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Quantization for non linear problems: the origins Optimal stopping

From optimal stopping. . .

B Dynamics: Let (Xt)t∈[0,T ] be a quasi-left continuous càdlàg dynamics, say

dXt = b(t,Xt)dt+ σ(t,Xt)dWt + κ(t,Xt)dζt, X0 = x∈ Rd

where are defined on a probability space (Ω,A,P),

W = (Wt)t∈[0,T ] is q-dimensional Brownian motion,

ζ = (ζt)t∈[0,T ] is a martingale Lévy process with ζc ≡ 0 and Lévy measure ν on

Rd \ {0} satisfying

Z
|z|≥1

|z|pν(dz) < +∞, p∈ (1,+∞).

The functions b, σ, κ satisfy

b : [0, T ]× Rd → Rd, σ, κ : [0, T ]× Rd → M(d, q,R) are continuous,

Lipschitz in x uniformly in t∈ [0, T ].

B Obstacle/reward process: (h(t,Xt)t∈[0,T ]) where h : [0, T ]× Rd → Rd with
polynomial growth

|h(t,Xt)| ≤ C(1 + |x|r), x∈ Rd, r∈ (0, p).
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Quantization for non linear problems: the origins Optimal stopping

B Optimal stopping problem... We consider the Snell enveloppe

Yt := P- supess
n

E
“
h(τ,Xτ ) | FW,ζt

”
, τ ∈ T F

W,ζ

[t,T ]

o
≥ h(t,Xt) (1)

where T F
W,ζ

[t,T ] = {τ : Ω→ [t, T ], τ FW,ζ-stopping time}.

The Snell enveloppe represents the honest optimal mean gain when starting to play
at time t if the reward is h(s,Xs) when leaving the game at time s∈ [t, T ]. Under the
above assumption

τ∗t = inf {s∈ [t, T ], Ys = h(s,Xs)} is an optimal stopping time

i.e.
Yτ∗t = E

“
h(τ∗t , Xτ∗t ) | FW,ζt

”
.
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Quantization for non linear problems: the origins Optimal stopping

. . . to Variational Inequalities

Assume κ ≡ 0 (No jump component).

Theorem Under appropriate assumptions and in an appropriate sense

Yt = u(t,Xt)

where u satisfies

max
“∂u
∂t

+ Lu, h− u
”

= 0, u(T, x) = h(T, x)
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Quantization for non linear problems: the origins Optimal stopping

Time discretization

Let

tnk = k
T

n
, k = 0, . . . , n.

B (Xtn
k

)0≤k≤n is an (Ftn
k

)0≤k≤n-Markov chain with transition

Pk(x, dy) = P(Xtn
k+1
∈ dy |Xtn

k
= x).

B The (P, (Ftn
k

)0≤k≤n)-Snell envelope (≡ Bermuda options)

eYtn
k

:= P- supess
n

E
“
h(τ,Xτ ) | FW,ζtn

k

”
, τ ∈ T ntn

k
,T

o
≥ h(tnk , Xtnk ) (2)

where T ntn
k
,T = {τ : Ω→ {tnk , . . . , tnn = T}, τ (FW,ζtn

`
)0≤`≤n-stopping time}.
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Quantization for non linear problems: the origins Optimal stopping

B The Backward Dynamic Programing Principle reads

eYtn
k

= max
“
h(tnk , Xtnk ),E

`eYtn
k+1
| Ftn

k
// Xtn

k

´”
, eYT = h(T,XT ),

so that eYtn
k

= euk(Xtn
k

), k = 0, . . . , n satisfying

euk(x) = max
“
h(tnk , x), Pk(uk+1)(x)

”
, eun(x) = h(T, x).

B Theorem (Bally-P., SPA 2003) (a) If h is Lipschitz in x, uniformly in t∈ [0, T ],

∀ p∈ (0, r),
‚‚‚ max

0≤k≤n
|Ytn

k
− eYtn

k
|
‚‚‚
p
≤ Cb,σ,κ,h,T

r
T

n

(b) If furthermore h is semi-convex i.e. there exists δh[0, T ]× Rd → Rd bounded s.t.

