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Quantization for non linear problems: the «

From optimal stopping. ..

> Dynamics: Let (Xt)ieco,m) be a quasi-left continuous cadlag dynamics, say
dX; = b(t, X;)dt + o(t, Xo)dW; + k(t, X1 )dC:, Xo = ze R?
where are defined on a probability space (2,4, P),

o W = (Wi)iefo,1) is g-dimensional Brownian motion,

o ¢ = (Ct)teqo,r) is a martingale Lévy process with ¢ = 0 and Lévy measure v on

R4\ {0} satisfying / |z|Pv(dz) < 400, pe (1, 400).
[z]=1
o The functions b, o, « satisfy
b:[0,7] x R* = R?, 0,k :[0,T] x R* — M(d, ¢, R) are continuous,

Lipschitz in z uniformly in t€ [0, T].

> Obstacle/reward process: (h(t, X¢)sejo,r)) where h: [0,7] x R* — R? with
polynomial growth

|h(t, X:)| < C(1+ |z]"), zeR%re(0,p).

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



Quantization for non linear problems: the origins Optimal stopping

> Optimal stopping problem... We consider the Snell enveloppe

Y, := P- supess {E(h(T, X,) |.7-'2’V’<), re T[f;‘;?‘} > h(t, X) (1)
where T[tfgc ={r: Q- [,T], 7 FYVC_stopping time}.

The Snell enveloppe represents the honest optimal mean gain when starting to play
at time ¢ if the reward is h(s, X) when leaving the game at time s€ [t,T]. Under the
above assumption

7 =inf {s€ [t,T], Ys = h(s,X;s)} is an optimal stopping time

i.e.
Y. = E(h(rt*7 X)) fthC)

t

. (LPMA-UPMCQC) Quantization: Voronoi vs Delaunay



Quantization for non linear problems: the Optimal stopping

...to Variational Inequaliti

Assume £ = 0 (No jump component).

Theorem Under appropriate assumptions and in an appropriate sense
lft = u(t, X t)

where 1 satisfies

du

ot




Quantization for non linear problems: the origins Optimal stopping

Time discretization

Let T
ty =k—, k=0,...,n.
n

> (th)ogkgn is an (ftz)ogkgn—MarkOV chain with transition

Pk(x7 dy) = ]P(Xt"

n €dy| Xep = ).

> The (P, (Fip)o<k<n)-Snell envelope (= Bermuda options)
Yip i= P- supess {E(h(r, X,) |]-'thV’C>, re gg,T} > h(t, Xep) (2)

where Tp5 r = {7: Q — {tf,... . ta =T}, 7 (ft‘g'c)oggn—stopping time}.

(LPMA-UPMC)



Quantization for non linear problems: the origins Optimal stopping

> The Backward Dynamic Programing Principle reads
Yip = max (h(tZ,Xt;;),]E(YtEH \ﬁZth)) Y, = h(T, X,),
so that 17%1 = ﬂk(XtLl), k=0,...,n satisfying

k() = max (h(tZ,a:), P, (uk+1)(x)), n(z) = (T, z).

(LPMA-UPMC)



Quantization for non linear problems: the «

> The Backward Dynamic Programing Principle reads
Yip = max (h(tZ,Xt;;),]E(ﬁEH \ﬁZXtE)) Y, = (T, X,),
so that 17%1 = ﬂk(XtLl), k=0,...,n satisfying
() = max (h(t}, @), Pulurn)(2) ), @ (x) = (T 2).
> THEOREM (Bally-P., SPA 2003) (a) If h is Lipschitz in z, uniformly in ¢t € [0, 77,

T
< Coopn,0, T\ —
P n

(b) If furthermore h is semi-convex i.e. there exists 65 [0, 7] x R? — R? bounded s.t.

Vpe (0,7), H Jmax [Yip — Yip|

3p >0, Va,ye R, h(t,y) — h(t,z) > (n(t,2)|y — x) — ply — z|?

then

= T
max |Y,577—Y;§"‘ SCbUNhT7~
k kL, AL

0<k<n

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



> Gaps:




> Gaps:
e [hedge? ...]




Quantization for non linear problems: Optimal

> Gaps:
e [hedge? ...]

e Simulation of the Markov chain (X )o<k<n especially when d or g > 2




on for non lin

> Gaps:
e [hedge? ...]
e Simulation of the Markov chain (X )o<k<n especially when d or g > 2

e Computation of conditional expectations. ..




Quantization for non linear problems: the origins = Simulatable Markov chain: Euler s

Simulatable Markov chain: Euler scheme

The Euler scheme of (SDE) is defined by
T

X, =X+ D06 o Xy, - W)
+ Rt X)) (G, — Gp)
o If K =0, it is always a simulatable Markov chain with transition

P (z, dy) = P(XZ%H € dy| XZ% =1z)

/T
S Cb,U,T -
p n

and

|, me
k=0,..

Ln

v
|Xt2’ - Xt;

al. (LPMA-UPMC) Quantization: Voronoi vs Dela



Quantization for non linear problems: the « ins  Simulatable Markov chain: Euler scheme

> The Backward Dynamic Programing Principle reads
Vip = max (h(tﬁ,X{%),E(YtzH \ﬁézf(ﬁkl)), Y, = h(T,X7),
so that Yf? = ﬂk()_([%), k=0,...,n satisfying

an(w) = max (h(t, ), P™ (i) (@), @) = h(T, ).

(LPMA-UPMC)



Quantization for non linear problems: the « ins  Simulatable Markov chain: Euler scheme

> The Backward Dynamic Programing Principle reads
Yip = max (h(t};,X{%),E(YtzH \.ﬁég)?&)), Y, = h(T,X7),
so that Yf? = ﬂk()_([%), k=0,...,n satisfying
an(w) = max (h(t, ), P™ (i) (@), @) = h(T, ).

...and corresponds to an a “Bermuda like” optimal stopping problem (with X
instead of X).

(LPMA-UPMC)



Quantization for non linear problems: the origins Simulatable Markov chain: Euler scheme

> The Backward Dynamic Programing Principle reads
Vip = max (h(tZ,X&L),E(YtEH \ﬁgxgk)), Y, = h(T,X7),
o that Ytn = (X] ) k=0,...,n satisfying

an(w) = max (h(t, ), P™ (i) (@), @) = h(T, ).

..and corresponds to an a “Bermuda like” optimal stopping problem (with X
instead of X).

> THEOREM (Bally-P., SPA 2003) If h is Lipschitz in z, uniformly in ¢€ [0, T7,

/T
<Cboth
n

vpe (0,r) H max. \Ytn —Ytn|

Remark. No loss w.r.t. the Euler scheme itself.

(LPMA-UPMC) Quantization: Voronoi vs Delaunay



Quantization for non linear problems: the « ins  Simulatable Markov chain: Euler scheme

e Otherwise it depends on the simulability of ¢ (see Protter-talay, Jacod,
Jacod-Protter, etc for convergence rate(s) of the Euler schmes existence of
approximate schemes.

e In case of non simulability: design of approximate schemes: Roszincky’s
“Wienerisation of small jumps”, (see Roszincky, Cohen, Rubenthaler, Panloup,
etc). ..

(LPMA-UPMC)



Quantization for non linear problems: the origins = Discrete time “Bermuda” Markov framework

Abstract “Bermuda” Markov optimal stopping framework

> Let (Xk)o<k<n be an R%-valued homogeneous Feller Markov chain defined on a
probability space (€2, .4, P) with transition

P(z,dy) =P(Xpt1€dy| X =2), k=0,...,n— 1.

Filtration : 7 = 0(Xo,..., X&), k=0,...,n.
MArkov property :

E(f(Xp1) [ FXk) = E(f(Xk41) [ Xi) = /Rd f(y)P(z,dy) := Pf(x).

