(Stochastic) Dynamic Programming and Delaunay (dual) quantization

GILLES PAGÈS

joint work with V. BALLY, 03, B. WILBERTZ '11

LPMA-Université Pierre et Marie Curie

Workshop "Stochastic Optimization and dynamic programming" 28 June 2012 \triangleright Dynamics: Let $(X_t)_{t \in [0,T]}$ be a quasi-left continuous càdlàg dynamics, say

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t + \kappa(t, X_t)d\zeta_t, \ X_0 = x \in \mathbb{R}^d$$

where are defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$,

- $W = (W_t)_{t \in [0,T]}$ is q-dimensional Brownian motion,
- $\zeta = (\zeta_t)_{t \in [0,T]}$ is a martingale Lévy process with $\zeta^c \equiv 0$ and Lévy measure ν on $\mathbb{R}^d \setminus \{0\}$ satisfying $\int_{|z| \ge 1} |z|^p \nu(dz) < +\infty, \ p \in (1, +\infty).$
- The functions b, σ, κ satisfy

$$b: [0,T] \times \mathbb{R}^d \to \mathbb{R}^d, \ \sigma, \kappa: [0,T] \times \mathbb{R}^d \to \mathbb{M}(d,q,\mathbb{R})$$
 are continuous,

Lipschitz in x uniformly in $t \in [0, T]$.

 \triangleright Obstacle/reward process: $(h(t, X_t)_{t \in [0,T]})$ where $h : [0,T] \times \mathbb{R}^d \to \mathbb{R}^d$ with polynomial growth

$$|h(t, X_t)| \le C(1+|x|^r), \quad x \in \mathbb{R}^d, r \in (0, p).$$

 \triangleright Optimal stopping problem... We consider the Snell enveloppe

$$Y_t := \mathbb{P}\text{-}\operatorname{supess}\left\{\mathbb{E}\left(h(\tau, X_{\tau}) \,|\, \mathcal{F}_t^{W, \zeta}\right), \, \tau \in \mathcal{T}_{[t, T]}^{\mathcal{F}^{W, \zeta}}\right\} \ge h(t, X_t) \tag{1}$$

where $\mathcal{T}_{[t,T]}^{\mathcal{F}^{W,\zeta}} = \{\tau : \Omega \to [t,T], \ \tau \ \mathcal{F}^{W,\zeta}\text{-stopping time}\}.$

The Snell enveloppe represents the honest optimal mean gain when starting to play at time t if the reward is $h(s, X_s)$ when leaving the game at time $s \in [t, T]$. Under the above assumption

 $\tau_t^* = \inf \{s \in [t, T], Y_s = h(s, X_s)\}$ is an optimal stopping time

i.e.

$$Y_{\tau_t^*} = \mathbb{E}\Big(h(\tau_t^*, X_{\tau_t^*}) \,|\, \mathcal{F}_t^{W, \zeta}\Big).$$

Assume $\kappa \equiv 0$ (No jump component).

Theorem Under appropriate assumptions and in an appropriate sense

 $Y_t = u(t, X_t)$

where u satisfies

$$\max\left(\frac{\partial u}{\partial t} + Lu, h - u\right) = 0, \quad u(T, x) = h(T, x)$$

Let

$$t_k^n = k \frac{T}{n}, \ k = 0, \dots, n.$$

 \triangleright $(X_{t_k^n})_{0 \le k \le n}$ is an $(\mathcal{F}_{t_k^n})_{0 \le k \le n}$ -Markov chain with transition

$$P_k(x, dy) = \mathbb{P}(X_{t_{k+1}^n} \in dy \mid X_{t_k^n} = x).$$

 \triangleright The $(\mathbb{P}, (\mathcal{F}_{t_k^n})_{0 \le k \le n})$ -Snell envelope (\equiv Bermuda options)

$$\widetilde{Y}_{t_k^n} := \mathbb{P}\text{-}\operatorname{supess}\left\{\mathbb{E}\left(h(\tau, X_\tau) \,|\, \mathcal{F}_{t_k^n}^{W, \zeta}\right), \ \tau \in \mathcal{T}_{t_k^n, T}^n\right\} \ge h(t_k^n, X_{t_k^n}) \tag{2}$$

where $\mathcal{T}^n_{t^n_k,T} = \{\tau : \Omega \to \{t^n_k, \dots, t^n_n = T\}, \ \tau \ (\mathcal{F}^{W,\zeta}_{t^n_\ell})_{0 \le \ell \le n}$ -stopping time}.

$$\widetilde{Y}_{t_k^n} = \max\left(h(t_k^n, X_{t_k^n}), \mathbb{E}\left(\widetilde{Y}_{t_{k+1}^n} \mid \textit{F}_{t_k^n} X_{t_k^n}\right)\right), \quad \widetilde{Y}_{\scriptscriptstyle T} = h(T, X_{\scriptscriptstyle T}),$$

so that $\widetilde{Y}_{t_k^n} = \widetilde{u}_k(X_{t_k^n}), \ k = 0, \dots, n$ satisfying

$$\widetilde{u}_k(x) = \max\left(h(t_k^n, x), P_k(u_{k+1})(x)\right), \quad \widetilde{u}_n(x) = h(T, x).$$

$$\widetilde{Y}_{t_k^n} = \max\left(h(t_k^n, X_{t_k^n}), \mathbb{E}\left(\widetilde{Y}_{t_{k+1}^n} \mid \textit{F}_{t_k^n} X_{t_k^n}\right)\right), \quad \widetilde{Y}_{\scriptscriptstyle T} = h(T, X_{\scriptscriptstyle T}),$$

so that $\widetilde{Y}_{t_k^n} = \widetilde{u}_k(X_{t_k^n}), \ k = 0, \dots, n$ satisfying

$$\widetilde{u}_k(x) = \max\left(h(t_k^n, x), P_k(u_{k+1})(x)\right), \quad \widetilde{u}_n(x) = h(T, x).$$

▷ THEOREM (Bally-P., SPA 2003) (a) If h is Lipschitz in x, uniformly in $t \in [0, T]$,

$$\forall p \in (0, r), \quad \left\| \max_{0 \le k \le n} |Y_{t_k^n} - \widetilde{Y}_{t_k^n}| \right\|_p \le C_{b, \sigma, \kappa, h, T} \sqrt{\frac{T}{n}}$$

(b) If furthermore h is semi-convex *i.e.* there exists $\delta_h[0,T] \times \mathbb{R}^d \to \mathbb{R}^d$ bounded s.t.

$$\exists \rho > 0, \ \forall x, y \in \mathbb{R}^d, \ h(t, y) - h(t, x) \ge (\delta_h(t, x)|y - x) - \rho|y - x|^2$$

then

$$\left\|\max_{0\leq k\leq n}|Y_{t_k^n}-\widetilde{Y}_{t_k^n}|\right\|_p\leq C_{b,\sigma,\kappa,h,T}\frac{T}{n}.$$

• [hedge? \dots]

- $\bullet \ [\mathrm{hedge}? \ \ldots]$
- Simulation of the Markov chain $(X_{t_k^n})_{0 \le k \le n}$ especially when d or $q \ge 2$

- [hedge? \dots]
- Simulation of the Markov chain $(X_{t_k^n})_{0 \le k \le n}$ especially when d or $q \ge 2$
- Computation of conditional expectations...

The Euler scheme of (SDE) is defined by

$$\bar{X}_{t_{k+1}^n}^n = \bar{X}_{t_k^n}^n + \frac{T}{n} b(t_k^n, \bar{X}_{t_k^n}^n) + \sigma(t_k^n, \bar{X}_{t_k^n}^n) (W_{t_{k+1}^n} - W_{t_k^n}) + \kappa(t_k^n, \bar{X}_{t_k^n}^n) (\zeta_{t_{k+1}^n} - \zeta_{t_k^n})$$

• If $\kappa \equiv 0$, it is always a simulatable Markov chain with transition

$$\bar{P}^{(n)}(x, dy) = \mathbb{P}(\bar{X}^{n}_{t^{n}_{k+1}} \in dy \,|\, \bar{X}^{n}_{t^{n}_{k}} = x)$$

and

$$\left\|\max_{k=0,\dots,n} |X_{t_k^n} - \bar{X}_{t_k^n}^n\right\|_p \le C_{b,\sigma,T} \sqrt{\frac{T}{n}}$$

$$\bar{Y}_{t_k^n} = \max\left(h(t_k^n, \bar{X}_{t_k^n}^n), \mathbb{E}\left(\bar{Y}_{t_{k+1}^n} \mid \mathcal{F}_{t_k^n} \bar{X}_{t_k^n}^n\right)\right), \quad Y_T = h(T, \bar{X}_T^n),$$

so that $\bar{Y}_{t_k^n} = \bar{u}_k(\bar{X}_{t_k^n}^n), \ k = 0, \dots, n$ satisfying

$$\bar{u}_k(x) = \max\left(h(t_k^n, x), \bar{P}^{(n)}(u_{k+1})(x)\right), \quad \bar{u}_n(x) = h(T, x).$$

$$\bar{Y}_{t_k^n} = \max\left(h(t_k^n, \bar{X}_{t_k^n}^n), \mathbb{E}\left(\bar{Y}_{t_{k+1}^n} \mid \mathcal{F}_{t_k^n} \bar{X}_{t_k^n}^n\right)\right), \quad Y_T = h(T, \bar{X}_T^n),$$

so that $\bar{Y}_{t_k^n} = \bar{u}_k(\bar{X}_{t_k^n}^n), \ k = 0, \dots, n$ satisfying

$$\bar{u}_k(x) = \max\left(h(t_k^n, x), \bar{P}^{(n)}(u_{k+1})(x)\right), \quad \bar{u}_n(x) = h(T, x).$$

... and corresponds to an a "Bermuda like" optimal stopping problem (with \bar{X} instead of X).

$$\bar{Y}_{t_k^n} = \max\left(h(t_k^n, \bar{X}_{t_k^n}^n), \mathbb{E}\big(\bar{Y}_{t_{k+1}^n} \,|\, \textit{F}_{\ell_k^n} \bar{X}_{t_k^n}^n\big)\right), \quad Y_{\scriptscriptstyle T} = h(T, \bar{X}_{\scriptscriptstyle T}^n),$$

so that $\bar{Y}_{t_k^n} = \bar{u}_k(\bar{X}_{t_k^n}^n), \ k = 0, \dots, n$ satisfying

$$\bar{u}_k(x) = \max\left(h(t_k^n, x), \bar{P}^{(n)}(u_{k+1})(x)\right), \quad \bar{u}_n(x) = h(T, x).$$

... and corresponds to an a "Bermuda like" optimal stopping problem (with \bar{X} instead of X).

▷ THEOREM (Bally-P., SPA 2003) If h is Lipschitz in x, uniformly in $t \in [0, T]$,

$$\forall p \in (0, r), \quad \left\| \max_{0 \le k \le n} |Y_{t_k^n} - \bar{Y}_{t_k^n}| \right\|_p \le C_{b, \sigma, \kappa, h, T} \sqrt{\frac{T}{n}}$$

Remark. No loss w.r.t. the Euler scheme itself.

• Otherwise it depends on the simulability of ζ (see Protter-talay, Jacod, Jacod-Protter, etc for convergence rate(s) of the Euler schmes existence of approximate schemes.

• In case of non simulability: design of approximate schemes: Roszincky's "Wienerisation of small jumps", (see Roszincky, Cohen, Rubenthaler, Panloup, etc)...

Ouantization for non linear problems: the origins Discrete time "Bermuda" Markov framework Abstract "Bermuda" Markov optimal stopping framework

 \triangleright Let $(X_k)_{0 \leq k \leq n}$ be an \mathbb{R}^d -valued homogeneous Feller Markov chain defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with transition

$$P(x, dy) = \mathbb{P}(X_{k+1} \in dy \,|\, X_k = x), \ k = 0, \dots, n-1.$$

Filtration : $\mathcal{F}_k^X = \sigma(X_0, \dots, X_k), \ k = 0, \dots, n.$

MArkov property :

$$\mathbb{E}(f(X_{k+1}) | \mathcal{F}X_k) = \mathbb{E}(f(X_{k+1}) | X_k) = \int_{\mathbb{R}^d} f(y) P(x, dy) := Pf(x).$$

Ouantization for non linear problems: the origins Discrete time "Bermuda" Markov framework Abstract "Bermuda" Markov optimal stopping framework

 \triangleright Let $(X_k)_{0 \leq k \leq n}$ be an \mathbb{R}^d -valued homogeneous Feller Markov chain defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ with transition

$$P(x, dy) = \mathbb{P}(X_{k+1} \in dy \mid X_k = x), \ k = 0, \dots, n-1.$$

Filtration : $\mathcal{F}_k^X = \sigma(X_0, \dots, X_k), \ k = 0, \dots, n.$

MArkov property :

$$\mathbb{E}(f(X_{k+1}) \mid \mathcal{F}X_k) = \mathbb{E}(f(X_{k+1}) \mid X_k) = \int_{\mathbb{R}^d} f(y) P(x, dy) := Pf(x).$$

▷ PROBLEM TO BE SOLVED: Compute the premium of a Bermuda option with an *integrable* payoff $(h_k(X_k))_{0 \le k \le n}$ *i.e.*

the right to receive $h_k(X_k)$ once between k = 0 and k = n.