∃ ρ > 0, ∀x, y∈ Rd, h(t, y)− h(t, x) ≥ (δh(t, x)|y − x)− ρ|y − x|2

then ‚‚‚ max
0≤k≤n

|Ytn
k
− eYtn

k
|
‚‚‚
p
≤ Cb,σ,κ,h,T

T

n
.
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Quantization for non linear problems: the origins Optimal stopping

B Gaps:

• [hedge? . . . ]

• Simulation of the Markov chain (Xtn
k

)0≤k≤n especially when d or q ≥ 2

• Computation of conditional expectations. . .
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Quantization for non linear problems: the origins Simulatable Markov chain: Euler scheme

Simulatable Markov chain: Euler scheme

The Euler scheme of (SDE) is defined by

X̄n
tn
k+1

= X̄n
tn
k

+
T

n
b(tnk , X̄

n
tn
k

) + σ(tnk , X̄
n
tn
k

)(Wtn
k+1
−Wtn

k
)

+ κ(tnk , X̄
n
tn
k

)(ζtn
k+1
− ζtn

k
)

• If κ ≡ 0, it is always a simulatable Markov chain with transition

P̄ (n)(x, dy) = P(X̄n
tn
k+1
∈ dy | X̄n

tn
k

= x)

and ‚‚‚ max
k=0,...,n

|Xtn
k
− X̄n

tn
k

‚‚‚
p
≤ Cb,σ,T

r
T

n
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Quantization for non linear problems: the origins Simulatable Markov chain: Euler scheme

B The Backward Dynamic Programing Principle reads

Ȳtn
k

= max
“
h(tnk , X̄

n
tn
k

),E
`
Ȳtn
k+1
| Ftn

k
// X̄n

tn
k

´”
, YT = h(T, X̄n

T
),

so that Ȳtn
k

= ūk(X̄n
tn
k

), k = 0, . . . , n satisfying

ūk(x) = max
“
h(tnk , x), P̄ (n)(uk+1)(x)

”
, ūn(x) = h(T, x).

. . . and corresponds to an a “Bermuda like” optimal stopping problem (with X̄
instead of X).

B Theorem (Bally-P., SPA 2003) If h is Lipschitz in x, uniformly in t∈ [0, T ],

∀ p∈ (0, r),
‚‚‚ max

0≤k≤n
|Ytn

k
− Ȳtn

k
|
‚‚‚
p
≤ Cb,σ,κ,h,T

r
T

n

Remark. No loss w.r.t. the Euler scheme itself.
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Quantization for non linear problems: the origins Simulatable Markov chain: Euler scheme

• Otherwise it depends on the simulability of ζ (see Protter-talay, Jacod,
Jacod-Protter, etc for convergence rate(s) of the Euler schmes existence of
approximate schemes.

• In case of non simulability: design of approximate schemes: Roszincky’s
“Wienerisation of small jumps”, (see Roszincky, Cohen, Rubenthaler, Panloup,
etc). . .
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Quantization for non linear problems: the origins Discrete time “Bermuda” Markov framework

Abstract “Bermuda” Markov optimal stopping framework

B Let (Xk)0≤k≤n be an Rd-valued homogeneous Feller Markov chain defined on a
probability space (Ω,A,P) with transition

P (x, dy) = P(Xk+1∈ dy |Xk = x), k = 0, . . . , n− 1.

Filtration : FXk = σ(X0, . . . , Xk), k = 0, . . . , n.

MArkov property :

E(f(Xk+1) | FXk) = E(f(Xk+1) |Xk) =

Z
Rd
f(y)P (x, dy) := Pf(x).

B Problem to be solved: Compute the premium of a Bermuda option with an

integrable payoff
“
hk(Xk)

”
0≤k≤n

i.e.

the right to receive hk(Xk) once between k = 0 and k = n.

Stopping time ≡ “honnest stopping rule”.

τ : Ω→ {0, . . . , n}, {τ = k}∈ FXk , k = 0, . . . , n.