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay



Quantization for non linear problems: the « Discrete time “Bermuda” Markov framework

Abstract “Bermuda” Markov optimal stopping framework

> Let (Xk)o<k<n be an R%-valued homogeneous Feller Markov chain defined on a
probability space (€2, .4, P) with transition

P(z,dy) =P(Xpt1€dy| X =2), k=0,...,n— 1.

Filtration : 7 = 0(Xo,..., X&), k=0,...,n.

MArkov property :

E(f(Xp1) [ FXk) = E(f(Xk41) [ Xi) = /Rd f(y)P(z,dy) := Pf(x).

> PROBLEM TO BE SOLVED: Compute the premium of a Bermuda option with an

integrable payoff (hk(Xk)) i.e.
0<k<n

the right to receive hi(Xx) once between k = 0 and k = n.

Stopping time = “honnest stopping rule”.

7:Q—-{0,...,n}, {r=k}eFS, k=0,...,n.

Vo = vo(Xo) = esssup{E(hT(XT) \.7-—5(), T stopping time}

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



Quantization for non linear problems: the «

...and more generally, its premium at time k,

Vie = v (Xk) = esssupTeTk,nIE(hT(XT) | .7:;5(), k=0,...,n.

where
Thn = {7— :Q — {k,...,n} ]:X—stopping time}.

(Vi)o<k<n is called the Snell envelope of (hi(Xk))o<k<n-

(LPMA-UPMC)



Quantization for non linear problems: the « Discrete time “Bermuda” Markov framework

Backward Dynamic Programing Principle

> The (P, FX)-Snell envelope (Vi)o<k<n of the so-called obstacle process
(h(Xk))o<k<n satisfies the BDPP

Vi = hn(Xn), Vi = max (he(X0), E(Vesr [FEX0))
or equivalently (in distribution) Vi = vi(Xy) where

VUn = hn vk:max(hk,kaH),k:O,.,,,nfl.

> Alternative approach (cf. Longstaff-Schwarz, 1993) : the BDPP approach for
optimal stopping times

Tk = min{f > k:, Vk = hk(Xk)}, k= O, N 1
which satisfy
Tk = kl{hk(xk)>]E(Vk+1 | x5} T Tk+11{hk(xk)S]E(Vk+1 | Xk)}-

and Vi = E(hp (Xry) | Xi).

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache
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Quantization for non linear problems: the origins = Conditional expectation computation

Conditional expectation computation

> In both cases the point is to compute/estimate
E(Vk+1 |Xk) = E(Uk+1(Xk+1) |Xk) = ]EthJrl (X7k+1) |Xk), k= 0, cee, N — 1

Two approaches have been developed

e Randomization of the BDPP (ex: regression methods, Monte Carlo-Malliavin)

@ Structural approximation of the Markov dynamics (ex: tree methods)

al. (LPMA-UPMC) Quantization: Voronoi vs Dela



Quantization for non linear problems: the origins = The paradigm of Quantized BDPP

Markov Dynamics approximation: the paradigm of Quantized BDPP

> TWO-FOLDED NATURAL IDEA

(LPMA-UPMC)



Quantization for non linear problems: the origins = The paradigm of Quantized BDPP

Markov Dynamics approximation: the paradigm of Quantized BDPP

> TWO-FOLDED NATURAL IDEA
e Step 1 (Markov dynamics Approximation): Approximation of Xj
Xi: (AP) — R Xpo: (Q,A,P) — Ty o= {azf,..., a2k, }

where N
Xk:ﬂ-k(Xlek)a k:()a"'an7

where (Ug)o<k<n is an i.i.d. sequence of U([0, 1]%)-distributed ezogeneous (=
simulated) r.v.’s.

Note that ()?k)ogkgn is usually NOT a Markov chain.

al. (LPMA-UPMC) Quantization: Voronoi vs D



n for non linear problemn > 0 a 0 antized BDPP

Malkov Dynanncs approximation: the paradigm of Quantized BDPP

> TWO-FOLDED NATURAL IDEA

e Step 1 (Markov dynamics Approximation): Approximation of Xj
ke (QAP) — R v Xt (A P) — Ty = {af,... 2k )
where N
XkZﬂ'k(Xk,Uk), k=0,...,n,
where (Ug)o<k<n is an i.i.d. sequence of U([0, 1]%)-distributed ezogeneous (=
simulated) r.v.’s.
Note that ()?k)ogkgn is usually NOT a Markov chain.
e Step 2: Force the Markov property in the BDPP:

Vn = h()’(\'n), ‘7k = max (hk()?k),E(‘?k+l |5€k)>

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay



Quantization tree = Quantization tree algorithm

Resulting tree algorithm

> THE RESULTING ALGORITHM:

~ ~

Vk:ﬁk(Xk), k:0,...,n

with
Vi {1, Nk, Bu(ok) = max (hu(ah), P(os) (aF) )

where P displays on Borel test functions

Npt1
5 k ~kk1 g k41
P(f)() = Y w
=1
%f{/kJrl = ]P’()?k-i,-l = x;ﬁl |)?k = xf)
> Markov Dynamics approzimation: The matrices 7*!, k£ =0,...,n need to be

computed by a massive Monte Carlo simulation.

(LPMA-UPMC)



Quantization Quantization tree algorithm

Figure: A typical 1-dimensional quantization tree

@ A quantization tree is not re-combining.

o But its size is designed a priori (and subject to possible optimization).

(LPMA-UPMC)



Quantization tree =~ Cond al e ctation approximation bv auantization

Conditional expectation approximation by quantization

>The natural idea is to use the approximation
E(f(X2) | X1) = E(f(X2) | X1).
since

]E(f()?ﬂ | X1 = i) = _ijf(w?)

is computable.

> Can we control in L? the induces error based on the spatial discretization L” error
?

[ECe1x) ~EFEE18)]| <012 = Kl 100 = F(Rl, ) 7777

. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



Quantization tree Conditional expectation approximation by quantization

The key is the following one-step estimate

Proposition (Key lemma)

Let p€ [1,+00). Assume that || X1||p + || X2|lp < +00. Assume P(x,dy) = Pi(z,dy)
uniformly propagates Lipschitz functions i.e., for every Lipschitz continuous
f:R* SR,
[PflLip < [PlLip[f]Lip-
(a) If p=2, then

HMNXMXQ—EG@ﬂﬁﬁhﬂvmdﬂﬂ%&—fﬂﬂﬂvﬂﬂ—ﬂfﬂﬁf

(b) If p#2

B (F(x2)10) = B(F(R2)1 %)

|, < UluolPlussllXs = Ral, + [1£(X2) = £l

PAGES et al. (LPMA-UPMOQ) Quantization: Voronoi vs Delaunay Cadarache 19 / 83



Proof of (a). Keep in mind )/(\'1 = 71(X1,U1). For notational convenience we write
7u(x) for m (z,u).




Quantization tree Conditional expectation approximation by quantization

Proof of (a). Keep in mind )/(\'1 = 71(X1,U1). For notational convenience we write
7u(x) for m (z,u).

STEP 1 Using that U is independent of (X1, X2)
B(F(R2)1%) = [ B((R)lma(X0)) B (@)
R?0
so that

P

2

[E(r(x2)Ix1) — E(/(R2)1%1)

B ([, E(()1%) - E((Ralma (1) Py () )

2

IN

[ E(BUR)1X) ~ EG(Elm () Pon (dw).

by Jensen’s Inequality.

PAGES et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



Quantization tree Conditional expectation approximation by quantization

STEP 2
E(f(X2)|X1) = E(f(R2)mu(X1)) = [E(F(X2)IX1) = B(E(f(X2)|X1) 7 (X1))]

F[E(f(X2) (X)) — E(F(R2)lmu(X1))]

where we first used that o(m.(X1)) C o(X1). The orthogonality follow from the very
definition of conditional expectation E( . |o (7 (X1)))-

Pythagorus Theorem implies

[E(f (X2)|X1) —B(f (X2)|mu (X1))||2

E(F (X2)|X1) — E(£(X0) (X)) |2
HIE(F(X2) = £(R2) ma(X0) |3
B(F(X2)|X1) — E(f(Xa) [ (X0) |2
1 (X2) = F(X)3

by the contraction property. Now, using again that o(m.(X1)) C o(X1), we get

IN

E(f(X2)|X1)— E(f(X2)|mu(X1))

B(f(X2)|X1) ~E(E(f£(X2)|X1) m (X))
Pf(X1) = E(Pf(X1)|mu(X1))

so that ...