Stopping time \equiv "honnest stopping rule".

$$\tau: \Omega \to \{0, \dots, n\}, \qquad \{\tau = k\} \in \mathcal{F}_k^X, \ k = 0, \dots, n.$$

$$V_0 = v_0(X_0) = \operatorname{esssup}\left\{ \mathbb{E}\left(h_\tau(X_\tau) \,|\, \mathcal{F}_0^X\right), \, \tau \text{ stopping time} \right\}$$

 \ldots and more generally, its premium at time k,

$$V_k = v_k(X_k) = \operatorname{esssup}_{\tau \in \mathcal{T}_{k,n}} \mathbb{E} \Big(h_\tau(X_\tau) \,|\, \mathcal{F}_k^X \Big), \ k = 0, \dots, n.$$

where

$$\mathcal{T}_{k,n} := \left\{ \tau : \Omega \to \{k, \dots, n\} \mathcal{F}^X \text{-stopping time} \right\}.$$

 $(V_k)_{0 \le k \le n}$ is called the *Snell envelope* of $(h_k(X_k))_{0 \le k \le n}$.

 \triangleright The $(\mathbb{P}, \mathcal{F}^X)$ -Snell envelope $(V_k)_{0 \leq k \leq n}$ of the so-called obstacle process $(h(X_k))_{0 \leq k \leq n}$ satisfies the BDPP

$$V_n = h_n(X_n), \quad V_k = \max\left(h_k(X_k), \mathbb{E}\left(V_{k+1} \mid \mathcal{F}_k^X X_k\right)\right)$$

or equivalently (in distribution) $V_k = v_k(X_k)$ where

$$v_n = h_n$$
 $v_k = \max(h_k, Pv_{k+1}), \ k = 0, \dots, n-1.$

 \rhd Alternative approach (cf. Longstaff-Schwarz, 1993) : the BDPP approach for optimal stopping times

$$\tau_k = \min\{\ell \ge k, \ V_k = h_k(X_k)\}, \ k = 0, \dots, n$$

which satisfy

$$\tau_k = k \mathbf{1}_{\{h_k(X_k) > \mathbb{E}(V_{k+1} \mid X_k)\}} + \tau_{k+1} \mathbf{1}_{\{h_k(X_k) \le \mathbb{E}(V_{k+1} \mid X_k)\}}.$$

and $V_k = \mathbb{E}(h_{\tau_k}(X_{\tau_k}) | X_k).$

▷ In both cases the point is to compute/estimate

$$\mathbb{E}(V_{k+1} | X_k) = \mathbb{E}(v_{k+1}(X_{k+1}) | X_k) = \mathbb{E}h_{\tau_{k+1}}(X_{\tau_{k+1}}) | X_k), \ k = 0, \dots, n-1$$

Two approaches have been developed

- Randomization of the BDPP (ex: regression methods, Monte Carlo-Malliavin)
- Structural approximation of the Markov dynamics (ex: tree methods)

Ouantization for non linear problems: the origins The paradigm of Ouantized BDPP Markov Dynamics approximation: the paradigm of Quantized BDPP

 \triangleright Two-folded natural idea

▷ Two-folded natural idea

• Step 1 (Markov dynamics Approximation): Approximation of X_k

$$X_k: (\Omega, \mathcal{A}, \mathbb{P}) \longrightarrow \mathbb{R}^d \rightsquigarrow \widehat{X}_k: (\Omega, \mathcal{A}, \mathbb{P}) \longrightarrow \Gamma_k := \left\{ x_1^k, \dots, x_{N_k}^k \right\}$$

where

$$\widehat{X}_k = \pi_k(X_k, U_k), \quad k = 0, \dots, n,$$

where $(U_k)_{0 \le k \le n}$ is an i.i.d. sequence of $U([0, 1]^d)$ -distributed exogeneous (= simulated) r.v.'s.

Note that $(\widehat{X}_k)_{0 \le k \le n}$ is usually NOT a Markov chain.

▷ Two-folded natural idea

• Step 1 (Markov dynamics Approximation): Approximation of X_k

$$X_k: (\Omega, \mathcal{A}, \mathbb{P}) \longrightarrow \mathbb{R}^d \rightsquigarrow \widehat{X}_k: (\Omega, \mathcal{A}, \mathbb{P}) \longrightarrow \Gamma_k := \left\{ x_1^k, \dots, x_{N_k}^k \right\}$$

where

$$\widehat{X}_k = \pi_k(X_k, U_k), \quad k = 0, \dots, n,$$

where $(U_k)_{0 \le k \le n}$ is an i.i.d. sequence of $U([0, 1]^d)$ -distributed exogeneous (= simulated) r.v.'s.

Note that $(\widehat{X}_k)_{0 \le k \le n}$ is usually NOT a Markov chain.

• Step 2: Force the Markov property in the *BDPP*:

$$\widehat{V}_n = h(\widehat{X}_n), \quad \widehat{V}_k = \max\left(h_k(\widehat{X}_k), \mathbb{E}(\widehat{V}_{k+1} | \widehat{X}_k)\right)$$

Resulting tree algorithm

▷ The resulting algorithm:

$$\widehat{V}_k = \widehat{v}_k(\widehat{X}_k), \ k = 0, \dots, n$$

with

$$\forall i \in \{1, \dots, N_k\}, \quad \widehat{v}_k(x_i^k) = \max\left(h_k(x_i^k), \widehat{P}(\widehat{v}_{k+1})(x_i^k)\right)$$

where \widehat{P} displays on Borel test functions

$$\widehat{P}(f)(x_i^k) = \sum_{j=1}^{N_{k+1}} \widehat{\pi}_{ij}^{k,k+1} f(x_j^{k+1})$$

$$\widehat{\pi}_{ij}^{k,k+1} = \mathbb{P}(\widehat{X}_{k+1} = x_j^{k+1} | \widehat{X}_k = x_i^k).$$

 \triangleright Markov Dynamics approximation: The matrices $\hat{\pi}^{k,k+1}$, k = 0, ..., n need to be computed by a massive Monte Carlo simulation.

Quantization tree (d = 1, 3 periods)

Figure: A typical 1-dimensional quantization tree

- A quantization tree is not re-combining.
- But its size is designed a priori (and subject to possible optimization).

Conditional expectation approximation by quantization

 $\triangleright {\rm The}$ natural idea is to use the approximation

$$\mathbb{E}(f(X_2) | X_1) \approx \mathbb{E}(\widehat{f}(\widehat{X}_2) | \widehat{X}_1).$$

since

$$\mathbb{E}(\hat{f}(\hat{X}_2) \,|\, \hat{X}_1 = x_i^1) = \sum_{j=1}^{N_2} \pi_{ij} \hat{f}(x_j^2)$$

is computable.

 \triangleright Can we control in L^p the induces error based on the spatial discretization L^p error ?

$$\left|\mathbb{E}\left(f(X_2)|X_1\right) - \mathbb{E}\left(\widehat{f}(\widehat{X}_2)|\widehat{X}_1\right)\right\|_p \leq \Phi\left(\left\|X_1 - \widehat{X}_1\right\|_p, \left\|f(X_2) - \widehat{f}(\widehat{X}_2)\right\|_p\right) ????$$

The key is the following one-step estimate

Proposition (Key lemma)

Let $p \in [1, +\infty)$. Assume that $||X_1||_p + ||X_2||_p < +\infty$. Assume $P(x, dy) = P_1(x, dy)$ uniformly propagates Lipschitz functions i.e., for every Lipschitz continuous $f : \mathbb{R}^d \to \mathbb{R}$,

 $[Pf]_{\text{Lip}} \leq [P]_{\text{Lip}}[f]_{\text{Lip}}.$

(a) If
$$p = 2$$
, then

$$\begin{aligned} \left\| \mathbb{E} \big(f(X_2) | X_1 \big) - \mathbb{E} \big(\hat{f}(\hat{X}_2) | \hat{X}_1 \big) \right\|_2 \leq \left([f]_{\text{Lip}}^2 [P]_{\text{Lip}}^2 \| X_1 - \hat{X}_1 \|_2^2 + \| f(X_2) - \hat{f}(\hat{X}_2) \|_2^2 \right)^{\frac{1}{2}} \end{aligned}$$
(b) If $p \neq 2$

$$\begin{aligned} \left\| \mathbb{E} \big(f(X_2) | X_1 \big) - \mathbb{E} \big(\hat{f}(\hat{X}_2) | \hat{X}_1 \big) \right\|_p \leq [f]_{\text{Lip}} [P]_{\text{Lip}} \| X_1 - \hat{X}_1 \|_p + \| f(X_2) - \hat{f}(\hat{X}_2) \|_p \end{aligned}$$

Proof of (a). Keep in mind $\widehat{X}_1 = \pi_1(X_1, U_1)$. For notational convenience we write $\pi_u(x)$ for $\pi_1(x, u)$.

Proof of (a). Keep in mind $\hat{X}_1 = \pi_1(X_1, U_1)$. For notational convenience we write $\pi_u(x)$ for $\pi_1(x, u)$.

STEP 1 Using that U_1 is independent of (X_1, \hat{X}_2)

$$\mathbb{E}(f(\widehat{X}_2)|\widehat{X}_1) = \int_{\mathbb{R}^{d_0}} \mathbb{E}(f(\widehat{X}_2)|\pi_u(X_1))\mathbb{P}_{U_1}(du)$$

so that

$$\begin{aligned} \left\| \mathbb{E} \big(f(X_2) | X_1 \big) - \mathbb{E} \big(f(\widehat{X}_2) | \widehat{X}_1 \big) \right\|_2^2 &= \mathbb{E} \left(\int_{\mathbb{R}^{d_0}} \mathbb{E} \big(f(X_2) | X_1 \big) - \mathbb{E} \big(f(\widehat{X}_2) | \pi_u(X_1) \big) \mathbb{P}_{U_1}(du) \right)^2 \\ &\leq \int_{\mathbb{R}^{d_0}} \mathbb{E} \big(\mathbb{E} \big(f(X_2) | X_1 \big) - \mathbb{E} \big(\widehat{f}(\widehat{X}_2) | \pi_u(X_1) \big) \big)^2 \mathbb{P}_{U_1}(du). \end{aligned}$$

by Jensen's Inequality.

Step 2

$$\mathbb{E}(f(X_2)|X_1) - \mathbb{E}(f(\widehat{X}_2)|\pi_u(X_1)) = \left[\mathbb{E}(f(X_2)|X_1) - \mathbb{E}(\mathbb{E}(f(X_2)|X_1)|\pi_u(X_1))\right] \\ + \left[\mathbb{E}(f(X_2)|\pi_u(X_1)) - \mathbb{E}(f(\widehat{X}_2)|\pi_u(X_1))\right]$$

where we first used that $\sigma(\pi_u(X_1)) \subset \sigma(X_1)$. The orthogonality follow from the very definition of conditional expectation $\mathbb{E}(. |\sigma(\pi_u(X_1)))$.

Pythagorus Theorem implies

$$\begin{aligned} \left\| \mathbb{E}(f(X_{2})|X_{1}) - \mathbb{E}(f(\widehat{X}_{2})|\pi_{u}(X_{1})) \right\|_{2}^{2} &= \left\| \mathbb{E}(f(X_{2})|X_{1}) - \mathbb{E}(f(X_{2})|\pi_{u}(X_{1})) \right\|_{2}^{2} \\ &+ \left\| \mathbb{E}(f(X_{2}) - f(\widehat{X}_{2})|\pi_{u}(X_{1})) \right\|_{2}^{2} \\ &\leq \left\| \mathbb{E}(f(X_{2})|X_{1}) - \mathbb{E}(f(X_{2})|\pi_{u}(X_{1})) \right\|_{2}^{2} \\ &+ \left\| f(X_{2}) - \hat{f}(\widehat{X}_{2}) \right\|_{2}^{2} \end{aligned}$$

by the contraction property. Now, using again that $\sigma(\pi_u(X_1)) \subset \sigma(X_1)$, we get

$$\mathbb{E}(f(X_2)|X_1) - \mathbb{E}(f(X_2)|\pi_u(X_1)) = \mathbb{E}(f(X_2)|X_1) - \mathbb{E}(\mathbb{E}(f(X_2)|X_1)|\pi_u(X_1))$$
$$= Pf(X_1) - \mathbb{E}(Pf(X_1)|\pi_u(X_1))$$

so that ...

$$\begin{aligned} \left\| \mathbb{E} (f(X_2)|X_1) - \mathbb{E} (f(X_2)|\pi_u(X_1)) \right\|_2^2 &= \|Pf(X_1) - \mathbb{E} (Pf(X_1)|\pi_u(X_1))\|_2^2 \\ &\leq \|Pf(X_1) - Pf(\pi_u(X_1))\|_2^2 \\ &\leq [Pf]_{\text{Lip}}^2 \|X_1 - \pi_u(X_1)\|_2^2. \end{aligned}$$

Hence

$$\mathbb{E}\Big(\mathbb{E}\big(f(X_2)|X_1\big) - \mathbb{E}\big(f(\widehat{X}_2)|\pi_u(X_1)\big)\Big)^2 \le [f]_{\text{Lip}}\Big(\|X_2 - \widehat{X}_2\|_2^2 + [P]_{\text{Lip}}\|X_1 - \pi_u(X_1)\|_2^2\Big)$$

Integrating with respect to $\mathbb{P}_{U_1}(du)$ (*i.e.* the exogenous innovation) yields

$$\left\|\mathbb{E}(f(X_2)|X_1) - \mathbb{E}(\hat{f}(\hat{X}_2)|\hat{X}_1)\right\|_2^2 \le \left(\|f(X_2) - \hat{f}(\hat{X}_2)\|_2^2 + [f]_{\text{Lip}}[P]_{\text{Lip}} \|X_1 - \pi_u(X_1)\|_2^2\right)^2$$

since, by the chain rule for conditional expectation,

$$||X_1 - \widehat{X}_1||_2^2 = \int_{\mathbb{R}^{d_0}} ||X_1 - \pi_u(X_1)||_2^2 \mathbb{P}_{U_1}(du).$$

A priori error bounds

Then we have the following general result about the rate of approximation of the Snell envelope $(V_k)_{0 \le k \le n}$ by its "quantized" counterpart $(\hat{V}_k)_{0 \le k \le n}$.