V0 = v0(X0) = esssup
n

E
“
hτ (Xτ ) | FX0

”
, τ stopping time

o
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Quantization for non linear problems: the origins Discrete time “Bermuda” Markov framework

. . . and more generally, its premium at time k,

Vk = vk(Xk) = esssupτ∈Tk,nE
“
hτ (Xτ ) | FXk

”
, k = 0, . . . , n.

where
Tk,n :=

n
τ : Ω→ {k, . . . , n} FX -stopping time

o
.

(Vk)0≤k≤n is called the Snell envelope of (hk(Xk))0≤k≤n.
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Quantization for non linear problems: the origins Discrete time “Bermuda” Markov framework

Backward Dynamic Programing Principle

B The (P,FX)-Snell envelope (Vk)0≤k≤n of the so-called obstacle process
(h(Xk))0≤k≤n satisfies the BDPP

Vn = hn(Xn), Vk = max
“
hk(Xk),E

`
Vk+1 | FXk///Xk

´”
or equivalently (in distribution) Vk = vk(Xk) where

vn = hn vk = max
“
hk, Pvk+1

”
, k = 0, . . . , n− 1.

B Alternative approach (cf. Longstaff-Schwarz, 1993) : the BDPP approach for
optimal stopping times

τk = min{` ≥ k, Vk = hk(Xk)}, k = 0, . . . , n

which satisfy

τk = k1{hk(Xk)>E(Vk+1 |Xk)} + τk+11{hk(Xk)≤E(Vk+1 |Xk)}.

and Vk = E
`
hτk (Xτk ) |Xk

´
.
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Quantization for non linear problems: the origins Conditional expectation computation

Conditional expectation computation

B In both cases the point is to compute/estimate

E
`
Vk+1 |Xk

´
= E

`
vk+1(Xk+1) |Xk

´
= Ehτk+1(Xτk+1) |Xk), k = 0, . . . , n− 1

Two approaches have been developed

Randomization of the BDPP (ex: regression methods, Monte Carlo-Malliavin)

Structural approximation of the Markov dynamics (ex: tree methods)

PAGÈS et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache 14 / 83



Quantization for non linear problems: the origins The paradigm of Quantized BDPP

Markov Dynamics approximation: the paradigm of Quantized BDPP

B Two-folded natural idea

Step 1 (Markov dynamics Approximation): Approximation of Xk

Xk : (Ω,A,P) −→ Rd  bXk : (Ω,A,P) −→ Γk :=
˘
xk1 , . . . , x

k
Nk

¯
where bXk = πk(Xk, Uk), k = 0, . . . , n,

where (Uk)0≤k≤n is an i.i.d. sequence of U([0, 1]d)-distributed exogeneous (=
simulated) r.v.’s.

Note that ( bXk)0≤k≤n is usually NOT a Markov chain.

Step 2: Force the Markov property in the BDPP :

bVn = h( bXn), bVk = max
“
hk( bXk),E

`bVk+1 | bXk´”
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Quantization tree Quantization tree algorithm

Resulting tree algorithm

B The resulting algorithm:bVk = bvk( bXk), k = 0, . . . , n

with
∀ i∈ {1, . . . , Nk}, bvk(xki ) = max

“
hk(xki ), bP (bvk+1)(xki )

”
where bP displays on Borel test functions

bP (f)(xki ) =

Nk+1X
j=1

bπk,k+1
ij f(xk+1

j )

bπk,k+1
ij = P

` bXk+1 = xk+1
j | bXk = xki

”
.

BMarkov Dynamics approximation: The matrices bπk,k+1, k = 0, . . . , n need to be
computed by a massive Monte Carlo simulation.
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Quantization tree Quantization tree algorithm

Quantization tree (d = 1, 3 periods)

Figure: A typical 1-dimensional quantization tree

A quantization tree is not re-combining.