5 al. (LPMA-UPMOQ) Quantization: Voronoi vs Delaunay Cadarache



Quantization tree Conditional expectation approximation by quantization

IPF(X1) = E(Pf(X1)lma(X1)) 3

(7 (x2)133) = B(F (Xa) I (X))

IN

IPf(X1) = Pf(ma(X1))|l3

IN

[Pflip 1X1 — mu(X2)]5 -

Hence

- 2 9
E(B(f(X2)|X1) ~E(f(£2)|mu(X1)) < [Fluip (I1X2 = Kal3 +[Pluip X1 = 7 (X1)]3 )
Integrating with respect to Py, (du) (i.e. the exogenous innovation) yields

I (f(X2)|X1) —E(f(X2)| X))

2 A~
| < (1) = FRE+ s [Pl X2 = mu(X0)1)
since, by the chain rule for conditional expectation,

1% = Kl = [ 1% = m(X0) 2P (). 0
0

PAGES et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



Quantization tree = Conditional expectation approximation bv auantizat

A priori error bounds

Then we have the following general result about the rate of approximation of the
Snell envelope (Vi)o<k<n by its “quantized” counterpart (Vi)o<k<n.

Theorem (Bally-P.-Printems ’01, P.-Wilbertz ’10)

Let pe [1,+00). Assume that all the functions hi, k =0,...,n, are Lipschitz
continuous. and that the Py(z,dy) uniformly propagate Lipschitz functions i.e.

[Plusp = | max_[Piluip < oo and max (||Xk|| AR ) < +oo.

(a) If p =2, then, for every ke {0,...,n},
3
R w 2 ~
nw—WMS%{ZX@AWMJMmg|m—mﬁ>
L=k

(b) If p # 2, then for every ke {0,...,n},

Vi = Vill, <2 Cre([Pluip, [heluip) | Xe — Xell,
L=k

where  Crux([Plup. [0 ]uip) = max (IPILig heluip)-

. (LPMA-UPMCQ) Quantization: Voronoi vs Delaunay



Quantization tree  Conditional expectation approximation bv auantization

Proof (not so sketchy)




ization tree = Conditional expectation approximation bv auantiz

Proof (not so ske

Proof. Step 1. The functions vy, are Lipschitz.
Vi =v(Xg), k=0,...,n,
where the functions vy are Lipschitz continuous satisfying
vp =hy, and vy = max(hg, Pvks1), k=0,...,n— 1.
In particular, for every k = 0,...,n (with the convention [vn+1]Lip = 0),

[ve]Lip < max ([hr]Lip, [PlLip[vk+1]Lip)

since | sup;c; ai — sup; ¢y bi| < sup;c; |a; — bil.
Standard induction yields

[ve]eip < max ([P]{;p’“[hg]mp), k=0,...,n.

k<e<n




Quantization tree = Conditional expectation a oximation bv auantizat

Proof (not so sketchy)

Proof. Ster 1. The functions vy, are Lipschitz.
Vi =v(Xg), k=0,...,n,
where the functions vy are Lipschitz continuous satisfying
vp =hy, and vy = max(hg, Pvks1), k=0,...,n— 1.
In particular, for every k = 0,...,n (with the convention [vn+1]Lip = 0),
[ve]Lip < max ([he]Lip, [PlLip[vk+1]Lip)

since | sup;c; ai — sup; ¢y bi| < sup;c; |a; — bil.
Standard induction yields

[ve]eip < max ([P]ﬁpk[hg]mp), k=0,....n

k<t<n
STEP 2.
Vi = Vil? < max (Jhe(Xe) = hie(X)|%, [E(Viera| Xx) — E(Vis1 | X0)[?)
< (X)) = B (X)) + [E (e (Xeg1) | Xk) — E@k 1 (Xk1)) | Xe) |
so that by the key lemma
| Vi — Vk”j < [Pl || Xk — Xk”j + [Pug+1]uipl| X& — X}ch + ||Vegr — ‘7k+1||§

The result follows from the bounds on [Pvk41]Lip and the discrete Gronwall lemma.
O

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



on approximation bv auantizat

Applications to diffusions: the Euler scheme (homogeneous)

[Homogeneous case for expository].
e For the above jump diffusion (when p > 2), the Euler scheme with step % satisfies
E(XPY X
n n . ,
= Ely—a+ 0 ~ @) + (0(¥) ~ o @)Wz + (x(y) — 5())Cz
T2 T
= ly—zf+ (=) 1b(y) = b(@)[” + lo(y) = o(z)[?

+((y) — () ECE

IN

T
|y - $|2 (1 + 2C’b,U,N,T*) .
n
so that
1P () (@) = P (H) ()] < il XY = X0 < [flup | XY = X2
and finally
_ T
[P(n)]Lip S (1 + Cb,U,)ﬁ,TE)'

Conclusion:

sup max [P )] < o T
0<k<n

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



Quantization tree Conditional expectation approximation by quantization

Proposition (Bally-P.-Printems ’03 [BP03], Wilbertz-P., (2010) [PW09])

We consider the optimal stopping problem related to a Brownian diffusions (k =0)
with coefficient b and o and with obstacle function h(t,z), all assumed to be Lipschitz
in 2 € R uniformly in t€ [0,T).

2 3
T S(n == 2
‘ max |Yt"—Yn| < C\ =+ Coonr E HXt(n)_X(n)t"
0<k<n n = k kg
_(n) _
< XM,
< C(\/ Vi ||y - X )

This strongly suggests to investigate methods to reduce/minimize ‘

‘ the quantization error(s) ‘

HX—)?

..especially when p = 2.

P

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache




Optimal auantization(s)

Optimal quantization(s)

or
How to optimize the approximation of X by X taking at most N values?
We temporarily turn now to this static problem also known as

OpTIMAL (VECTOR) QUANTIZATION. . .

Let I' C R? be a grid with size at most N > 1.

o X

7(X), m: R? = T' (~ Voronoi quantization).

o X =n(X,U), 7 :R¥x [0,1] - T, U 1L X (~» Delaunay (or dual) quantization).

‘ In practice how to optimize the underlying grid I'? ‘

. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



Introduction to Optimal Quantization(s)

Historv
What is Vector Quantization?

e Has its origin in the fields of signal processing in the late 1940’s

@ Describes the discretization of a random signal and analyses the recovery of the
original signal from the discrete one

I 2 7
I— -

1
| 1

e Examples: Pulse-Code-Modulation(PCM), JPEG-Compression
o Extensive Survey about the IEEE-History: [GN9S]

e Mathematical Foundation of Quantization Theory: [GLO00]

al. (LPMA-UPMC)

Quantization: Voronoi vs Delaunay



Introduction to Optimal Quantization(s) = Voronoi Quantizer

Voronoi-Quantization




uction to Optima a izati noi Quantizer

Voronoi-Quantization

> Let X : (2,8,P) — (R4, B ||-||) be a random vector such that

E|| X]|” < 400 for some p € [1,00).

(LPMA-UPMC)



Introduction to Optimal Quantization(s) = Voronoi Quantizer

Voronoi-Quantization

> Let X : (2,8,P) — (R4, B ||-||) be a random vector such that
E|| X]|” < 400 for some p € [1,00).