Theorem (Bally-P.-Printems '01, P.-Wilbertz '10)

Let $p \in [1, +\infty)$. Assume that all the functions h_k , k = 0, ..., n, are Lipschitz continuous. and that the $P_k(x, dy)$ uniformly propagate Lipschitz functions i.e.

$$[P]_{\text{Lip}} := \max_{0 \le k \le n-1} [P_k]_{\text{Lip}} < +\infty \text{ and } \max_{0 \le k \le n} \left(\|X_k\|_p + \|\widehat{X}_k\|_p \right) < +\infty.$$

(a) If p = 2, then, for every $k \in \{0, \ldots, n\}$,

$$\|V_k - \widehat{V}_k\|_2 \le \sqrt{2} \left(\sum_{\ell=k}^n \left(C_{n,\ell}([P]_{\text{Lip}}, [h_\ell]_{\text{Lip}}) \right)^2 \|X_\ell - \widehat{X}_\ell\|_2^2 \right)^{\frac{1}{2}}$$

(b) If $p \neq 2$, then for every $k \in \{0, \ldots, n\}$,

$$\|V_k - \widehat{V}_k\|_p \le 2\sum_{\ell=k}^n C_{n,\ell}([P]_{\mathrm{Lip}}, [h_\ell]_{\mathrm{Lip}})\|X_\ell - \widehat{X}_\ell\|_p$$

where

Proof (not so sketchy)

Proof (not so sketchy)

Proof. Step 1. The functions v_k are Lipschitz.

$$V_k = v_k(X_k), \quad k = 0, \dots, n,$$

where the functions v_k are Lipschitz continuous satisfying

$$v_n = h_n$$
 and $v_k = \max(h_k, Pv_{k+1}), \ k = 0, \dots, n-1.$

In particular, for every k = 0, ..., n (with the convention $[v_{n+1}]_{\text{Lip}} = 0$),

$$[v_k]_{\text{Lip}} \le \max\left([h_k]_{\text{Lip}}, [P]_{\text{Lip}}[v_{k+1}]_{\text{Lip}}\right)$$

since $|\sup_{i \in I} a_i - \sup_{i \in I} b_i| \le \sup_{i \in I} |a_i - b_i|$. Standard induction yields

$$[v_k]_{\operatorname{Lip}} \le \max_{k \le \ell \le n} \left([P]_{\operatorname{Lip}}^{\ell-k} [h_\ell]_{\operatorname{Lip}} \right), \ k = 0, \dots, n.$$

Proof (not so sketchy)

Proof. Step 1. The functions v_k are Lipschitz.

$$V_k = v_k(X_k), \quad k = 0, \dots, n,$$

where the functions v_k are Lipschitz continuous satisfying

$$v_n = h_n$$
 and $v_k = \max(h_k, Pv_{k+1}), \ k = 0, \dots, n-1.$

In particular, for every k = 0, ..., n (with the convention $[v_{n+1}]_{\text{Lip}} = 0$),

$$[v_k]_{\text{Lip}} \le \max\left([h_k]_{\text{Lip}}, [P]_{\text{Lip}}[v_{k+1}]_{\text{Lip}}\right)$$

since $|\sup_{i \in I} a_i - \sup_{i \in I} b_i| \le \sup_{i \in I} |a_i - b_i|$. Standard induction yields

$$[v_k]_{\mathrm{Lip}} \le \max_{k \le \ell \le n} \left([P]_{\mathrm{Lip}}^{\ell-k}[h_\ell]_{\mathrm{Lip}} \right), \ k = 0, \dots, n.$$

Step 2.

$$\begin{aligned} V_{k} - \widehat{V}_{k}|^{2} &\leq \max\left(|h_{k}(X_{k}) - h_{k}(\widehat{X}_{k})|^{2}, |\mathbb{E}(V_{k+1}|X_{k}) - \mathbb{E}(\widehat{V}_{k+1}|\widehat{X}_{k})|^{2}\right) \\ &\leq |h_{k}(X_{k}) - h_{k}(\widehat{X}_{k})|^{2} + |\mathbb{E}(v_{k+1}(X_{k+1})|X_{k}) - \mathbb{E}(\widehat{v}_{k+1}(\widehat{X}_{k+1}))|\widehat{X}_{k})|^{2} \end{aligned}$$

so that by the key lemma

$$\left\| V_{k} - \widehat{V}_{k} \right\|_{2}^{2} \leq [h_{k}]_{\text{Lip}}^{2} \left\| X_{k} - \widehat{X}_{k} \right\|_{2}^{2} + [Pv_{k+1}]_{\text{Lip}} \left\| X_{k} - \widehat{X}_{k} \right\|_{2}^{2} + \left\| V_{k+1} - \widehat{V}_{k+1} \right\|_{2}^{2}$$

The result follows from the bounds on $[Pv_{k+1}]_{\text{Lip}}$ and the discrete Gronwall lemma. \Box
Applications to diffusions: the Euler scheme (homogeneous)

[Homogeneous case for expository].

• For the above jump diffusion (when $p \ge 2$), the Euler scheme with step $\frac{T}{n}$ satisfies

$$\begin{split} \mathbb{E} \big(\bar{X}_{\frac{T}{n}}^{(n),y} &- \bar{X}_{\frac{T}{n}}^{(n),x} \big)^2 \\ &= \mathbb{E} \Big| y - x + \frac{T}{n} (b(y) - b(x)) + (\sigma(Y) - \sigma(x)) W_{\frac{T}{n}} + (\kappa(y) - \kappa(x)) \zeta_{\frac{T}{n}} \Big|^2 \\ &= |y - x|^2 + \left(\frac{T}{n}\right)^2 |b(y) - b(x)|^2 + \frac{T}{n} |\sigma(y) - \sigma(x)|^2 \\ &+ (\kappa(y) - \kappa(x))^2 \mathbb{E} \zeta_{\frac{T}{n}}^2 \\ &\leq |y - x|^2 \Big(1 + 2C_{b,\sigma,\kappa,T} \frac{T}{n} \Big). \end{split}$$

so that

$$|\bar{P}^{(n)}(f)(x) - \bar{P}^{(n)}(f)(y)| \le [f]_{\text{Lip}} \|\bar{X}_{\frac{T}{n}}^{(n),y} - \bar{X}_{\frac{T}{n}}^{(n),x}\|_1 \le [f]_{\text{Lip}} \|\bar{X}_{\frac{T}{n}}^{(n),y} - \bar{X}_{\frac{T}{n}}^{(n),x}\|_2$$

and finally

$$[\bar{P}^{(n)}]_{\mathrm{Lip}} \le \left(1 + C_{b,\sigma,\kappa,T} \frac{T}{n}\right).$$

Conclusion:

$$\sup_{n} \max_{0 \le k \le n} [\bar{P}^{(n)}]_{\mathrm{Lip}}^k \le e^{C_{b,\sigma,\kappa,T}T}$$

PAGÈS et al. (LPMA-UPMC)

Quantization: Voronoi vs Delaunay

Proposition (Bally-P.-Printems '03 [BP03], Wilbertz-P., (2010) [PW09])

We consider the optimal stopping problem related to a Brownian diffusions ($\kappa \equiv 0$) with coefficient b and σ and with obstacle function h(t, x), all assumed to be Lipschitz in $x \in \mathbb{R}^d$ uniformly in $t \in [0, T]$.

$$\left\| \max_{0 \le k \le n} |Y_{t_k^n} - \widehat{\bar{Y}_{t_k^n}^n}| \right\|_2 \le C\sqrt{\frac{T}{n}} + C_{b,\sigma,h,T} \left(\sum_{k=0}^n \left\| \bar{X}_{t_k^n}^{(n)} - \widehat{\bar{X}^{(n)}}_{t_k^n} \right\|_2^2 \right)^{\frac{1}{2}}$$

$$\le C \left(\sqrt{\frac{T}{n}} + \sqrt{n} \max_{0 \le k \le n} \left\| \bar{X}_{t_k^n}^{(n)} - \widehat{\bar{X}^{(n)}}_{t_k^n} \right\|_2 \right)$$

This strongly suggests to investigate methods to reduce/minimize

the quantization $\operatorname{error}(s)$

$$\left\|X - \widehat{X}\right\|_p \dots$$
 especially when $p = 2$.

Optimal quantization(s)

or

How to optimize the approximation of X by \hat{X} taking at most N values?

We temporarily turn now to this *static* problem also known as

Optimal (Vector) Quantization...

Let $\Gamma \subset \mathbb{R}^d$ be a grid with size at most $N \geq 1$.

•
$$\widehat{X} = \pi(X), \, \pi : \mathbb{R}^d \to \Gamma \iff Voronoi \text{ quantization}).$$

• $\widehat{X} = \pi(X, U), \, \pi : \mathbb{R}^d \times [0, 1] \to \Gamma, \, U \perp X \ (\rightsquigarrow \text{ Delaunay (or dual) quantization}).$

In practice how to optimize the underlying grid Γ ?

Introduction to Optimal Quantization(s) History What is Vector Quantization?

- Has its origin in the fields of signal processing in the late 1940's
- Describes the discretization of a random signal and analyses the recovery of the original signal from the discrete one

- Examples: Pulse-Code-Modulation(PCM), JPEG-Compression
- Extensive Survey about the IEEE-History: [GN98]
- Mathematical Foundation of Quantization Theory: [GL00]

 \triangleright Let $X : (\Omega, S, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d, \|\cdot\|)$ be a random vector such that

 $\mathbb{E}||X||^p < +\infty \qquad \text{for some } p \in [1,\infty).$

 \triangleright Let $X : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d, \|\cdot\|)$ be a random vector such that

 $\mathbb{E}||X||^p < +\infty \qquad \text{for some } p \in [1,\infty).$

▷ Given a (finite) "grid" $\Gamma = \{x_1, x_2, \dots, x_N\} \subset \mathbb{R}^d$, we discretize of the r.v. X using a Nearest Neighbor projection.

• Let $(C_i(\Gamma))_{1 \le i \le N}$ be a Voronoi partition of \mathbb{R}^d generated by Γ , *i.e.* $(C_i(\Gamma))$ is a Borel partition of \mathbb{R}^d satisfying

$$C_i(\Gamma) \subset \left\{ z \in \mathbb{R}^d : \|z - x_i\| \le \min_{1 \le j \le N} \|z - x_j\| \right\}.$$

• Let $\pi_{\Gamma} : \mathbb{R}^d \to \Gamma$ the induced Nearest Neighbor projection,

$$\xi \mapsto \sum_{i=1}^{N} x_i \mathbf{1}_{C_i(\Gamma)}(\xi).$$

so that

$$\|\xi - \pi_{\Gamma}(\xi)\| = \operatorname{dist}(\xi, \Gamma)$$

 \Rightarrow We define the Voronoi Quantization as

$$\widehat{X}^{\Gamma} = \pi_{\Gamma}(X) = \sum_{i=1}^{N} x_i \mathbf{1}_{C_i(\Gamma)}(X).$$

▷ The companion functional approximation operator is

$$\mathcal{F}(\widehat{X}^{\Gamma}) = (F \circ \pi_{\Gamma})(X).$$

It maps F in a *stepwise constant* (on Voronoi partitions...) functions.

▷ The companion functional approximation operator is

$$\mathcal{F}(\widehat{X}^{\Gamma}) = (F \circ \pi_{\Gamma})(X).$$

It maps F in a *stepwise constant* (on Voronoi partitions...) functions.

