onsS
onsS I
|
| ®r = MNTy(Pr)
MJy
0

0
S: Subspace spanned by basis functions S: Subspace spanned by basis functions

Direct Mehod: Projection of cost vector Jy Indirect method: Solving a projected
form of Bellman’s equation

e Recall that projection can be implemented by
simulation and least squares



WEIGHTED EUCLIDEAN PROJECTIONS

e (Consider a weighted Euclidean norm

Ml = 4 > G(I0),

where £ is a vector of positive weights &1,...,&,.

e Let II denote the projection operation onto
S={Pr|reRs}
with respect to this norm, i.e., for any J € &,
IIJ = &r+*

where

r* = arg min

J — ®r||?
reRs T”g



PI WITH INDIRECT POLICY EVALUATION

Guess Initial Policy

'

Evaluate Approximate Cost

~ Approximate Policy
Ju(r) = ®r Using Simulation Evaluation

l

«— Generate “Improved” Policy Policy Improvement

e Given the current policy pu:

— We solve the projected Bellman’s equation

¢r =117, (Pr)

— We approximate the solution J,, of Bellman’s
equation

J=T,J

with the projected equation solution .J, ()



KEY QUESTIONS AND RESULTS

e Does the projected equation have a solution?

e Under what conditions is the mapping II7), a
contraction, so II7}, has unique fixed point?

e Assuming II7}, has unique fixed point ®r*, how
close is ®r* to J,7

e Assumption: The Markov chain corresponding
to u has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

£; = lim —Zsz:]Mo:z)

N—=oco N

e Proposition: (Norm Matching Property)

(a) IIT, is contraction of modulus a with re-
spect to the weighted Euclidean norm || - ||¢,
where & = (&1,...,&,) is the steady-state

probability vector.
(b) The unique fixed point ®r* of IIT), satisfies

1
| Ty = @r*le <

= WH‘JM_HJMH’S



PRELIMINARIES: PROJECTION PROPERTIES

e Important property of the projection II on S
with weighted Euclidean norm || - ||¢. For all J €
Rr, J €S, the Pythagorean Theorem holds:

|J = Jlg =17 —ILJ||Z+ |ILT — J|Z

Proof: Geometrically, (J — IIJ) and (IIJ — J)
are orthogonal in the scaled geometry of the norm
| - ||¢, where two vectors z,y € R™ are orthogonal
if Y &axiys = 0. Expand the quadratic in the
RHS below:

|7 = JlIg = I(J —ILT) + (IL] — J)]I2

e The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

ITLT — T ||¢ < || — J]|e, for all J, J € R7.
To see this, note that

|7 = J)||; < 107 = Dl + ||(7 =T =T
= ||J = JIIZ



PROOF OF CONTRACTION PROPERTY

e [emma: If P is the transition matrix of u,

|Pzlle < llzlle, 2 e R

Proof: Let p;; be the components of P. For all
z € 1", we have

n n n n
P22 = "6 [ D bz | <Y & pijz?
i=1 j=1 =1 j=1
_Zzgzpwz _Z§]Z = HZH@

7=1 1=1

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property " | &pij =
¢; of the steady-state probabilities.

e Using the lemma, the nonexpansiveness of II,
and the definition 7),J = g + aPJ, we have

M7, J-TT, J|le < | TpJ=Tullle = al|P(J=J)lle < ol J=J|le

for all J,J € R*. Hence IIT), is a contraction of
modulus a.



PROOF OF ERROR BOUND

e Let ®r* be the fixed point of II7". We have

HJ,LL — (I)T*H&' < HJM - HJMHS-

1
V1 — a2
Proof: We have

[ = @2 = || Ty — T2 + || 11T, — @+

Ils =

2
3

Jp — I |I2 + [|[OTJ, — IIT(@r) |
Ty — T, 4 a2, — @72,

VAN

where

— The first equality uses the Pythagorean The-
orem

— The second equality holds because J,, is the
fixed point of 1" and ®r* is the fixed point
of IIT

— The inequality uses the contraction property
of IIT".

Q.E.D.



MATRIX FORM OF PROJECTED EQUATION

e Its solution is the vector J = ®r*, where r*
solves the problem

}2
¢

br — (g + aPPr*)

min
rexRs

e Setting to 0 the gradient with respect to r of
this quadratic, we obtain

O'Z(Pr* — (9 + aPPr*)) =0,
where Z is the diagonal matrix with the steady-

state probabilities &1, ..., &, along the diagonal.

e This is just the orthogonality condition: The
error &r* — (g + aP®r*) is “orthogonal” to the
subspace spanned by the columns of P.

e Lquivalently,
Cr* =d,

where

C=®=(I—aP)®,  d=d=yg.



PROJECTED EQUATION: SOLUTION METHODS

e Matrix inversion: r* = C'—1d
e Projected Value Iteration (PVI) method:
Ori1 = T (Pry) =1(g + aPPry)

Converges to r* because II1' is a contraction.