> Given a (finite) “grid” T' = {1, z2,...,z, } C R we discretize of the r.v. X using
a Nearest Neighbor projection.

o Let (Ci(T)), .,y be a Voronoi partition of R* generated by T, i.e. (Ci(T)) is a

Borel partition of R? satisfying
Ci(T) C {z eRY: ||z —zil| < min |z — :r:]||}
1<j<N

o Let 7p : R? — T the induced Nearest Neighbor projection,

N
§— Z$i10i(r)(§)~

so that
€ = mr (&)l = dist(&, T)

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache






>duction to Optimal Quantization(s) onoi Quantizer

= We define the Voronoi Quantization as

-~

N
R = (X) = 3 wilo,m (X).
1=1




Introduction to Optimal Quantization(s) oronoi Quantizer

Voronoi-Quantization




Introduction to Optimal Quantization(s) oronoi Quantizer

Voronoi-Quantization




Introduction to Optimal Quantization(s) oronoi Quantizer

Voronoi-Quantization




Introduction to Optimal Quantization(s) oronoi Quantizer

Voronoi-Quantization




Introduction to Optimal Quantization(s) Voronoi Quantizer

> The companion functional approximation operator is

F(X") = (F o mr)(X).

It maps F in a stepwise constant (on Voronoi partitions. ..) functions.

(LPMA-UPMC)



Introduction to Optimal Quantization(s) Voronoi Quantizer

> The companion functional approximation operator is

| F(X") = (Fom)(x)]

It maps F in a stepwise constant (on Voronoi partitions. ..) functions.

> If F is Lipschitz continuous
[EF(X) - EF(X")] < [Fluip||X = X|| | = [[dist(X, )|,
and, since £ — dist(&,T") is 1-Lipschitz, one has

sup [EF(X) —EF(X")| = [|X = X"|| = [[dist(x,D)] .

[FlLip<1

(Wasserstein distance between £(X) and the set of I'-supported distributions).

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache
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Introduction to Optimal Quantization(s) = LP-mean auantization e

LP-mean quantization error

> The LP-mean quantization error induced by a grid I' ¢ R? with size
Il|< N, NeN

ep(X:T) = |dist(X, D), = || minflx — ]| 3)
> The optimal LP-mean quantization problem consists in minimizing (3) over all
grids of size |I'| < N.

We define the LP-optimal mean quantization error of level N as

epn(X) 1= inf{H min| X — m||Hp :TCR% M| < N}.

al. (LPMA-UPMC) Quantization: Voronoi vs Dela
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Introduction to Optimal Quantization(s) = LP-mean auantization error

Voronoi-Quantization

One shows the more general optimality result

epn(X) = inf{||X — Z|, : E€ LP(R?), |E(Q)| < N}.

= Voronoi Quantization be provides an optimal LP-mean discretization of X (as
soon as I' is an optimal quantization grid for X...).

= The Nearest Neighbor projection is the coding rule, which yields the smallest
LP-mean approximation error for X. J

Theorem (Kiefer,. .., Cuesta-Albertos, P. (1997))

(a) For every level N > 1, there exists (at least) an LP-optimal quantization grid
V" at level N.

AFN,* AFN’* . . .
®) Ifp=2, E(X | X ) =X (stationarity/self-consistency).
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Introduction to Optimal Quantization(s) Quantization Rates/Zador’s

Rates of Optimal Quantization

> It is easy to check that (everywhere dense sequence. . .)
ep,n(X)—0 as N — oo

At which rate ?

Theorem (Zador’s Theorem)

(a) SHARP ASYMPTOTIC (Zador, Kiefer, Bucklew & Wise, Graf & Luschgy, cf.
il

[GLO0]): Let X € LPT(R?) with distribution Px = p. A% + v.

Then

1 4/(dtp) syd (d+p)/d
i 878 e v (X) = Quua - (el ax?)

N —oo

where QP»H'H = ian N% *€p,N (U([O, 1]d)).

(b) NON-ASYMPTOTIC (Luschgy-P. (2007), cf. []): Let p' > p. There exists Cp .4
such that, for every r.v. R?-valued X

YN >1, epn(X) < Cppa inf | X —ally - N4,
a€R

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache 35 / 83
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Computing optimal grids
Consider for Dy : (R*)" — R the optimization problem (here p = 2)

Dy(z) :=E min ||X — 2> — min .
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Introduction to Optimal Quantization(s) Numerical computation of auantizers

A Side Note on Numerical Computation of Quantizers

Computing optimal grids
Consider for Dy : (R*)" — R the optimization problem (here p = 2)

Dn(x) ::E12ni<nN|\X—wi||2 — min
<i<

se®HN
As soon as ||-]|] is a.s. smooth = Dy is differentiable.
d=1:
=3[ e arae
®i 12

= Evaluation of Voronoi-Cells, Gradient and Hessian is simple ~~
Newton-Raphson

al. (LPMA-UPMC) Quantization: Voronoi vs Dela



Introduction to Optimal Quantization(s) Numerical computation of auantizers

A Side Note on Numerical Computation of Quantizers (p = 2)

d>2: @ Stochastic Gradient Method: CLVQ
o Simulate &1,&2,... independent copies of X
o Generate step sequence 71,72, - -
Usually: step vn, = BL-;-n N0 or v,=n=0
o Grid updating n +— n + 1:
Competition: select winner index: i* € argmin;|al — &, |
el = a4y (e — €n)
Learning: {m;""l =z}, for j # i*.

al. (LPMA-UPMC) Quantization: Voronoi vs Dela



Introduction to Optimal Quantization(s) Numerical computation of auantizers

A Side Note on Numerical Computation of Quantizers (p = 2)

d>2: @ Stochastic Gradient Method: CLVQ
o Simulate &1,&2,... independent copies of X
o Generate step sequence 1,72, ...
Usually: step vn, = BL-;-n N0 or v,=n=0
o Grid updating n +— n + 1:
Competition: select winner index: i* € argmin;|al — &, |

1
Learning: {x?f =k (el —&n)
. n+l ._ n - sk
i = al, for j # *.

@ LLOYD’s algorithm as a randomized fix-point method.
o Initial grid T(®) = {z9,...,2%}
o Usual step : XD o E(X| Xr(n)) ie. mgcn-H) =E(X| xr — xl(cn))
o so that [|X — XT" V|, < |1x — X715
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Introduction to Optimal Quantization(s) Numerical computation of auantizers

A Side Note on Numerical Computation of Quantizers (p = 2)

d>2: @ Stochastic Gradient Method: CLVQ
o Simulate &1,&2,... independent copies of X
o Generate step sequence 1,72, ...
Usually: step vn, = BL-;-n N0 or v,=n=0
o Grid updating n +— n + 1:
Competition: select winner index: i* € argmin;|al — &, |

1
Learning: {x?f =k (el —&n)
. n+l ._ n - sk
i = al, for j # *.

@ LLOYD’s algorithm as a randomized fix-point method.
o Initial grid T(®) = {z9,...,2%}
o Usual step : XD o E(X| )?F(n)) ie. mgcn-H) =E(X| xr — xl(cn))
o so that [|X — XT" V|, < |1x — X715

@ “Batch” approach [...]

al. (LPMA-UPMC) Quantization: Voronoi vs Dela
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PAGES et al. (LPMA-UPMC)



Quanti i d Cubature A Cubature formulae

Assume that we have access to the Voronoi-Cell weights

wz(l") = ]P(X S Cl(F)), i=1,...,N.

(LPMA-UPMC)



Quantization and Cubature =~ A Cubature formulae

Quantization for Cubature

Assume that we have access to the Voronoi-Cell weights
wz(l") = ]P(X S Cl(F)), i=1,...,N.

— The computation of IEF()?F) for some Lipschitz continuous F : R* — R becomes
straightforward:

N
EF(X") =Y wi(D)F(xs).

=1
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Quantization and Cubature =~ A Cubature formulae

Quantization for Cubature

Assume that we have access to the Voronoi-Cell weights
wz(l") = ]P(X S Cl(F)), i=1,...,N.