 \triangleright If F is Lipschitz continuous

$$\left|\mathbb{E}F(X) - \mathbb{E}F(\widehat{X}^{\Gamma})\right| \le [F]_{\text{Lip}} \left\|X - \widehat{X}^{\Gamma}\right\|_{1} = \|\text{dist}(X, \Gamma)\|_{1}$$

and, since $\xi \mapsto \operatorname{dist}(\xi, \Gamma)$ is 1-Lipschitz, one has

$$\sup_{[F]_{\text{Lip}} \le 1} \left| \mathbb{E}F(X) - \mathbb{E}F(\widehat{X}^{\Gamma}) \right| = \left\| X - \widehat{X}^{\Gamma} \right\|_{1} = \left\| \text{dist}(X, \Gamma) \right\|_{1}.$$

(Wasserstein distance between $\mathcal{L}(X)$ and the set of Γ -supported distributions).

 L^p -mean quantization error

 \rhd The L^p -mean quantization error induced by a grid $\Gamma\subset\mathbb{R}^d$ with size $|\Gamma|\leq N,\,N\in\mathbb{N}$

$$e_p(X;\Gamma) = \|\operatorname{dist}(X,\Gamma)\|_p = \left\|\min_{x\in\Gamma} \|X-x\|\right\|_p.$$
(3)

 L^p -mean quantization error

▷ The L^p -mean quantization error induced by a grid $\Gamma \subset \mathbb{R}^d$ with size $|\Gamma| \leq N, N \in \mathbb{N}$

$$e_p(X;\Gamma) = \|\operatorname{dist}(X,\Gamma)\|_p = \left\|\min_{x\in\Gamma} \|X-x\|\right\|_p.$$
(3)

▷ The optimal L^p -mean quantization problem consists in minimizing (3) over all grids of size $|\Gamma| \leq N$.

We define the L^{p} -optimal mean quantization error of level N as

$$e_{p,N}(X) := \inf \left\{ \left\| \min_{x \in \Gamma} \|X - x\| \right\|_p : \Gamma \subset \mathbb{R}^d, |\Gamma| \le N \right\}.$$

Introduction to Optimal Quantization(s) L^{p} -mean quantization error Voronoi-Quantization

One shows the more general optimality result

$$e_{p,N}(X) = \inf \{ \|X - \Xi\|_p : \Xi \in L^p(\mathbb{R}^d), |\Xi(\Omega)| \le N \}.$$

Introduction to Optimal Quantization(s) L^{p} -mean quantization error Voronoi-Quantization

One shows the more general optimality result

$$e_{p,N}(X) = \inf \{ \|X - \Xi\|_p : \Xi \in L^p(\mathbb{R}^d), |\Xi(\Omega)| \le N \}.$$

⇒ Voronoi Quantization \widehat{X}^{Γ} provides an optimal L^{p} -mean discretization of X (as soon as Γ is an optimal quantization grid for X...).

Introduction to Optimal Quantization(s) L^{p} -mean quantization error Voronoi-Quantization

One shows the more general optimality result

$$e_{p,N}(X) = \inf \{ \|X - \Xi\|_p : \Xi \in L^p(\mathbb{R}^d), |\Xi(\Omega)| \le N \}.$$

⇒ Voronoi Quantization \widehat{X}^{Γ} provides an optimal L^{p} -mean discretization of X (as soon as Γ is an optimal quantization grid for X...).

One shows the more general optimality result

$$e_{p,N}(X) = \inf \{ \|X - \Xi\|_p : \Xi \in L^p(\mathbb{R}^d), |\Xi(\Omega)| \le N \}.$$

⇒ Voronoi Quantization \widehat{X}^{Γ} provides an optimal L^{p} -mean discretization of X (as soon as Γ is an optimal quantization grid for X...).

⇒ The Nearest Neighbor projection is the coding rule, which yields the smallest L^p -mean approximation error for X.

Theorem (Kiefer,..., Cuesta-Albertos, P. (1997))

(a) For every level $N \ge 1$, there exists (at least) an L^p -optimal quantization grid $\Gamma^{N,*}$ at level N.

(b) If
$$p = 2$$
, $\mathbb{E}\left(X \mid \widehat{X}^{\Gamma^{N,*}}\right) = \widehat{X}^{\Gamma^{N,*}}$ (stationarity/self-consistency).

Introduction to Optimal Quantization(s) Quantization Rates/Zador's Theorem Rates of Optimal Quantization

 \triangleright It is easy to check that (everywhere dense sequence...)

$$e_{p,N}(X) \to 0$$
 as $N \to \infty$.

At which rate ?

 \triangleright It is easy to check that (everywhere dense sequence...)

$$e_{p,N}(X) \to 0$$
 as $N \to \infty$.

At which rate ?

Theorem (Zador's Theorem)

(a) SHARP ASYMPTOTIC (Zador, Kiefer, Bucklew & Wise, Graf & Luschgy, cf. [GL00]): Let $X \in L^{p+}(\mathbb{R}^d)$ with distribution $\mathbb{P}_X = \varphi \cdot \lambda^d \stackrel{\perp}{+} \nu$. Then

$$\lim_{N \to \infty} N^{\frac{1}{d}} \cdot e_{p,N}(X) = Q_{p,\|\cdot\|} \cdot \left(\int_{\mathbb{R}^d} \|\varphi\|^{d/(d+p)} \, d\lambda^d \right)^{(d+p)/d}$$

where $Q_{p,\|\cdot\|} = \inf_N N^{\frac{1}{d}} \cdot e_{p,N} (U([0,1]^d)).$

(b) NON-ASYMPTOTIC (Luschgy-P. (2007), cf. []): Let p' > p. There exists $C_{p,p',d}$ such that, for every r.v. \mathbb{R}^d -valued X

$$\forall N \ge 1, \quad e_{p,N}(X) \le C_{p,p',d} \inf_{a \in \mathbb{R}^d} ||X - a||_{p'} \cdot N^{-\frac{1}{d}}.$$

Computing optimal grids

Consider for $D_N : (\mathbb{R}^d)^{\overline{N}} \to \mathbb{R}$ the optimization problem (here p = 2)

$$D_N(x) := \mathbb{E} \min_{1 \le i \le N} \|X - x_i\|^2 \to \min_{x \in (\mathbb{R}^d)^N}$$

Computing optimal grids

Consider for $D_N : (\mathbb{R}^d)^{\bar{N}} \to \mathbb{R}$ the optimization problem (here p = 2)

$$D_N(x) := \mathbb{E} \min_{1 \le i \le N} ||X - x_i||^2 \to \min_{x \in (\mathbb{R}^d)^N} \cdot$$

As soon as $\|\cdot\|$ is a.s. smooth $\Rightarrow D_N$ is differentiable.

Computing optimal grids

Consider for $D_N : (\mathbb{R}^d)^{\bar{N}} \to \mathbb{R}$ the optimization problem (here p = 2)

$$D_N(x) := \mathbb{E} \min_{1 \le i \le N} \|X - x_i\|^2 \to \min_{x \in (\mathbb{R}^d)^N}$$

As soon as $\|\cdot\|$ is a.s. smooth $\Rightarrow D_N$ is differentiable.

d = 1:

$$D_N(x) = \sum_{i=1}^N \int_{x_{i-1/2}}^{x_{i+1/2}} |\xi - x_i|^2 d\mathbb{P}^X(\xi)$$

 \Rightarrow Evaluation of Voronoi-Cells, Gradient and Hessian is simple \rightsquigarrow Newton-Raphson

Introduction to Optimal Quantization(s) Numerical computation of quantizers A Side Note on Numerical Computation of Quantizers (p = 2)

 $d \geq 2: \quad \textcircled{O} \quad \text{Stochastic Gradient Method: CLVQ} \\ \bullet \quad \text{Simulate } \xi_1, \xi_2, \dots \text{ independent copies of } X \\ \bullet \quad \text{Generate step sequence } \gamma_1, \gamma_2, \dots \\ \text{Usually: step } \gamma_n = \frac{A}{B+n} \searrow 0 \quad \text{or} \quad \gamma_n = \eta \approx 0 \\ \bullet \quad \text{Grid updating } n \mapsto n+1: \\ Competition: \text{ select winner index: } i^* \in \operatorname{argmin}_i |x_i^n - \xi_n| \\ \text{Learning: } \begin{cases} x_{i^*}^{n+1} := x_{i^*}^n + \gamma_n(x_{i^*}^n - \xi_n) \\ x_{i^*}^{n+1} := x_{i^*}^n, & \text{for } j \neq i^*. \end{cases}$

Introduction to Optimal Quantization(s) Numerical computation of quantizers A Side Note on Numerical Computation of Quantizers (p = 2)

 $d \geq 2: \quad \textcircled{O} \quad \text{Stochastic Gradient Method: CLVQ} \\ \bullet \quad \text{Simulate } \xi_1, \xi_2, \dots \text{ independent copies of } X \\ \bullet \quad \text{Generate step sequence } \gamma_1, \gamma_2, \dots \\ \text{Usually: step } \gamma_n = \frac{A}{A+n} \searrow 0 \quad \text{or} \quad \gamma_n = \eta \approx 0 \\ \bullet \quad \text{Grid updating } n \mapsto n+1: \\ Competition: \text{ select winner index: } i^* \in \operatorname{argmin}_i |x_i^n - \xi_n| \\ Learning: \quad \begin{cases} x_{i^*}^{n+1} := x_{i^*}^n + \gamma_n(x_{i^*}^n - \xi_n) \\ x_j^{n+1} := x_j^n, & \text{for } j \neq i^*. \end{cases} \end{cases}$

2 LLOYD's algorithm as a randomized fix-point method.

• Initial grid
$$\Gamma^{(0)} = \{x_1^0, \dots, x_N^0\}$$

• Usual step : $\widehat{X}^{\Gamma^{(n+1)}} = \mathbb{E}(X \mid \widehat{X}^{\Gamma^{(n)}})$ i.e. $x_k^{(n+1)} = \mathbb{E}(X \mid \widehat{X}^{\Gamma^{(n)}} = x_k^{(n)})$

• so that
$$||X - X^{\Gamma(n+1)}||_2 \le ||X - X^{\Gamma(n)}||_2$$

Introduction to Optimal Quantization(s) Numerical computation of quantizers A Side Note on Numerical Computation of Quantizers (p = 2)

$$\begin{split} d \geq 2: \quad & \bullet \quad \text{Stochastic Gradient Method: CLVQ} \\ & \bullet \quad \text{Simulate } \xi_1, \xi_2, \dots \text{ independent copies of } X \\ & \bullet \quad \text{Generate step sequence } \gamma_1, \gamma_2, \dots \\ & \quad \text{Usually: step } \gamma_n = \frac{A}{B+n} \searrow 0 \quad \text{or} \quad \gamma_n = \eta \approx 0 \\ & \bullet \quad \text{Grid updating } n \mapsto n+1: \\ & \quad Competition: \text{ select winner index: } i^* \in \operatorname{argmin}_i |x_i^n - \xi_n| \\ & \quad Learning: \quad \begin{cases} x_{i^*}^{n+1} := x_{i^*}^n + \gamma_n(x_{i^*}^n - \xi_n) \\ x_j^n & \quad \text{for } j \neq i^*. \end{cases} \end{split}$$

LLOYD's algorithm as a randomized fix-point method.

• Initial grid
$$\Gamma^{(0)} = \{x_1^0, \dots, x_N^0\}$$

• Usual step : $\widehat{X}^{\Gamma^{(n+1)}} = \mathbb{E}(X \mid \widehat{X}^{\Gamma^{(n)}})$ i.e. $x_k^{(n+1)} = \mathbb{E}(X \mid \widehat{X}^{\Gamma^{(n)}} = x_k^{(n)})$
• so that $\|X - \widehat{X}^{\Gamma^{(n+1)}}\|_2 \le \|X - \widehat{X}^{\Gamma^{(n)}}\|_2$

• "Batch" approach [...]

Figure: A Quantizer for $\mathcal{N}(0, I_2)$ of size N = 500 in $(\mathbb{R}^2, \|\cdot\|_2)$.