Value lterate
T(Prk) =g + aPdrk

I .
Projection
onS

I
®ri+1

dry
0
S: Subspace spanned by basis functions

e PVI can be written as:

Tk41 = arg min

2
min ¢r — (g + aPPry) H£

By setting to 0 the gradient with respect to r,
O'E(Pr41 — (9 + aPPrg)) =0,

which yields
Tk+1 = Tk — (CI)’E(I))_l(CTk — d)



SIMULATION-BASED IMPLEMENTATIONS

e Key idea: Calculate simulation-based approxi-
mations based on k samples

CR%C, dk%d

e Matrix inversion r* = (C—1d is approximated
by
. = Ctdy,

This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

e PVI method rg41 =1y — (P'Z2P)~1(Crp —d) is
approximated by

rer1 =Tk — Gr(Crry — di)
where
Gk: > ((I)/E(I))_l

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

o Key fact: C%, di, and G can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).



SIMULATION MECHANICS

e We generate an infinitely long trajectory (7o, %1, . . .
of the Markov chain, so states ¢ and transitions
(4, 7) appear with long-term frequencies &; and p;;.

e After generating the transition (i:,i¢+1), We
compute the row ¢(i¢)’ of ® and the cost com-

ponent g(i¢, i¢41).

e We form

Cro = =7 > 0(i) (¢(i)—ad(ir1)) ~ ¥'E(I-aP)®

dy = k+ - qu i1)g(it,itr1) =~ B'Eg

Also in the case of LSPE

k
1
= — ' ) ~ D=
G P tE:O d(it)p(ir) =~ P'=P

e Convergence based on law of large numbers.

o (%, di, and G can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)



OPTIMISTIC VERSIONS

e Instead of calculating nearly exact approxima-
tions C}. =~ C' and dp ~ d, we do a less accurate
approximation, based on few simulation samples

e Evaluate (coarsely) current policy u, then do a
policy improvement

e This often leads to faster computation (as op-
timistic methods often do)

e Very complex behavior (see the subsequent dis-
cussion on oscillations)

e The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling)

e LSPE tends to cope better because of its itera-
tive nature

e A stepsize v € (0,1] in LSPE may be useful to
damp the effect of simulation noise

re+1 = 1k — YGr(Crry — di)



MULTISTEP METHODS

e Introduce a multistep version of Bellman’s equa-
tion J = TN J, where for A € [0, 1),
T = (1—\) Z NTEA+1
(=0
Geometrically weighted sum of powers of T

e Note that T is a contraction with modulus
o, with respect to the weighted Euclidean norm
|||, where & is the steady-state probability vector
of the Markov chain.

e Hence T is a contraction with modulus

o

ay=(1-2X) Za“l)\f =
=0

a(l — M)
1 —ai

Note that oy, —0as A — 1

e Tt and T have the same fixed point J, and

1
[T = @r3lle < > 1 — ILJ e

where ®r} is the fixed point of IITM).
e The fixed point ®r} depends on A.



BIAS-VARIANCE TRADEOFF

Solution of projected equation
Or = UTXN) (Pr)

Simulation error

_—'_-"';--r’ o
A=1,~— == Bias
T —— ‘\Simulation error

Subspace S = {®r | r € Rs}

e Error bound ||J, —®7 |l <

\/1%70& HJM_HJMHS
e As A 7T 1, we have a | 0, so error bound (and
the quality of approximation) improves as \ 1 1.
In fact

lim ®r% = I1J
lim &3 = ILJ,

e DBut the simulation noise in approximating
T = (1—\) Z N1
(=0

lncreases.

e Choice of A is usually based on trial and error



MULTISTEP PROJECTED EQ. METHODS

e The projected Bellman equation is
Or = IITN) (dr)

e In matrix form: CMNyr = dN) | where
CH =@ E(I —aPM)®,  dN =d=gW),
with

P =(1-)\) Z al NP1 g(N) = Z at\EPtg
£=0 £=0
e The LSTD()) method is

Ay —1 (A
(),
where C,S‘) and d,g‘) are simulation-based approx-
imations of C(A) and d(\V).

e The LSPE()\) method is
Tk+1 = Tk — VG (C]iA)Tk — d;(j))

where G, is a simulation-based approx. to (®/=d) 1

e TD()): An important simpler/slower iteration
[similar to LSPE()\) with Gy = I - see the text].



MORE ON MULTISTEP METHODS

e The simulation process to obtain C,S‘) and d,(:‘)

is similar to the case A = 0 (single simulation tra-

jectory ig, 1, ... more complex formulas)
k
. /
CyY = o(ir) Z =N (i)~ (im+1))
k + 1 po
o k k
d\ m—t \m—t .
k ]C + 1 ;Qﬁ Zt n;& 9in,

e In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

e Many different versions (see the text).

e Note the )\-tradeoffs:

— As A1 1, Cl(c/\) and d,(;\) contain more “sim-
ulation noise”, so more samples are needed
for a close approximation of 7y (the solution
of the projected equation)

— The error bound ||.J,—®7,||¢ becomes smaller

— As A 1 1, IITN) becomes a contraction for
arbitrary projection norm