— The computation of IEF()?F) for some Lipschitz continuous F : R* — R becomes
straightforward:

N
EF(X") => wi(T)F ().
i=1
> As a first error estimate, we already know that

[EF(X) —EF(X")| < [Flup | X — X7

. (LPMA-UPMCQC) Quantization: Voronoi vs Delaunay Cadarache 39 / 83



Quantization and Cubature = Error estimates

Further Error Estimates

Moreover

inf{ sup |EF(X)—EF(Y), Y(Q)cr}
[FlLip<1
— s [EF(X)—EF(X") =E|X - X7
[FlLip<1

i.e. Quantization is optimal for the class of Lipschitz functions.

al. (LPMA-UPMC) Quantization: Voronoi vs Dela



Quantization and Cubature = Error estimates

Further Error Estimates

Moreover

mf{ sup |EF(X)—EF(Y), Y(Q)CF}

[FlLip<1

= sup |[EF(X)-EF(X")|=E|X - X"|
[FlLip<1

i.e. Quantization is optimal for the class of Lipschitz functions.

Second order rate

> If Fe Cﬁip and the grid I is stationary, i.e.
X" =E(x|X"),
then a Taylor expansion yields

EF(X)-EFX")| = [EF(X)-EFX") -EDFX").(X - X")|
[DF)uip - ElIX — XT|I%.

7\

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache






> Furthermore, if F' is convex, then Jensen’s inequality implies for stationary I"

EF(X") <EF(X).
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Applications for optimal quantization grids

@ Obstacle Problems: Valuation of Bermuda and American options, Reflected
BSDE’s (Bally-P.-Printems ’01, '03 et ’05, Illand '11)

e )-Hedging for American options (ibid. ’05)
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@ Obstacle Problems: Valuation of Bermuda and American options, Reflected
BSDE’s (Bally-P.-Printems ’01, '03 et ’05, Illand '11)
e )-Hedging for American options (ibid. ’05)
e Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing

options (Bouthemy-Bardou-P.’09). . .on massively parallel architecture (GPU,
Bronstein-P.-Wilbertz, '10)
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e Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing

options (Bouthemy-Bardou-P.’09). . .on massively parallel architecture (GPU,
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Further Applications

Applications for optimal quantization grids

@ Obstacle Problems: Valuation of Bermuda and American options, Reflected
BSDE’s (Bally-P.-Printems ’01, '03 et ’05, Illand '11)

e )-Hedging for American options (ibid. ’05)

e Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing
options (Bouthemy-Bardou-P.’09). . .on massively parallel architecture (GPU,
Bronstein-P.-Wilbertz, '10)

o Non-linear filtering and stochastic volatility models (P.-Pham-Pprintems ’05,
Pham-Sellami-Runggaldier’06, Sellami 09 &’10, Callegaro-Sagna 10)

e Discretization of SPDE’s (stochastic Zakal & McKean-Vlasov equations)
[Gobet-P.-Pham-Printems ’07]
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Quantization and Cubature = Apbplications

Further Applications

Applications for optimal quantization grids

Obstacle Problems: Valuation of Bermuda and American options, Reflected
BSDE’s (Bally-P.-Printems ’01, '03 et ’05, Illand '11)

0-Hedging for American options (ibid. ’05)

Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing
options (Bouthemy-Bardou-P.’09). . .on massively parallel architecture (GPU,

Bronstein-P.-Wilbertz, '10)

Non-linear filtering and stochastic volatility models (P.-Pham-Pprintems ’05,

Pham-Sellami-Runggaldier’06, Sellami 09 &’10, Callegaro-Sagna 10)

Discretization of SPDE’s (stochastic Zakai & McKean-Vlasov equations)
[Gobet-P.-Pham-Printems ’07]

Quantization based Universal Stratification (variance reduction) [Corlay-P. ’10]
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Quantization and Cubature = Apbplications

Further Applications

Applications for optimal quantization grids

@ Obstacle Problems: Valuation of Bermuda and American options, Reflected
BSDE’s (Bally-P.-Printems ’01, '03 et ’05, Illand '11)

e )-Hedging for American options (ibid. ’05)

e Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing

options (Bouthemy-Bardou-P.’09). . .on massively parallel architecture (GPU,
Bronstein-P.-Wilbertz, '10)

o Non-linear filtering and stochastic volatility models (P.-Pham-Pprintems ’05,
Pham-Sellami-Runggaldier’06, Sellami 09 &’10, Callegaro-Sagna 10)

e Discretization of SPDE’s (stochastic Zakal & McKean-Vlasov equations)
[Gobet-P.-Pham-Printems ’07]

e Quantization based Universal Stratification (variance reduction) [Corlay-P. *10]
o CVaR-based dynamical risk hedging [Bardou-Frikha-P., ’10), etc.
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Quantization and Cubature = Apnpl

First conclusions on Voronoi quantization

Voronoi quantization is optimal for “Lipschitz approximation”
e Paradox: it does not preserve regularity

@ Second order (stationarity) : (almost) only optimal grids = lack of flexibility

Download free pre-computed grids of N(0; I4) distributions at the URL
www.quantize.maths-fi.com

ford=1,...,10 and N =1,...10%.

e and many others items related to optimal quantization.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay



Dual Quantization = Motivation and idea

Starting with dual Quantization (d =1 and d > 2)

P.-Wilbertz 09 JCF and ’12 SINUM & Num. Meth. in Fin., Springer
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Dual Quantization Motivation and idea
Starting with dual Quantization (d =1 and d > 2)
P.-Wilbertz 09 JCF and ’12 SINUM & Num. Meth. in Fin., Springer

> No longer maps X (w) to its nearest neighbor, but splits up the projection
randomly between the “surrounding” neighbors of X (w).

> Let “I' = {X,..., X}” in the figure below.
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Dual Quantization Motivation and idea
Starting with dual Quantization (d =1 and d > 2)
P.-Wilbertz 09 JCF and ’12 SINUM & Num. Meth. in Fin., Springer

> No longer maps X (w) to its nearest neighbor, but splits up the projection
randomly between the “surrounding” neighbors of X (w).

> Let “I' = {X,..., X}” in the figure below.
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Dual Quantization = Stationarv Operators

Random splitting operator

> Let r={z1,...,2a41} C R? be a d-simplex in R,
i.e. T1,...,Tqr1 are affinely independent.

> Let A(§) be the barycentric coordinates of £ € conv(7).

Definiton of the

JY iconv(r) — T

i—1 i
—~  {Tynou<z y©)
j=1 j=1

where U ~ U([0,1]) is defined on an exogeneous space (€20, So, Po).
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Dual Quantization = Stationarv Operators

Random splitting operator

> Let r={z1,...,%a41} C R? be a d-simplex in R,
i.e. T1,...,Tqr1 are affinely independent.

> Let A(§) be the barycentric coordinates of £ € conv(7).

Definiton of the

JY iconv(r) — T

=1

i—1 i
{sxno<v<s r©})
j=1 j=1

where U ~ U([0,1]) is defined on an exogeneous space (€20, So, Po).

v
> This 7-splitting operator always satisfies a mean preserving property:
d+1
U
Eo (7 (€)) =D _Xi(€) i =€ V&€ conv(7). (@)
i=1

. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache 46 / 83



Dual Quantization = Stationarv Operators

Functional approximation operator

> The 7-splitting operator is in fact a probabilistic representation of the classical
interpolation operator

d+1

1. (F) = ¢ — Eo(F(TY (€))) Z i x;), V&€ conv(r). (5)

P1. J-(F) is affine on conv(r).

P2. If F is convex J,(F) > F.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay



Dual Quantization = Stationarv Ope

(Not so) naive extension to triangulations: Cubature I

> The notion of 7-splitting operator can be extended to any given triangulation Tr of
agrid ' = {z1,...,25}, so that (4) and (5) hold for any & € conv(I") for J7. and Jz;..