Assume that we have access to the Voronoi-Cell weights

$$w_i(\Gamma) := \mathbb{P}(X \in C_i(\Gamma)), \ i = 1, \dots, N.$$

Assume that we have access to the Voronoi-Cell weights

$$w_i(\Gamma) := \mathbb{P}(X \in C_i(\Gamma)), \ i = 1, \dots, N.$$

 \implies The computation of $\mathbb{E}F(\widehat{X}^{\Gamma})$ for some Lipschitz continuous $F : \mathbb{R}^d \to \mathbb{R}$ becomes straightforward:

$$\mathbb{E} F(\widehat{X}^{\Gamma}) = \sum_{i=1}^{N} w_i(\Gamma) F(x_i).$$

Assume that we have access to the Voronoi-Cell weights

$$w_i(\Gamma) := \mathbb{P}(X \in C_i(\Gamma)), \ i = 1, \dots, N.$$

 \implies The computation of $\mathbb{E}F(\widehat{X}^{\Gamma})$ for some Lipschitz continuous $F : \mathbb{R}^d \to \mathbb{R}$ becomes straightforward:

$$\mathbb{E} F(\widehat{X}^{\Gamma}) = \sum_{i=1}^{N} w_i(\Gamma) F(x_i).$$

 \triangleright As a first error estimate, we already know that

$$|\mathbb{E}F(X) - \mathbb{E}F(\widehat{X}^{\Gamma})| \le [F]_{\text{Lip}} \mathbb{E}||X - \widehat{X}^{\Gamma}||.$$

Further Error Estimates

Moreover

$$\inf \left\{ \sup_{[F]_{\text{Lip}} \le 1} |\mathbb{E}F(X) - \mathbb{E}F(Y)|, \ Y(\Omega) \subset \Gamma \right\}$$
$$= \sup_{[F]_{\text{Lip}} \le 1} |\mathbb{E}F(X) - \mathbb{E}F(\widehat{X}^{\Gamma})| = \mathbb{E}||X - \widehat{X}^{\Gamma}||$$

i.e. Quantization is optimal for the class of Lipschitz functions.

Further Error Estimates

Moreover

$$\inf \left\{ \sup_{[F]_{\text{Lip}} \le 1} |\mathbb{E}F(X) - \mathbb{E}F(Y)|, \ Y(\Omega) \subset \Gamma \right\}$$
$$= \sup_{[F]_{\text{Lip}} \le 1} |\mathbb{E}F(X) - \mathbb{E}F(\widehat{X}^{\Gamma})| = \mathbb{E}||X - \widehat{X}^{\Gamma}||$$

i.e. Quantization is optimal for the class of Lipschitz functions.

Second order rate

▷ If $F \in C^1_{\text{Lip}}$ and the grid Γ is stationary, i.e.

$$\widehat{X}^{\Gamma} = \mathbb{E}(X|\widehat{X}^{\Gamma}),$$

then a Taylor expansion yields

$$\begin{split} \mathbb{E} F(X) - \mathbb{E} F(\widehat{X}^{\Gamma})| &= |\mathbb{E} F(X) - \mathbb{E} F(\widehat{X}^{\Gamma}) - \mathbb{E} DF(\widehat{X}^{\Gamma}).(X - \widehat{X}^{\Gamma})| \\ &\leq [DF]_{\text{Lip}} \cdot \mathbb{E} ||X - \widehat{X}^{\Gamma}||^2. \end{split}$$
▷ Furthermore, if F is convex, then Jensen's inequality implies for stationary Γ $\mathbb{E} F(\widehat{X}^{\Gamma}) \leq \mathbb{E} F(X).$

Applications for optimal quantization grids

• Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's (Bally-P.-Printems '01, '03 et '05, Illand '11)

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's (Bally-P.-Printems '01, '03 et '05, Illand '11)
- δ -Hedging for American options (ibid. '05)

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's (Bally-P.-Printems '01, '03 et '05, Illand '11)
- δ -Hedging for American options (ibid. '05)
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options (Bouthemy-Bardou-P.'09)...on massively parallel architecture (GPU, Bronstein-P.-Wilbertz, '10)

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's (Bally-P.-Printems '01, '03 et '05, Illand '11)
- δ -Hedging for American options (ibid. '05)
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options (Bouthemy-Bardou-P.'09)...on massively parallel architecture (GPU, Bronstein-P.-Wilbertz, '10)
- Non-linear filtering and stochastic volatility models (P.-Pham-Pprintems '05, Pham-Sellami-Runggaldier'06, Sellami '09 & '10, Callegaro-Sagna '10)

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's (Bally-P.-Printems '01, '03 et '05, Illand '11)
- δ -Hedging for American options (ibid. '05)
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options (Bouthemy-Bardou-P.'09)...on massively parallel architecture (GPU, Bronstein-P.-Wilbertz, '10)
- Non-linear filtering and stochastic volatility models (P.-Pham-Pprintems '05, Pham-Sellami-Runggaldier'06, Sellami '09 &'10, Callegaro-Sagna '10)
- Discretization of SPDE's (stochastic Zakaï & McKean-Vlasov equations) [Gobet-P.-Pham-Printems '07]

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's (Bally-P.-Printems '01, '03 et '05, Illand '11)
- δ -Hedging for American options (ibid. '05)
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options (Bouthemy-Bardou-P.'09)...on massively parallel architecture (GPU, Bronstein-P.-Wilbertz, '10)
- Non-linear filtering and stochastic volatility models (P.-Pham-Pprintems '05, Pham-Sellami-Runggaldier'06, Sellami '09 &'10, Callegaro-Sagna '10)
- Discretization of SPDE's (stochastic Zakaï & McKean-Vlasov equations) [Gobet-P.-Pham-Printems '07]
- Quantization based Universal Stratification (variance reduction) [Corlay-P. '10]

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's (Bally-P.-Printems '01, '03 et '05, Illand '11)
- δ -Hedging for American options (ibid. '05)
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options (Bouthemy-Bardou-P.'09)...on massively parallel architecture (GPU, Bronstein-P.-Wilbertz, '10)
- Non-linear filtering and stochastic volatility models (P.-Pham-Pprintems '05, Pham-Sellami-Runggaldier'06, Sellami '09 &'10, Callegaro-Sagna '10)
- Discretization of SPDE's (stochastic Zakaï & McKean-Vlasov equations) [Gobet-P.-Pham-Printems '07]
- Quantization based Universal Stratification (variance reduction) [Corlay-P. '10]
- CVaR-based dynamical risk hedging [Bardou-Frikha-P., '10), etc.

- Voronoi quantization is optimal for "Lipschitz approximation"
- Paradox: it does not preserve regularity
- Second order (stationarity) : (almost) only optimal grids \Rightarrow lack of flexibility
- Download free pre-computed grids of $\mathcal{N}(0; I_d)$ distributions at the URL

www.quantize.maths-fi.com

for d = 1, ..., 10 and $N = 1, ..., 10^4$.

• and many others items related to optimal quantization.

Idea

 \triangleright No longer maps $X(\omega)$ to its nearest neighbor, but splits up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Idea

 \triangleright No longer maps $X(\omega)$ to its nearest neighbor, but splits up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

▷ Let " $\Gamma = \{\times, \dots, \times\}$ " in the figure below.

 $\stackrel{\times}{X(\omega)}$

Idea

 \triangleright No longer maps $X(\omega)$ to its nearest neighbor, but splits up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Idea

 \triangleright No longer maps $X(\omega)$ to its nearest neighbor, but splits up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Idea

 \triangleright No longer maps $X(\omega)$ to its nearest neighbor, but splits up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Idea

 \triangleright No longer maps $X(\omega)$ to its nearest neighbor, but splits up the projection randomly between the "surrounding" neighbors of $X(\omega)$.

Starting with dual Quantization: d = 2

Starting with dual Quantization: d = 2

Starting with dual Quantization: d = 2

Random splitting operator

$$\triangleright \text{ Let } \quad \tau = \{x_1, \dots, x_{d+1}\} \subset \mathbb{R}^d \quad \text{be a } d\text{-simplex in } \mathbb{R}^d,$$

i.e. x_1, \ldots, x_{d+1} are affinely independent.

Random splitting operator

$$\triangleright \text{ Let } \qquad \tau = \{x_1, \dots, x_{d+1}\} \subset \mathbb{R}^d \qquad \text{ be a } d\text{-simplex in } \mathbb{R}^d,$$

i.e. x_1, \ldots, x_{d+1} are affinely independent.

▷ Let $\lambda(\xi)$ be the barycentric coordinates of $\xi \in \operatorname{conv}(\tau)$.

Definiton of the τ -splitting operator

$$\begin{aligned} \mathcal{J}_{\tau}^{U} : \operatorname{conv}(\tau) & \longrightarrow & \tau \\ \xi & \longmapsto & \sum_{i=1}^{d+1} x_{i} \mathbf{1}_{\left\{\sum_{j=1}^{i-1} \lambda_{j}(\xi) \leq U < \sum_{j=1}^{i} \lambda_{j}(\xi)\right\}} \end{aligned}$$

where $U \sim \mathcal{U}([0,1])$ is defined on an exogeneous space $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

Random splitting operator

$$\triangleright \text{ Let } \qquad \tau = \{x_1, \dots, x_{d+1}\} \subset \mathbb{R}^d \qquad \text{be a } d\text{-simplex in } \mathbb{R}^d,$$

i.e. x_1, \ldots, x_{d+1} are affinely independent.

▷ Let $\lambda(\xi)$ be the barycentric coordinates of $\xi \in \operatorname{conv}(\tau)$.

Definiton of the τ -splitting operator

$$\begin{aligned} \mathcal{J}_{\tau}^{U} : \operatorname{conv}(\tau) & \longrightarrow & \tau \\ \xi & \longmapsto & \sum_{i=1}^{d+1} x_{i} \mathbf{1}_{\left\{\sum_{j=1}^{i-1} \lambda_{j}(\xi) \leq U < \sum_{j=1}^{i} \lambda_{j}(\xi)\right\}} \end{aligned}$$

where $U \sim \mathcal{U}([0,1])$ is defined on an exogeneous space $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

 \triangleright This τ -splitting operator always satisfies a *mean preserving* property:

$$\mathbb{E}_0\left(\mathcal{J}^U_\tau(\xi)\right) = \sum_{i=1}^{d+1} \lambda_i(\xi) \cdot x_i = \xi, \qquad \forall \xi \in \operatorname{conv}(\tau).$$
(4)

Functional approximation operator

 \triangleright The τ -splitting operator is in fact a probabilistic representation of the classical *interpolation operator*

$$\mathbb{J}_{\tau}(F) \equiv \xi \longmapsto \mathbb{E}_0\left(F(\mathcal{J}^U_{\tau}(\xi))\right) = \sum_{i=1}^{d+1} \lambda_i(\xi) \cdot F(x_i), \qquad \forall \xi \in \operatorname{conv}(\tau).$$
(5)

P1. $\mathbb{J}_{\tau}(F)$ is affine on $\operatorname{conv}(\tau)$.

P2. If F is convex $\mathbb{J}_{\tau}(F) \geq F$.

(Not so) naive extension to triangulations: Cubature I

▷ The notion of τ -splitting operator can be extended to any given triangulation \mathcal{T}_{Γ} of a grid $\Gamma = \{x_1, \ldots, x_N\}$, so that (4) and (5) hold for any $\xi \in \operatorname{conv}(\Gamma)$ for $\mathcal{J}_{\mathcal{T}_{\Gamma}}$ and $\mathbb{J}_{\mathcal{T}_{\Gamma}}$. Such an operator $\mathbb{J}_{\mathcal{T}_{\Gamma}}$ also satisfies

- **P'1.** $\mathbb{J}_{\mathcal{T}_{\Gamma}}(F)$ is continuous, piecewise affine on $\operatorname{conv}(\Gamma)$.
- **P'2.** If F is convex $\mathbb{J}_{\mathcal{T}_{\Gamma}}$ is convex on $\operatorname{conv}(\Gamma)$ and $\mathbb{J}_{\tau}(F) \geq F$.
- **P3.** Random splitting operators preserve the *convex order* on distributions, namely $\left(\forall F: \operatorname{conv}(\Gamma) \xrightarrow{convex} \mathbb{R}, \mathbb{E}F(X) \leq \mathbb{E}F(Y)\right)$ $\implies \left(\forall F: \operatorname{conv}(\Gamma) \xrightarrow{convex} \mathbb{R}, \mathbb{E}F\left(\mathcal{J}_{\mathcal{T}_{\Gamma}}(X)\right) \leq \mathbb{E}F\left(\mathbb{J}_{\mathcal{T}_{\Gamma}}(Y)\right)\right)$

 \triangleright INDUCED CUBATURE FORMULAS. Let $F : \mathbb{R}^d \to \mathbb{R}$.

$$\mathbb{E} F(\mathcal{J}_{\mathcal{T}_{\Gamma}}(X)) = \mathbb{E} \left(\mathbb{J}_{\mathcal{T}_{\Gamma}}(F)(X) \right)$$

$$= \sum_{\tau \in \mathcal{T}_{\Gamma}} \sum_{a \in \tau} \mathbb{E}(\lambda_{a}(X))F(a) = \sum_{a \in \Gamma} \left(\sum_{\tau \in \mathcal{T}_{\Gamma}, a \in \tau} \mathbb{E}(\lambda_{a}(X)) \right)F(a)$$

$$= \sum_{a \in \Gamma} w_{a}F(a).$$

Motivated by this observation...

 \triangleright DEFINITION. Let Γ be a grid of \mathbb{R}^d . An application

$$\mathcal{J}_{\Gamma}:\Omega_0\times\mathbb{R}^d\to\Gamma$$

is intrinsic stationary if

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad \mathbb{E}_0(\mathcal{J}_{\Gamma}(\xi)) = \xi.$$

Motivated by this observation...