Such an operator J7;. also satisfies

P’1. Jz (F) is continuous, piecewise affine on conv(T").
P’2. If F is convex Jz. is convex on conv(I') and J,(F) > F.

P3. Random splitting operators preserve the conver order on distributions, namely
(VF:conv(F) conver R EF(X) < IEF(Y))
— (VF:conv(P) M R EF (T (X)) < IEF(JTF(Y)))

> INDUCED CUBATURE FORMULAS. Let F: R? — R.

F(Jn (X)) = E(In(F)X)
= Y EME)F@ =Y ( Y EOW(X)F(@)
T€TT a€T acl’ T€7Tp,a€T
= ZwaFa

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache



Dual Quantization = Stationarv Operators

Intrinsic (dual) stationarity

Motivated by this observation. ..

> DEFINITION. Let T' be a grid of R%. An application
T Qo xREST

is intrinsic stationary if

V¢ € conv (D), Eo(Jr(§)) = &.

(LPMA-UPMC)



Dual Quantization = Stationarv Ope

Intrinsic (dual) stationarity

Motivated by this observation. ..
> DEFINITION. Let T' be a grid of R%. An application
T xR =T
is intrinsic stationary if
V¢ € conv(T), Eo (Jp(f)) =&

> The following proposition is an easy consequence of Fubini’s Theorem

Proposition

Jr s intrinsic stationary, if and only if it satisfies the dual stationarity condition
Eper, (Jr(X)|X) = X

for any r.v. X : (Q,S,P) — (R, BY) with supp(Px) C conv(T).
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Proposition

Jr s intrinsic stationary, if and only if it satisfies the dual stationarity condition
Eper, (Jr(X)|X) = X
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Dual Quantization = Stationarv Ope

Intrinsic (dual) stationarity

Motivated by this observation. ..
> DEFINITION. Let T' be a grid of R%. An application
T xR =T
is intrinsic stationary if
V¢ € conv(T), Eo (Jp(f)) =&

> The following proposition is an easy consequence of Fubini’s Theorem

Proposition

Jr s intrinsic stationary, if and only if it satisfies the dual stationarity condition
Eper, (Jr(X)|X) = X

for any r.v. X : (Q,S,P) — (R, BY) with supp(Px) C conv(T).

> QUESTION. Are all intrinsic stationary operators random splitting operators
defined on a triangulation? (YES...)

NEW! This (dual) kind of stationarity is very robust, since it holds by construction
for any r.v. X with support in T.

. (LPMA-UPMCQC) Quantization: Voronoi vs Delaunay Cadarache 49 / 83



Dual stationarity

> Like with “regular” quantization, intrinsic stationary operators also yields an
improved second order bound.

(LPMA-UPMC)



Dual Quantization = Stationarv Operators

Dual stationarity II

> Like with “regular” quantization, intrinsic stationary operators also yields an
improved second order bound.

Proposition

(a) Let F € C’iw(I‘), I' ¢ R? and Jr be intrinsic stationary. Then it holds for any
r.v. X € L*(P) with supp(Px) C conv(T),

|EF(Jr(X)) -~ EF(X) - E(DF(X)(Jr(X) - X))|
[F']Lip - EI X — Tr(X)I*.

|E F(X) - EF(Jr(X))|

IA
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Dual Quantization = Stationarv Operators

Dual stationarity II

> Like with “regular” quantization, intrinsic stationary operators also yields an
improved second order bound.

Proposition

(a) Let F € C’iw(I‘), I' ¢ R? and Jr be intrinsic stationary. Then it holds for any
r.v. X € L*(P) with supp(Px) C conv(T),

[EF(X)-EF(Jr (X)) = [EF(Jr(X))-EF(X)-E(DF(X)(Jr(X)-X))|
< [Flew - EIX = Fo (X))

(b) If F:T — R? is convez, then Jensen’s inequality implies

E F(Jr(X)) > EF(X)
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Dual Quantization = Stationarv Operators

Dual stationarity II

> Like with “regular” quantization, intrinsic stationary operators also yields an
improved second order bound.

Proposition

(a) Let F € C1,,(T), I C R? and Jr be intrinsic stationary. Then it holds for any
r.v. X € L*(P) with supp(Px) C conv(T),

EF(X)—EF(J(X)| = [EF(Jr(X))—EF(X)—E(DF(X)(Jr(X) - X))|
< [Fluip - EIX = (X))
(b) If F:T — R? is convez, then Jensen’s inequality implies
E F(Jr(X)) > EF(X)

(¢) Jr preserves convex order on random vectors.

This property also follows from the dual stationarity.
Remark. If Jr is a random splitting operator, it follows from the stronger fact that

F(Ir(X)) = Ir(F)(X) = F(X).
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Let I be a grid of size NV € N. What is the best approximation, which can be
achieved by an intrinsic stationary operator Jr?

PrOBLEM: The grid I' gives raise to (finitely) many possible triangulations.

> We aim at selecting the triangulation with the lowest p-inertia i.e.

p

N
V¢ € conv(l), F(&T) = /\Hel]lig}v ;Ai 1€ — x|

st [ =[] az0
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Question

Let I be a grid of size NV € N. What is the best approximation, which can be
achieved by an intrinsic stationary operator Jr?

PrOBLEM: The grid I' gives raise to (finitely) many possible triangulations.

> We aim at selecting the triangulation with the lowest p-inertia i.e.

N P

P (¢ _ 2 . . ||P

veeconv(l),  F(&T) = min ;MIE @il
st [ P=[§] 220

Hence, for every & € conv(I") we choose the best “triangle” in I' which contains &.




Dual Quantization = Definition Dual Quantization

Question

Let I be a grid of size NV € N. What is the best approximation, which can be
achieved by an intrinsic stationary operator Jr?

PrOBLEM: The grid I' gives raise to (finitely) many possible triangulations.

> We aim at selecting the triangulation with the lowest p-inertia i.e.

p

N
VEe€ conv(l),  FJ(§T) = e (Z i€ - xill")

st [ =[] az0

Hence, for every & € conv(I") we choose the best “triangle” in I' which contains &.

> The optimal LP dual quantization error is then defined as

d, x(X) = inf{|Fp(X;D)||p, [ c R, || < NJ.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay
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Optimality regions for FP(&;T)

> To design a splitting operator matching F?(&;T"), we need to determine optimality
regions, counterparts of the Voronoi regions for regular quantization.

1
> (Ai)1<i<n — minyepny (Zf;l A |€ — mi||p) P atteins a minimum (at least) at an
st [ =[]z
extremal N-tuple A*(€) of the convex constraint set.
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Dual Quantization = Definition Dual Quantization

Optimality regions for FP(&;T)

> To design a splitting operator matching F?(&;T"), we need to determine optimality
regions, counterparts of the Voronoi regions for regular quantization.

> (Ai)1<i<n — minyepny (Zf;l A |€ — xi||p) ? atteins a minimum (at least) at an
st [ =[]z
extremal N-tuple A*(€) of the convex constraint set.

> Therefore, I*(§) := {i : A\j(§) > 0} defines an affinely independent family
T;)ier=(¢) Which can be completed into a I'-valued affine basis.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay



Dual Quantization = Definition Dual Quantization

Optimality regions for FP(&;T)

> To design a splitting operator matching F?(&;T"), we need to determine optimality
regions, counterparts of the Voronoi regions for regular quantization.

> (Ai)1<i<n — minyepny (Zf;l A |€ — xi||p) ? atteins a minimum (at least) at an
st [ =[]z
extremal N-tuple A*(€) of the convex constraint set.

> Therefore, I*(§) := {i : A\j(§) > 0} defines an affinely independent family
T;)ier=(¢) Which can be completed into a I'-valued affine basis.

Let
IGI(F):{JC{I,...,N}:|J|:d+1, rk(AJ):dJrl}.

Set

Di(T) = {¢ eR?: 31*(¢) C I},

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache
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or equivalently, in term of linear programming,

Di(T) = {g eR: M = A7 [§] 2 0and SN [¢ —a|” = Fp(g;r)},

el

where A denotes the submatrix of [“' ™ “N | whose columns are given by I and

(LPMA-UPMC)
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Dual Quantization = Properties of Dual Quantization

Quadratic Euclidean case

> In the case ||-|| = |- |2 and p = 2,
optimality regions are the Delaunay “triangles” in I,

i.e. the spheres spanned by such optimal d-simplex contain no further point in its
interior.

> The following theorem is an extention of Rajan’s Theorem ([Rajo1]).

Theorem (Euclidean case (Rajan ’91))

Let ||-|| = |-|2, p=2, and T = {z1, ..., 2.} C R? with aff. dim(T") = d.
(a) If I € Z(T) defines a Delaunay triangle (or d-simplex), then X' = A7" [$]
provides a solution to FP(&T') for every £ € conv{z; : j € I} i.e.

D;(T') = conv{z; : j € I}.

. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache 54 / 83



Dual Quantization = Properties of Dual Quantization

Quadratic Euclidean case

> In the case ||-|| = |- |2 and p = 2,
optimality regions are the Delaunay “triangles” in I,

i.e. the spheres spanned by such optimal d-simplex contain no further point in its
interior.

> The following theorem is an extention of Rajan’s Theorem ([Rajo1]).

Theorem (Euclidean case (Rajan ’91))

Let ||-|| = |-|2, p=2, and T = {z1, ..., 2.} C R? with aff. dim(T") = d.
(a) If I € Z(T) defines a Delaunay triangle (or d-simplex), then X' = A7" [$]
provides a solution to FP(&T') for every £ € conv{z; : j € I} i.e.

D;(T') = conv{z; : j € I}.

(b) Conversly, if I € I(T) satisfies Dr(T') # 0, then the triangle (or d-simplex)
defined by I has the Delaunay property for .
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Optimal dual quantization operator

For aT = {x1,...,2,} C R? with aff. dim(I") = d,
e choose a Borel partition (Cr(I'))rez(ry of conv(I") such that

CI(F) C DI(F)7
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of Dual Quantization

Optimal dual quantization operator

For aT = {x1,...,2,} C R? with aff. dim(I") = d,
e choose a Borel partition (Cr(I'))rez(ry of conv(I") such that

CI(F) C DI(F)7

e let U ~ U]0,1] on (20, So,Po).
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Dual Quantization = Properties of Dual Quantization

Optimal dual quantization operator

For aT = {x1,...,2,} C R? with aff. dim(I") = d,

e choose a Borel partition (Cr(I'))rez(ry of conv(I") such that
C1(I')  Dr(T),
e let U ~ U]0,1] on (20, So,Po).

The optimal dual quantization operator Ji is defined as

jr Z qu-l o

) . 1c, @) (€).
G {El N, ©<U< 3 AL ©}

where I = {i1,..., %k, }.
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Dual Quantization = Properties of Dual Quantization

Optimal dual quantization operator

For aT = {x1,...,2,} C R? with aff. dim(I") = d,

e choose a Borel partition (Cr(I'))rez(ry of conv(I") such that
C1(I')  Dr(T),
e let U ~ U]0,1] on (20, So,Po).

The optimal dual quantization operator Ji is defined as

jr Z qu-l o

) . 1c, @) (€).
G {El N, ©<U< 3 AL ©}

where I = {i1,..., %k, }.

One easily checks that this operator is intrinsic stationary.

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache
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Dual Quantization = Properties of Dual Quantization

Equivalence of optimal dual quantization

The operator Jr then leads to the following characterizations of the optimal dual
quantization error:

Theorem ([PW10a])
Let X € LP(P) and N € N. Then

dp,N (X) =

al. (LPMA-UPMC) Quantization: Voronoi vs Dela
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Equivalence of optimal dual quantization

The operator Jr then leads to the following characterizations of the optimal dual
quantization error:

Theorem ([PW10a])
Let X € LP(P) and N € N. Then

1
d (X)) = inf{(EHX — T (X)|P)?: Jr: Qo x R? — T is intrinsic stationary,

p,

supp(Px) C conv(D), |T| < N}
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Dual Quantization = Properties of Dual Quantization

Equivalence of optimal dual quantization

The operator Jr then leads to the following characterizations of the optimal dual
quantization error:

Theorem ([PW10a])
Let X € LP(P) and N € N. Then

1
d, v(X) = inf{(EHX — T (X)|P)?: Jr: Qo x R? — T is intrinsic stationary,
supp(Px) C conv(D), |T| < N}
= inf{E[| X — YIP:Y is arv. on (Qx Q0,80 S8,P&P),

-~

IP(2 x Q)| < N, E(Y|X) = X}.
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Dual Quantization = Unbounded support

Extension to unbounded support

> It is not possible to obtain intrinsic stationarity for £ ¢ conv(I")

> We extend Jr(X) outside conv(I") by using a Nearest Neighbor projection (which
only preserves stationarity inside conv(T")).
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Dual Quantization = Unbounded support

Extension to unbounded support

> It is not possible to obtain intrinsic stationarity for £ ¢ conv(I")

> We extend Jr(X) outside conv(I") by using a Nearest Neighbor projection (which
only preserves stationarity inside conv(T")).

> We therefore drop the requirement supp(Px) C conv(I') in above theorem and set

dp,Nn(X) = inf{(EHX = jr(X)Hp)% : Jr is intrinsic stationary, |T'| < N}.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay
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Existence of optimal dual quantize
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Dual Quantization = Existence

Existence of optimal dual quantizers

Theorem ([PW10a])

Let p > 1.

(a) Assume that Px has a compact support. Then, for every N > d+ 1 there exists at
least one optimal dual quantizer at level N (i.e. the dual quantization problem d& (X)
attains its infimum,).

Moreover, d? (X) strictly decreases to 0 as N — oo, if not vanishing.
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Dual Quantization = Existence

Existence of optimal dual quantizers

Theorem ([PW10a])
Let p > 1.

(a) Assume that Px has a compact support. Then, for every N > d+ 1 there exists at
least one optimal dual quantizer at level N (i.e. the dual quantization problem d& (X)
attains its infimum,).

Moreover, d? (X) strictly decreases to 0 as N — oo, if not vanishing.

(b) Assume that the distribution Px is strongly continuous. Then the same holds for

d? (X) for every N > 1.
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Asymptotic behavior

Theorem (Sharp rate [PW10b])

i
(a) Let X € LPT(RY) with distribution Px = . \% + v.
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Dual Quantization = Asvmptotics

Asymptotic behavior

Theorem (Sharp rate [PW10b])

i
(a) Let X € LPT(RY) with distribution Px = @.\* + v. Then

dtp
— d
lim N dp v (X) = Qapui / D) g\
N — o0 RrRd
where Qap, .| = iIJ\l{f NV (U([o, 1]d))‘
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Dual Quantization = Asvmptotics

Asymptotic behavior

Theorem (Sharp rate [PW10b])

i
(a) Let X € LPT(RY) with distribution Px = @.\* + v. Then

d+p

— d
lim N4 . dp.n(X) = Qap, ||l - / apd/(‘”p) d\d
N — o0 RrRd
where Qap, .| = iIJ\l{f NV (U([o, 1]d))‘

217 fim NY?. e, v (U([0,1])). Ifd > 2, 977

(p+2)? /p N — oo

(b) Ifd=1, Qap,| =
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Dual Quantization = Asvmpt

Asymptotic behavior

Theorem (Sharp rate [PW10b])

i
(a) Let X € LPT(RY) with distribution Px = @.\* + v. Then

dtp
— d
lim N dp v (X) = Qapui / D) g\
N — o0 RrRd
where Qap, .| = iIJ\l{f NV (U([o, 1]d))‘

217 fim NY?. e, v (U([0,1])). Ifd > 2, 977

) Ifd=1, Qap,I-l = gy M
(c) Let p’ > p. There exists C o d and Nd”“d such that, for every r.v. R%-valued X
1

VN > N2t dpn(X) < Ofust, nf, |X —all - N™4.