▷ DEFINITION. Let Γ be a grid of \mathbb{R}^d . An application

$$\mathcal{J}_{\Gamma}:\Omega_0\times\mathbb{R}^d\to\Gamma$$

is intrinsic stationary if

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad \mathbb{E}_0\big(\mathcal{J}_{\Gamma}(\xi)\big) = \xi.$$

 \vartriangleright The following proposition is an easy consequence of Fubini's Theorem

Proposition

 \mathcal{J}_{Γ} is intrinsic stationary, if and only if it satisfies the dual stationarity condition

$$\mathbb{E}_{\mathbb{P}\otimes\mathbb{P}_0}\left(\mathcal{J}_{\Gamma}(X)|X\right) = X$$

for any r.v. $X : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d)$ with $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}(\Gamma)$.

Motivated by this observation...

▷ DEFINITION. Let Γ be a grid of \mathbb{R}^d . An application

$$\mathcal{J}_{\Gamma}:\Omega_0\times\mathbb{R}^d\to\Gamma$$

is intrinsic stationary if

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad \mathbb{E}_0(\mathcal{J}_{\Gamma}(\xi)) = \xi.$$

 \vartriangleright The following proposition is an easy consequence of Fubini's Theorem

Proposition

 \mathcal{J}_{Γ} is intrinsic stationary, if and only if it satisfies the dual stationarity condition

$$\mathbb{E}_{\mathbb{P}\otimes\mathbb{P}_0}\left(\mathcal{J}_{\Gamma}(X)|X\right) = X$$

for any r.v. $X : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d)$ with $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}(\Gamma)$.

 \triangleright QUESTION. Are all intrinsic stationary operators random splitting operators defined on a triangulation? (YES...)

Motivated by this observation...

▷ DEFINITION. Let Γ be a grid of \mathbb{R}^d . An application

$$\mathcal{J}_{\Gamma}:\Omega_0\times\mathbb{R}^d\to\Gamma$$

is intrinsic stationary if

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad \mathbb{E}_0(\mathcal{J}_{\Gamma}(\xi)) = \xi.$$

 \vartriangleright The following proposition is an easy consequence of Fubini's Theorem

Proposition

 \mathcal{J}_{Γ} is intrinsic stationary, if and only if it satisfies the dual stationarity condition

$$\mathbb{E}_{\mathbb{P}\otimes\mathbb{P}_0}\left(\mathcal{J}_{\Gamma}(X)|X\right) = X$$

for any r.v. $X : (\Omega, \mathcal{S}, \mathbb{P}) \to (\mathbb{R}^d, \mathcal{B}^d)$ with $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}(\Gamma)$.

 \triangleright QUESTION. Are all intrinsic stationary operators random splitting operators defined on a triangulation? (YES...)

NEW! This (dual) kind of stationarity is very robust, since *it holds by construction* for any r.v. X with support in Γ .

PAGÈS et al. (LPMA-UPMC)

 \rhd Like with "regular" quantization, intrinsic stationary operators also yields an improved second order bound.

 \triangleright Like with "regular" quantization, intrinsic stationary operators also yields an improved second order bound.

Proposition

(a) Let $F \in C^1_{Lip}(\Gamma)$, $\Gamma \subset \mathbb{R}^d$ and \mathcal{J}_{Γ} be intrinsic stationary. Then it holds for any r.v. $X \in L^2(\mathbb{P})$ with $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}(\Gamma)$,

$$|\mathbb{E} F(X) - \mathbb{E} F(\mathcal{J}_{\Gamma}(X))| = |\mathbb{E} F(\mathcal{J}_{\Gamma}(X)) - \mathbb{E} F(X) - \mathbb{E} (DF(X)(\mathcal{J}_{\Gamma}(X) - X))|$$

$$\leq [F']_{Lip} \cdot \mathbb{E} ||X - \mathcal{J}_{\Gamma}(X)||^{2}.$$

▷ Like with "regular" quantization, intrinsic stationary operators also yields an improved second order bound.

Proposition

(a) Let $F \in C^1_{Lip}(\Gamma)$, $\Gamma \subset \mathbb{R}^d$ and \mathcal{J}_{Γ} be intrinsic stationary. Then it holds for any r.v. $X \in L^2(\mathbb{P})$ with $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}(\Gamma)$,

$$|\mathbb{E} F(X) - \mathbb{E} F(\mathcal{J}_{\Gamma}(X))| = |\mathbb{E} F(\mathcal{J}_{\Gamma}(X)) - \mathbb{E} F(X) - \mathbb{E} (DF(X)(\mathcal{J}_{\Gamma}(X) - X))|$$

$$\leq [F']_{Lip} \cdot \mathbb{E} ||X - \mathcal{J}_{\Gamma}(X)||^{2}.$$

(b) If $F: \Gamma \to \mathbb{R}^d$ is convex, then Jensen's inequality implies

 $\mathbb{E} F(\mathcal{J}_{\Gamma}(X)) \geq \mathbb{E} F(X)$

▷ Like with "regular" quantization, intrinsic stationary operators also yields an improved second order bound.

Proposition

(a) Let $F \in C^1_{Lip}(\Gamma)$, $\Gamma \subset \mathbb{R}^d$ and \mathcal{J}_{Γ} be intrinsic stationary. Then it holds for any r.v. $X \in L^2(\mathbb{P})$ with $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}(\Gamma)$,

$$|\mathbb{E} F(X) - \mathbb{E} F(\mathcal{J}_{\Gamma}(X))| = |\mathbb{E} F(\mathcal{J}_{\Gamma}(X)) - \mathbb{E} F(X) - \mathbb{E} (DF(X)(\mathcal{J}_{\Gamma}(X) - X))| \\ \leq [F']_{Lip} \cdot \mathbb{E} ||X - \mathcal{J}_{\Gamma}(X)||^{2}.$$

(b) If $F: \Gamma \to \mathbb{R}^d$ is convex, then Jensen's inequality implies

 $\mathbb{E} F(\mathcal{J}_{\Gamma}(X)) \ge \mathbb{E} F(X)$

(c) \mathcal{J}_{Γ} preserves convex order on random vectors.

This property also follows from the *dual stationarity*.

Remark. If \mathcal{J}_{Γ} is a random splitting operator, it follows from the stronger fact that

$$F(\mathcal{J}_{\Gamma}(X)) = \mathbb{J}_{\Gamma}(F)(X) \ge F(X).$$

Question

Let Γ be a grid of size $N \in \mathbb{N}$. What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} ?

Question

Let Γ be a grid of size $N \in \mathbb{N}$. What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} ?

PROBLEM: The grid Γ gives raise to (finitely) many possible triangulations.
Question

Let Γ be a grid of size $N \in \mathbb{N}$. What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} ?

PROBLEM: The grid Γ gives raise to (finitely) many possible triangulations.

 \triangleright We aim at selecting the triangulation with the lowest *p*-inertia *i.e.*

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad F_p^p(\xi; \Gamma) = \min_{\lambda \in \mathbb{R}^N} \left(\sum_{\substack{i=1\\1 \ \dots \ 1}}^N \lambda_i \|\xi - x_i\|^p \right)^{\frac{1}{p}}$$

s.t. $\begin{bmatrix} x_1 \ \dots \ x_N \\ 1 \ \dots \ 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

Question

Let Γ be a grid of size $N \in \mathbb{N}$. What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} ?

PROBLEM: The grid Γ gives raise to (finitely) many possible triangulations.

 \triangleright We aim at selecting the triangulation with the lowest *p*-inertia *i.e.*

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad F_p^p(\xi; \Gamma) = \min_{\lambda \in \mathbb{R}^N} \left(\sum_{\substack{i=1\\ 1 \ \dots \ x_N}}^N \lambda_i \|\xi - x_i\|^p \right)^{\frac{1}{p}}$$

s.t. $\begin{bmatrix} x_1 \ \dots \ x_N \\ 1 \ \dots \ 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

Hence, for every $\xi \in \operatorname{conv}(\Gamma)$ we choose the best "triangle" in Γ which contains ξ .

Question

Let Γ be a grid of size $N \in \mathbb{N}$. What is the best approximation, which can be achieved by an intrinsic stationary operator \mathcal{J}_{Γ} ?

PROBLEM: The grid Γ gives raise to (finitely) many possible triangulations.

 \triangleright We aim at selecting the triangulation with the lowest *p*-inertia *i.e.*

$$\forall \xi \in \operatorname{conv}(\Gamma), \qquad F_p^p(\xi; \Gamma) = \min_{\lambda \in \mathbb{R}^N} \left(\sum_{\substack{i=1\\1 \ \dots \ x_1}}^N \lambda_i \, \|\xi - x_i\|^p \right)^{\frac{1}{p}}$$

s.t. $\begin{bmatrix} x_1 \ \dots \ x_1 \\ 1 \ \dots \ x_1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

Hence, for every $\xi \in \operatorname{conv}(\Gamma)$ we choose the best "triangle" in Γ which contains ξ . \triangleright The optimal L^p dual quantization error is then defined as

$$d_{p,N}(X) = \inf \{ \|F_p(X;\Gamma)\|_p, \ \Gamma \subset \mathbb{R}^d, |\Gamma| \le N \}.$$

 \triangleright To design a splitting operator matching $F^p(\xi; \Gamma)$, we need to determine optimality regions, counterparts of the Voronoi regions for regular quantization.

Optimality regions for $F^p(\xi; \Gamma)$

 \triangleright To design a splitting operator matching $F^p(\xi; \Gamma)$, we need to determine optimality regions, counterparts of the Voronoi regions for regular quantization.

$$\triangleright \ (\lambda_i)_{1 \le i \le N} \mapsto \min_{\lambda \in \mathbb{R}^N} \left(\sum_{i=1}^N \lambda_i \| \xi - x_i \|^p \right)^{\frac{1}{p}} \text{ atteins a minimum (at least) at an}$$

s.t. $\begin{bmatrix} x_1 \dots x_N \\ 1 \dots 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

extremal N-tuple $\lambda^*(\xi)$ of the convex constraint set.

Optimality regions for $F^p(\xi; \Gamma)$

 \triangleright To design a splitting operator matching $F^{p}(\xi; \Gamma)$, we need to determine optimality regions, counterparts of the Voronoi regions for regular quantization.

$$\triangleright \ (\lambda_i)_{1 \le i \le N} \mapsto \min_{\lambda \in \mathbb{R}^N} \left(\sum_{i=1}^N \lambda_i \| \xi - x_i \|^p \right)^{\frac{1}{p}} \text{ atteins a minimum (at least) at an}$$

s.t. $\begin{bmatrix} x_1 & \cdots & x_N \\ 1 & \cdots & 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

extremal N-tuple $\lambda^*(\xi)$ of the convex constraint set.

 \triangleright Therefore, $I^*(\xi) := \{i : \lambda_i^*(\xi) > 0\}$ defines an affinely independent family $(x_i)_{i \in I^*(\xi)}$ which can be completed into a Γ -valued affine basis.

Optimality regions for $F^p(\xi; \Gamma)$

 \triangleright To design a splitting operator matching $F^{p}(\xi; \Gamma)$, we need to determine optimality regions, counterparts of the Voronoi regions for regular quantization.

$$\triangleright \ (\lambda_i)_{1 \le i \le N} \mapsto \min_{\lambda \in \mathbb{R}^N} \left(\sum_{i=1}^N \lambda_i \|\xi - x_i\|^p \right)^{\frac{1}{p}} \text{ atteins a minimum (at least) at an}$$

s.t. $\begin{bmatrix} x_1 \cdots x_N \\ 1 \cdots 1 \end{bmatrix} \lambda = \begin{bmatrix} \xi \\ 1 \end{bmatrix}, \lambda \ge 0$

extremal N-tuple $\lambda^*(\xi)$ of the convex constraint set.

 \triangleright Therefore, $I^*(\xi) := \{i : \lambda_i^*(\xi) > 0\}$ defines an affinely independent family $(x_i)_{i \in I^*(\xi)}$ which can be completed into a Γ -valued affine basis.

Let

$$I \in \mathcal{I}(\Gamma) = \{ J \subset \{1, \dots, N\} : |J| = d + 1, \operatorname{rk}(A_J) = d + 1 \}.$$

Set

$$D_I(\Gamma) = \{ \xi \in \mathbb{R}^d : \exists I^*(\xi) \subset I \},\$$

or equivalently, in term of linear programming,

$$D_{I}(\Gamma) = \Big\{ \xi \in \mathbb{R}^{d} : \lambda^{I} = A_{I}^{-1} \begin{bmatrix} \xi \\ 1 \end{bmatrix} \ge 0 \text{ and } \sum_{i \in I} \lambda_{i}^{I} \| \xi - x_{i} \|^{p} = F^{p}(\xi; \Gamma) \Big\},$$

where A_I denotes the submatrix of $\begin{bmatrix} x_1 & \dots & x_N \\ 1 & \dots & 1 \end{bmatrix}$ whose columns are given by I and

 \triangleright In the case $\|\cdot\| = |\cdot|_2$ and p = 2,

optimality regions are the Delaunay "triangles" in Γ ,

i.e. the spheres spanned by such optimal $d\mbox{-simplex}$ contain no further point in its interior.

 \triangleright In the case $\|\cdot\| = |\cdot|_2$ and p = 2,

optimality regions are the Delaunay "triangles" in Γ ,

i.e. the spheres spanned by such optimal $d\mbox{-simplex}$ contain no further point in its interior.

▷ The following theorem is an extention of Rajan's Theorem ([Raj91]).

Theorem (Euclidean case (Rajan '91))

Let
$$\|\cdot\| = |\cdot|_2$$
, $p = 2$, and $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $(\Gamma) = d$.
(a) If $I \in \mathcal{I}(\Gamma)$ defines a Delaunay triangle (or d-simplex), then $\lambda^I = A_I^{-1} \begin{bmatrix} \xi \\ 1 \end{bmatrix}$ provides a solution to $F^p(\xi; \Gamma)$ for every $\xi \in \operatorname{conv}\{x_j : j \in I\}$ i.e.

$$D_I(\Gamma) = \operatorname{conv}\{x_j : j \in I\}.$$

▷ In the case $\|\cdot\| = |\cdot|_2$ and p = 2,

optimality regions are the Delaunay "triangles" in Γ ,

i.e. the spheres spanned by such optimal $d\mbox{-simplex}$ contain no further point in its interior.

▷ The following theorem is an extention of Rajan's Theorem ([Raj91]).

Theorem (Euclidean case (Rajan '91))

Let
$$\|\cdot\| = |\cdot|_2$$
, $p = 2$, and $\Gamma = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ with aff. dim $(\Gamma) = d$.
(a) If $I \in \mathcal{I}(\Gamma)$ defines a Delaunay triangle (or d-simplex), then $\lambda^I = A_I^{-1} \begin{bmatrix} \xi \\ 1 \end{bmatrix}$ provides a solution to $F^p(\xi; \Gamma)$ for every $\xi \in \operatorname{conv}\{x_j : j \in I\}$ i.e.

 $D_I(\Gamma) = \operatorname{conv}\{x_j : j \in I\}.$

(b) Conversely, if $I \in \mathcal{I}(\Gamma)$ satisfies $\mathring{D}_I(\Gamma) \neq \emptyset$, then the triangle (or d-simplex) defined by I has the Delaunay property for Γ .

For a $\Gamma = \{x_1, \ldots, x_N\} \subset \mathbb{R}^d$ with aff. dim $(\Gamma) = d$,

For a $\Gamma = \{x_1, \ldots, x_N\} \subset \mathbb{R}^d$ with aff. dim $(\Gamma) = d$,

• choose a Borel partition $(C_I(\Gamma))_{I \in \mathcal{I}(\Gamma)}$ of $\operatorname{conv}(\Gamma)$ such that

 $C_I(\Gamma) \subset D_I(\Gamma),$

For a $\Gamma = \{x_1, \ldots, x_N\} \subset \mathbb{R}^d$ with aff. dim $(\Gamma) = d$,

• choose a Borel partition $(C_I(\Gamma))_{I \in \mathcal{I}(\Gamma)}$ of $\operatorname{conv}(\Gamma)$ such that

 $C_I(\Gamma) \subset D_I(\Gamma),$

• let $U \sim \mathcal{U}[0,1]$ on $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

For a $\Gamma = \{x_1, \ldots, x_N\} \subset \mathbb{R}^d$ with aff. dim $(\Gamma) = d$,

• choose a Borel partition $(C_I(\Gamma))_{I \in \mathcal{I}(\Gamma)}$ of conv (Γ) such that

 $C_I(\Gamma) \subset D_I(\Gamma),$

• let $U \sim \mathcal{U}[0,1]$ on $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

The optimal dual quantization operator \mathcal{J}_{Γ}^* is defined as

$$\mathcal{J}_{\Gamma}^{*}(\xi) = \sum_{I \in \mathcal{I}(\Gamma)} \left[\sum_{\ell=1}^{k_{I}} x_{i_{\ell}} \cdot \mathbf{1}_{\left\{ \sum_{j=1}^{\ell-1} \lambda_{i_{j}}^{I}(\xi) \leq U < \sum_{j=1}^{\ell} \lambda_{i_{j}}^{I}(\xi) \right\}} \right] \mathbf{1}_{C_{I}(\Gamma)}(\xi).$$

where $I = \{i_1, ..., i_{k_I}\}.$

For a $\Gamma = \{x_1, \ldots, x_N\} \subset \mathbb{R}^d$ with aff. dim $(\Gamma) = d$,

• choose a Borel partition $(C_I(\Gamma))_{I \in \mathcal{I}(\Gamma)}$ of $\operatorname{conv}(\Gamma)$ such that

 $C_I(\Gamma) \subset D_I(\Gamma),$

• let $U \sim \mathcal{U}[0,1]$ on $(\Omega_0, \mathcal{S}_0, \mathbb{P}_0)$.

The optimal dual quantization operator \mathcal{J}_{Γ}^* is defined as

$$\mathcal{J}_{\Gamma}^{*}(\xi) = \sum_{I \in \mathcal{I}(\Gamma)} \left[\sum_{\ell=1}^{k_{I}} x_{i_{\ell}} \cdot \mathbf{1}_{\left\{\sum_{j=1}^{\ell-1} \lambda_{i_{j}}^{I}(\xi) \leq U < \sum_{j=1}^{\ell} \lambda_{i_{j}}^{I}(\xi) \right\}} \right] \mathbf{1}_{C_{I}(\Gamma)}(\xi)$$

where $I = \{i_1, ..., i_{k_I}\}.$

One easily checks that this operator is intrinsic stationary.

Equivalence of optimal dual quantization

The operator \mathcal{J}_{Γ}^* then leads to the following characterizations of the optimal dual quantization error:

The operator \mathcal{J}_{Γ}^{*} then leads to the following characterizations of the optimal dual quantization error:

Theorem ([PW10a])

Let $X \in L^p(\mathbb{P})$ and $N \in \mathbb{N}$. Then

 $d_{p,N}(X) =$

The operator \mathcal{J}_{Γ}^* then leads to the following characterizations of the optimal dual quantization error:

Theorem ([PW10a])

Let $X \in L^p(\mathbb{P})$ and $N \in \mathbb{N}$. Then

$$d_{p,N}(X) = \inf \left\{ \left(\mathbb{E} \| X - \mathcal{J}_{\Gamma}(X) \|^{p} \right)^{\frac{1}{p}} \colon \mathcal{J}_{\Gamma} \colon \Omega_{0} \times \mathbb{R}^{d} \to \Gamma \text{ is intrinsic stationary,} \\ \operatorname{supp}(\mathbb{P}_{X}) \subset \operatorname{conv}(\Gamma), \, |\Gamma| \leq N \right\}$$

The operator \mathcal{J}_{Γ}^* then leads to the following characterizations of the optimal dual quantization error:

Theorem ([PW10a])

Let $X \in L^p(\mathbb{P})$ and $N \in \mathbb{N}$. Then

$$d_{p,N}(X) = \inf \left\{ \left(\mathbb{E} \| X - \mathcal{J}_{\Gamma}(X) \|^{p} \right)^{\frac{1}{p}} \colon \mathcal{J}_{\Gamma} \colon \Omega_{0} \times \mathbb{R}^{d} \to \Gamma \text{ is intrinsic stationary,} \\ \supp(\mathbb{P}_{X}) \subset \operatorname{conv}(\Gamma), \ |\Gamma| \leq N \right\} \\ = \inf \left\{ \mathbb{E} \| X - \widehat{Y} \|^{p} \colon \widehat{Y} \text{ is a } r.v. \text{ on } (\Omega \times \Omega_{0}, \mathcal{S} \otimes \mathcal{S}_{0}, \mathbb{P} \otimes \mathbb{P}_{0}), \\ |\widehat{Y}(\Omega \times \Omega_{0})| \leq N, \ \mathbb{E}(\widehat{Y}|X) = X \right\}.$$

Extension to unbounded support

Extension to unbounded support

\triangleright It is not possible to obtain intrinsic stationarity for $\xi \notin \operatorname{conv}(\Gamma)$

- \triangleright It is not possible to obtain intrinsic stationarity for $\xi \notin \operatorname{conv}(\Gamma)$
- \triangleright We extend $\mathcal{J}_{\Gamma}(X)$ outside conv(Γ) by using a Nearest Neighbor projection (which only preserves stationarity inside conv(Γ)).

▷ It is not possible to obtain intrinsic stationarity for $\xi \notin \operatorname{conv}(\Gamma)$

 \triangleright We extend $\mathcal{J}_{\Gamma}(X)$ outside conv(Γ) by using a Nearest Neighbor projection (which only preserves stationarity inside conv(Γ)).

 \triangleright We therefore drop the requirement $\operatorname{supp}(\mathbb{P}_X) \subset \operatorname{conv}(\Gamma)$ in above theorem and set

$$\bar{d}_{p,N}(X) = \inf \left\{ \left(\mathbb{E} \| X - \mathcal{J}_{\Gamma}(X) \|^{p} \right)^{\frac{1}{p}} \colon \mathcal{J}_{\Gamma} \text{ is intrinsic stationary, } |\Gamma| \le N \right\}.$$

Existence of optimal dual quantizers

Existence of optimal dual quantizers

Theorem ([PW10a])

Let p > 1.

(a) Assume that \mathbb{P}_X has a compact support. Then, for every $N \ge d+1$ there exists at least one optimal dual quantizer at level N (i.e. the dual quantization problem $d_N^p(X)$ attains its infimum). Moreover, $d_N^p(X)$ strictly decreases to 0 as $N \to \infty$, if not vanishing. Existence of optimal dual quantizers

Theorem ([PW10a])

Let p > 1.

(a) Assume that \mathbb{P}_X has a compact support. Then, for every $N \ge d+1$ there exists at least one optimal dual quantizer at level N (i.e. the dual quantization problem $d_N^p(X)$ attains its infimum). Moreover, $d_N^p(X)$ strictly decreases to 0 as $N \to \infty$, if not vanishing.

(b) Assume that the distribution \mathbb{P}_X is strongly continuous. Then the same holds for $d_N^p(X)$ for every $N \ge 1$.

Theorem (Sharp rate [PW10b])

(a) Let $X \in L^{p+}(\mathbb{R}^d)$ with distribution $\mathbb{P}_X = \varphi \cdot \lambda^d \stackrel{\perp}{+} \nu$.

Theorem (Sharp rate [PW10b])

(a) Let $X \in L^{p+}(\mathbb{R}^d)$ with distribution $\mathbb{P}_X = \varphi \cdot \lambda^d \stackrel{\perp}{+} \nu$. Then

$$\lim_{N \to \infty} N^{1/d} \cdot \bar{d}_{p,N}(X) = Q_{d,p,\|\cdot\|} \cdot \left(\int_{\mathbb{R}^d} \varphi^{d/(d+p)} \, d\lambda^d \right)^{\frac{d+p}{d}}$$

where $Q_{d,p,\|\cdot\|} = \inf_{N} N^{1/d} \cdot d_{N}^{p} (U([0,1]^{d})).$

Theorem (Sharp rate [PW10b])

(a) Let $X \in L^{p+}(\mathbb{R}^d)$ with distribution $\mathbb{P}_X = \varphi \cdot \lambda^d \stackrel{\perp}{+} \nu$. Then

$$\lim_{N \to \infty} N^{1/d} \cdot \bar{d}_{p,N}(X) = Q_{d,p,\|\cdot\|} \cdot \left(\int_{\mathbb{R}^d} \varphi^{d/(d+p)} \, d\lambda^d \right)^{\frac{d+p}{d}}$$

where $Q_{d,p,\|\cdot\|} = \inf_{N} N^{1/d} \cdot d_{N}^{p} (U([0,1]^{d})).$

(b) If
$$d = 1$$
, $Q_{d,p,\|\cdot\|} = \frac{2^{1+1/p}}{(p+2)^{1/p}} \lim_{N \to \infty} N^{1/d} \cdot e_{p,N} (U([0,1]))$. If $d \ge 2$, ???

Theorem (Sharp rate [PW10b])

(a) Let $X \in L^{p+}(\mathbb{R}^d)$ with distribution $\mathbb{P}_X = \varphi \cdot \lambda^d \stackrel{\perp}{+} \nu$. Then

$$\lim_{N \to \infty} N^{1/d} \cdot \bar{d}_{p,N}(X) = Q_{d,p,\|\cdot\|} \cdot \left(\int_{\mathbb{R}^d} \varphi^{d/(d+p)} \, d\lambda^d \right)^{\frac{d+p}{d}}$$

where $Q_{d,p,\|\cdot\|} = \inf_{N} N^{1/d} \cdot d_{N}^{p} (U([0,1]^{d})).$

(b) If
$$d = 1$$
, $Q_{d,p,\|\cdot\|} = \frac{2^{1+1/p}}{(p+2)^{1/p}} \lim_{N \to \infty} N^{1/d} \cdot e_{p,N} (U([0,1]))$. If $d \ge 2$, ???