(d) The same holds for compactly supported r.v. for the mean quantization error
dnp(X) with the same asymptotic constant Q, i -
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Dual Quantization = Asvmptotics

Asymptotic behavior

Sketch of the proof

o Prove existence of the limit for ¢([0, 1]%)

@ Derive upper and lower bounds for piecewise constant densities (with compact
support) on hypercubes

e Use Differentiation of measure to cover the general case (still compact support)

e Random dual quantization argument (so-called extended Pierce Lemma) to get
the unbounded case.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay
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Numerical computations: the grids

> Differentiability as a function of I" for every £ € conv(T'),
I'=(z1,...,zy5) — FY(T)

is differentiables except at a grid I'y except for a A%-negligible set of values of £,
namely Ujel(r)aD[(F).

> Hence, if X has an absolutely continuous distribution,
I'— E(FF(X,T)) is differentiable

with gradient at I' given by

OF?
IE( P(X,T )
> Provides a stochasic gradient descent procedure (counterpart of CLV Q) or a
couterpart of randomized Lloyd’s procedure..

. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache
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Figure: Dual Quantization for A(0,I2) and N = 250
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Numerical aspects = Numerical computations: the grids

Figure: Joint Dual Quantization of the BM and its supremum, N = 250

PAGES et al. (LPMA-UPMOQ) Quantization: Voronoi vs Delaunay Cadarache
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Numerical computations: the weights

> STATIC WEIGHT COMPUTATION. Let I' = {z1,...,2, }. How to compute
pi =P(IF (X) =) ?

By a (possibly massively parallel) Monte Carlo simulation
s Um (m)y _ (m)
pbi = A/}linoo M Z ( X ) Zi |X )

where (X U(™)) m > 1 are independent copies of X 1L U and

E(JFU"" (X(m))\X(m)) = barycentric coordinate of X ™)

“its” simplex > x;

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay
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Bermuda options

In the same way we use the Backward Dynamic Principle for the valuation of
Bermuda options:

BDP for Bermuda options

Vi = max{r, (%) E(Vir1|Ze) }, 0 <k <n—1,

so that ‘70 yields an approximation to the Bermuda option premium

Vo = esssup{E ¢(X;) : 7 is {to, ..., tn }-valued stopping time}.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay



Numerical aspects ... to Bermuda opbtions

Error bounds

Theorem (P.-Wilbertz 2010)

Vi Z’Uk(Xk) and ‘7k == ak()?lc), k=0,...,n

and

~ n _1
[l (X) = Bu(Xe)llp < Kippr D Croe([V]Lip, [PlLip)op (Xe) Ny, @
=k

where 0,/ (Xk) = min, cpa || Xi — all,r is the L -median of Xi, p' > p.

> Optimization of the quantization tree structure for a given budget N

_1
d

- Nk:L,kZO,...,n.

et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache
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Numerical aspects = ... to Bermuda options

Numerical experiments I

Example

2d-asset (uncorrelated) Black-Scholes model with maturity 7= 1, 11 exercise dates:
k/10, k=0,...,10, and

sh=404,5=1,...,k s =404, i=k+1,...,d, r = 0.05,
0:i=02,i=1,...,d, 8§ =0054i=1, ...,k 6;=00,i=k+1,...,d.

for a geometric exchange put option

(S1,5%) (Hst— H si),

i=k+1

This can be reduced for any d to a 2-dim exchange option.
Hence reference values are available using a Boyle-Evnine-Gibbs tree with 10000
time steps.

. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache 71 / 83



Numerical aspe ... to Bermuda options

Printems’s paradigm: log-log plots for true rates




to Bermuda or

Figure: Log-Log plot of both quantization method in dimension 4
2d=2 | 2d=14
Voronoi Quantization 0.73 0.36
Dual Quantization 0.86 0.38

Table: Rates of convergence for the exchange option.




Numerical aspects ... to Bermuda opbtions

Richardson-Romberg extrapolation

> We proceed a (heuristic) Richardson-Romberg extrapolation on the (guessed) error

expansion.

EF(X)~EF(X)+xN~°

> We extrapolate the unknown k using two different grids sizes N1 and Na2. As a

result, we obtain in the above setting for
P P

P = PV 4 7]\[_ N Ny

al. (LPMA-UPMC) Quantization: Voronoi vs Dela
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Figure: Convergence of the extrapolated quantization
option in dimension 2

methods for the geometric exchange




to Bermuda or

3.8
VQ + Rombérg (rate O.Bé) —
DQ + Romberg (rate 0.38) - -
Bermudan ref -
American ref
3.75 | 4
37 Bl
R—
3.65 - -
36 Bl
3.55 |- Bl
35 1 1 1 1 1 1 1 1

3400 3600 3800 4000 4200 4400 4600 4800 5000
N

Figure: Convergence of the extrapolated quantization methods for the geometric exchange
option in dimension 4

Suggestion: Adopt the mid-price 0.5 X (Pricevg + Pricepg) computed on an
optimal Voronoi quantization tree.




Numerical aspects ... to Bermuda opbtions

Bermuda: Numerical experiments 11

Example

2-asset Black-Scholes model with

sp=s5 =40, r =0.05, o1 = 0.2, 02 = 0.3, p = 0.5, K = 40,
for a put on the min, i.e. payoff

©(S:,S7) = (K —min{S;,S7})*.

al. (LPMA-UPMC) Quantization: Voronoi vs Dela
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Bermuda: Numerical experiments 11

Example

2-asset Black-Scholes model with

sp=s5 =40, r =0.05, o1 = 0.2, 02 = 0.3, p = 0.5, K = 40,
for a put on the min, i.e. payoff
¢(Si,57) = (K —min{S;, S{})".

As underlying Markov process we have chosen a 2-dimensional Brownian Motion
with correlation p.

al. (LPMA-UPMC) Quantization: Voronoi vs Dela



Numer .. to Bermuda options

Bermuda: Numerical experiments 11

Example

2-asset Black-Scholes model with
sp=s5 =40, r = 0.05, o1 = 0.2, 02 = 0.3, p= 0.5, K = 40,
for a put on the min, i.e. payoff
(St 5¢) = (K —min{S;, 71"

As underlying Markov process we have chosen a 2-dimensional Brownian Motion
with correlation p.

Reference values still computed using a Boyle-Evnine-Gibbs tree with 10.000
timesteps.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay
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Martingale Adjustment

> If the structure process (Xk)o<k<nis a martingale (...) and Xo = xo, the attached
quantization trees loose this property.

> One idea is to restore the martingality by moving the grids ['s:

— Define by a backward induction I, =T, and for every k=0,...,n—1,

Ni41

- ~k ~k ~k+1 .
Fk:{ml,...,me} where xl g pi;T; i1 =1,..., Ng.

— Re-center the grids by setting

Fzmrt = fk + xo — ZTo.
> The resulting quantization tree (I'y**", pk)()gkgn has the distribution of a
martingale starting at xo at time 0. (It is observed that the translation z¢ — Zo is
negligible in practice).

(LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache
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Martingale Adjustment: numerical experiments. ..

Bermudan option: #exercise days: 10
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including Longstaff-Schwartz by Premia

Bermudan option: #exercise days: 10
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Conclusion / Summary

Interesting and challenging extention of regular Quantization

Provides a stationarity, which holds independently of the choice of the
quantization grid

Represented in the Euclidean case by the dual concept of Voronoi tesselations:
the Delaunay triangulation

Yields very promising results in first numerical applications

Further applications in optimal grid generation, adaptive grid refinements
possible

Application to 3-factor models, etc.

al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay
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