(c) Let p' > p. There exists $C_{p,p',d}^{dual}$ and $N_{p,p',d}^{dual}$ such that, for every r.v. \mathbb{R}^d -valued X

$$\forall N \ge N_{p,p',d}^{dual}, \quad \bar{d}_{p,N}(X) \le C_{p,p',d}^{dual} \inf_{a \in \mathbb{R}^d} \|X - a\|_{p'} \cdot N^{-\frac{1}{d}}.$$

(d) The same holds for compactly supported r.v. for the mean quantization error $d_{n,p}(X)$ with the same asymptotic constant $Q_{d,p,\parallel\parallel}$.

Sketch of the proof

PAGÈS et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay

Sketch of the proof

• Prove existence of the limit for $\mathcal{U}([0,1]^d)$

Sketch of the proof

- Prove existence of the limit for $\mathcal{U}([0,1]^d)$
- Derive upper and lower bounds for piecewise constant densities (with compact support) on hypercubes
Asymptotic behavior

Sketch of the proof

- Prove existence of the limit for $\mathcal{U}([0,1]^d)$
- Derive upper and lower bounds for piecewise constant densities (with compact support) on hypercubes
- Use Differentiation of measure to cover the general case (still compact support)

Asymptotic behavior

Sketch of the proof

- Prove existence of the limit for $\mathcal{U}([0,1]^d)$
- Derive upper and lower bounds for piecewise constant densities (with compact support) on hypercubes
- Use Differentiation of measure to cover the general case (still compact support)
- Random dual quantization argument (so-called extended Pierce Lemma) to get the unbounded case.

 \triangleright Differentiability as a function of Γ for every $\xi \in \operatorname{conv}(\Gamma)$,

$$\Gamma = (x_1, \dots, x_N) \longmapsto F_p^p(\xi, \Gamma)$$

is differentiables except at a grid Γ_0 except for a λ^d -negligible set of values of ξ , namely $\cup_{I \in \mathcal{I}(\Gamma)} \partial D_I(\Gamma)$.

 \triangleright Hence, if X has an absolutely continuous distribution,

 $\Gamma \longmapsto \mathbb{E}(F_p^p(X, \Gamma))$ is differentiable

with gradient at Γ given by

$$\mathbb{E}\Big(\frac{\partial F_p^p}{\partial \xi}(X,\Gamma)\Big)$$

 \triangleright Provides a stochasic gradient descent procedure (counterpart of CLVQ) or a couterpart of randomized Lloyd's procedure.

Figure: Dual Quantization for $\mathcal{U}([0,1]^2)$ and n=8

Figure: Dual Quantization for $\mathcal{U}([0,1]^2)$ and n=12

Figure: Dual Quantization for $\mathcal{U}([0,1]^2)$ and n = 13

Figure: Dual Quantization for $\mathcal{U}([0,1]^2)$ and n=16

Figure: Dual Quantization for $\mathcal{N}(0, I_2)$ and N = 250

Numerical computations: the weights

 \vartriangleright Static weight computation. Let $\Gamma = \{x_1, \ldots, x_N\}.$ How to compute

$$p_i = \mathbb{P}(\mathcal{J}_{\Gamma}^U(X) = x_i)$$
?

By a (possibly massively parallel) Monte Carlo simulation

$$p_i = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^M \mathbb{P}\Big(\mathcal{J}_{\Gamma}^{U_m}(X^{(m)}) = x_i | X^{(m)}\Big)$$

where $(X^{(m)}, U^{(m)}), m \ge 1$ are independent copies of $X \perp\!\!\!\perp U$ and

$$\mathbb{E}\left(\mathcal{J}_{\Gamma}^{U_m}(X^{(m)})|X^{(m)}\right) = \text{barycentric coordinate of } X^{(m)}$$

in "its" simplex $\ni x_i$

In the same way we use the Backward Dynamic Principle for the valuation of Bermuda options:

BDP for Bermuda options

$$\begin{split} &\widehat{V}_n = \varphi_{t_n}(\widehat{X}_n) \\ &\widehat{V}_k = \max\left\{\varphi_{t_k}(\widehat{X}_k); \, \mathbb{E}(\widehat{V}_{k+1}|\widehat{X}_k)\right\}, \ 0 \le k \le n-1, \end{split}$$

so that \widehat{V}_0 yields an approximation to the Bermuda option premium

 $V_0 = \operatorname{esssup}\{\mathbb{E}\,\varphi(X_{\tau}): \tau \text{ is } \{t_0, \ldots, t_n\}\text{-valued stopping time}\}.$

Error bounds

Theorem (P.-Wilbertz 2010)

$$V_k = v_k(X_k)$$
 and $\widehat{V}_k =: \widehat{v}_k(\widehat{X}_k), \ k = 0, \dots, n$

and

$$\|v_k(X_k) - \hat{v}_k(\hat{X}_k)\|_p \le \kappa_{p,p'} \sum_{\ell=k}^n C_{n,\ell}([v]_{Lip}, [P]_{Lip}) \sigma_{p'}(X_k) N_k^{-\frac{1}{d}}$$

where
$$\sigma_{p'}(X_k) = \min_{a \in \mathbb{R}^d} \|X_k - a\|_{p'}$$
 is the $L^{p'}$ -median of $X_k, p' > p$.

 \triangleright Optimization of the quantization tree structure for a given budget N

$$\min_{N_0+\cdots N_n \le N} \sum_{k=0}^n C_{n,k}([v]_{Lip}, [P]_{Lip}) \sigma_{p'}(X_k) N_k^{-\frac{1}{d}}$$

$$\Rightarrow \qquad N_k = \frac{\cdots}{\cdots}, \ k = 0, \dots, n.$$

Numerical experiments I

Example

2*d*-asset (uncorrelated) Black-Scholes model with maturity $T=1,\,11$ exercise dates: $k/10,\,k=0,\ldots,10,$ and

$$s_0^i = 40^{\frac{2}{d}}, i = 1, \dots, k, \ s_0^i = 40^{\frac{2}{d}}, i = k + 1, \dots, d, \ r = 0.05,$$

$$\sigma_i = 0.2, i = 1, \dots, d, \ \delta_i = 0.05, i = 1, \dots, k, \ \delta_i = 0.0, \ i = k + 1, \dots, d.$$

for a geometric exchange put option

$$\varphi(S_t^1, S_t^2) = \left(\prod_{i=1}^k S_t^i - \prod_{i=k+1}^d S_t^i\right)_+.$$

This can be reduced for any d to a 2-dim exchange option. Hence reference values are available using a Boyle-Evnine-Gibbs tree with 10 000 time steps. Printems's paradigm: log-log plots for true rates

Figure: Log-Log plot of both quantization methods in dimension 2

Figure: Log-Log plot of both quantization method in dimension 4

	2d = 2	2d = 4
Voronoi Quantization	0.73	0.36
Dual Quantization	0.86	0.38

Table: Rates of convergence for the exchange option.

 \triangleright We proceed a (heuristic) Richardson-Romberg extrapolation on the (guessed) error expansion.

$$\mathbb{E} F(X) \approx \mathbb{E} F(\widehat{X}) + \kappa N^{-\alpha}$$

 \triangleright We extrapolate the unknown κ using two different grids sizes N_1 and N_2 . As a result, we obtain in the above setting for

$$\hat{P}_0^{\text{Rom}} = \hat{P}_0^{N_1} + \frac{\hat{P}_0^{N_1} - \hat{P}_0^{N_2}}{N_2^{-\alpha} - N_1^{-\alpha}} N_1^{-\alpha}$$

Figure: Convergence of the extrapolated quantization methods for the geometric exchange option in dimension 2

Figure: Convergence of the extrapolated quantization methods for the geometric exchange option in dimension 4

Suggestion: Adopt the mid-price $0.5 \times (Price_{VQ} + Price_{DQ})$ computed on an optimal Voronoi quantization tree.

Bermuda: Numerical experiments II

Example

2-asset Black-Scholes model with

$$s_0^1 = s_0^2 = 40, r = 0.05, \sigma_1 = 0.2, \sigma_2 = 0.3, \rho = 0.5, K = 40,$$

for a put on the min, i.e. payoff

$$\varphi(S_t^1, S_t^2) = (K - \min\{S_t^1, S_t^2\})^+.$$

Bermuda: Numerical experiments II

Example

2-asset Black-Scholes model with

$$s_0^1 = s_0^2 = 40, r = 0.05, \sigma_1 = 0.2, \sigma_2 = 0.3, \rho = 0.5, K = 40,$$

for a put on the min, i.e. payoff

$$\varphi(S_t^1, S_t^2) = (K - \min\{S_t^1, S_t^2\})^+.$$

As underlying Markov process we have chosen a 2-dimensional Brownian Motion with correlation $\rho.$

Bermuda: Numerical experiments II

Example

2-asset Black-Scholes model with

$$s_0^1 = s_0^2 = 40, r = 0.05, \sigma_1 = 0.2, \sigma_2 = 0.3, \rho = 0.5, K = 40,$$

for a put on the min, i.e. payoff

$$\varphi(S_t^1, S_t^2) = (K - \min\{S_t^1, S_t^2\})^+.$$

As underlying Markov process we have chosen a 2-dimensional Brownian Motion with correlation $\rho.$

Reference values still computed using a Boyle-Evnine-Gibbs tree with 10.000 timesteps.

Martingale Adjustment

 \triangleright If the structure process $(X_k)_{0 \le k \le n}$ is a martingale (...) and $X_0 = x_0$, the attached quantization trees loose this property.

- \triangleright One idea is to restore the martingality by moving the grids Γ_k :
- Define by a backward induction $\widetilde{\Gamma}_n = \Gamma_n$ and for every $k = 0, \ldots, n-1$,

$$\widetilde{\Gamma}_k = \left\{ \widetilde{x}_1^k, \dots, \widetilde{x}_{N_k}^k \right\} \quad \text{where} \quad \widetilde{x}_i^k = \sum_{j=1}^{N_{k+1}} p_{ij}^k \widetilde{x}_j^{k+1}, \ i = 1, \dots, N_k.$$

- Re-center the grids by setting

$$\Gamma_k^{mart} = \widetilde{\Gamma}_k + x_0 - \widetilde{x}_0.$$

 \triangleright The resulting quantization tree $(\Gamma_k^{mart}, \mathbf{p}^k)_{0 \le k \le n}$ has the distribution of a martingale starting at x_0 at time 0. (It is observed that the translation $x_0 - \tilde{x}_0$ is negligible in practice).

Numerical aspects ... to Bermuda options Martingale Adjustment: numerical experiments...

Bermudan option: #exercise days: 10

including Longstaff-Schwartz by Premia

Conclusion / Summary

• Interesting and challenging extention of regular Quantization

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid
- Represented in the Euclidean case by the dual concept of Voronoi tesselations: the Delaunay triangulation

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid
- Represented in the Euclidean case by the dual concept of Voronoi tesselations: the Delaunay triangulation
- Yields very promising results in first numerical applications

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid
- Represented in the Euclidean case by the dual concept of Voronoi tesselations: the Delaunay triangulation
- Yields very promising results in first numerical applications
- Further applications in optimal grid generation, adaptive grid refinements possible

- Interesting and challenging extention of regular Quantization
- Provides a stationarity, which holds independently of the choice of the quantization grid
- Represented in the Euclidean case by the dual concept of Voronoi tesselations: the Delaunay triangulation
- Yields very promising results in first numerical applications
- Further applications in optimal grid generation, adaptive grid refinements possible
- Application to 3-factor models, etc.

References I

V. Bally and G. Pagès.

Error analysis of the optimal quantization algorithm for obstacle problems. *Stochastic Processes and their Applications*, 106:1–40(40), July 2003.

S. Graf and H. Luschgy.

Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics $n^0 1730$. Springer, Berlin, 2000.

R.M. Gray and D.L. Neuhoff.

Quantization. IEEE Trans. Inform., 44:2325–2383, 1998.

G. Pagès and B. Wilbertz.

Optimal delaunay and voronoi quantization schemes for pricing american style options.

LPMA-1425, to appear in *Numerical methods in Finance* (R. Carmona, P. Hu, P. Del Moral, .N. Oudjane eds.), Springer, 2012, 2009.

G. Pagès and B. Wilbertz.

Intrinsic stationarity for vector quantization: foundations of dual quantization. Technical report, LPMA-1393, 2010.

G. Pagès and B. Wilbertz. Sharp rate for the dual quantization problem. Technical report, LPMA-1402, 2010.

V. T. Rajan.

Optimality of the delaunay triangulation in \mathbb{R}^d .

In SCG '91: Proceedings of the seventh annual symposium on Computational geometry, pages 357–363, New York, NY, USA, 1991. ACM.