But its size is designed a priori (and subject to possible optimization).
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Quantization tree Conditional expectation approximation by quantization

Conditional expectation approximation by quantization

BThe natural idea is to use the approximation

E
`
f(X2) |X1

´
≈ E

`
f̂( bX2) | bX1

´
.

since

E
`
f̂( bX2) | bX1 = x1

i

´
=

N2X
j=1

πij f̂(x2
j )

is computable.

B Can we control in Lp the induces error based on the spatial discretization Lp error
? ‚‚‚E`f(X2)|X1

´
− E

`
f̂( bX2)| bX1

´‚‚‚
p

≤ Φ
“
‖X1 − bX1‖p , ‖f(X2)− bf( bX2)‖p

”
????
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Quantization tree Conditional expectation approximation by quantization

The key is the following one-step estimate

Proposition (Key lemma)

Let p∈ [1,+∞). Assume that ‖X1‖p + ‖X2‖p < +∞. Assume P (x, dy) = P1(x, dy)
uniformly propagates Lipschitz functions i.e., for every Lipschitz continuous
f : Rd → R,

[Pf ]Lip ≤ [P ]Lip[f ]Lip.

(a) If p = 2, then‚‚‚E`f(X2)|X1

´
− E

`
f̂( bX2)| bX1

´‚‚‚
2
≤
“

[f ]2Lip[P ]2Lip‖X1 − bX1‖22 + ‖f(X2)− f̂( bX2)‖22
”1
2

(b) If p 6= 2‚‚‚E`f(X2)|X1

´
− E

`
f̂( bX2)| bX1

´‚‚‚
p
≤ [f ]Lip[P ]Lip‖X1 − bX1‖p + ‖f(X2)− f̂( bX2)‖p
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Quantization tree Conditional expectation approximation by quantization

Proof of (a). Keep in mind bX1 = π1(X1, U1). For notational convenience we write
πu(x) for π1(x, u).

Step 1 Using that U1 is independent of (X1, bX2)

E
`
f( bX2)| bX1

´
=

Z
Rd0

E
`
f( bX2)|πu(X1)

´
PU1(du)

so that‚‚‚E`f(X2)|X1

´
− E

`
f( bX2)| bX1

´‚‚‚2

2
= E

„Z
Rd0

E
`
f(X2)|X1

´
− E

`
f( bX2)|πu(X1)

´
PU1(du)

«2

≤
Z

Rd0

E
“

E
`
f(X2)|X1

´
− E

`
f̂( bX2)|πu(X1)

´”2

PU1(du).

by Jensen’s Inequality.
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so that‚‚‚E`f(X2)|X1

´
− E

`
f( bX2)| bX1

´‚‚‚2

2
= E

„Z
Rd0

E
`
f(X2)|X1

´
− E

`
f( bX2)|πu(X1)

´
PU1(du)

«2

≤
Z

Rd0

E
“

E
`
f(X2)|X1

´
− E

`
f̂( bX2)|πu(X1)

´”2

PU1(du).

by Jensen’s Inequality.
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Quantization tree Conditional expectation approximation by quantization

Step 2

E
`
f(X2)|X1

´
− E f̀( bX2)|πu(X1)́ =

ˆ
E
`
f(X2)|X1

´
− E
“

E
`
f(X2)|X1

´
|πu(X1)

”˜
⊥
+
ˆ
E
`
f(X2)|πu(X1)

´
− E f̀( bX2)|πu(X1)

´˜
where we first used that σ(πu(X1)) ⊂ σ(X1). The orthogonality follow from the very
definition of conditional expectation E( . |σ(πu(X1))).

Pythagorus Theorem implies‚‚È f(X2)|X1

´
−È f( bX2)|πu(X1)

‚́‚2

2
=

‚‚È f(X2)|X1

´
− E

`
f(X2)|πu(X1)

´‚‚2

2

+
‚‚E`f(X2)− f( bX2)|πu(X1)

´‚‚2

2

≤
‚‚È f(X2)|X1

´
− E

`
f(X2)|πu(X1)

´‚‚2

2

+‖f(X2)− f̂( bX2)‖22

by the contraction property. Now, using again that σ(πu(X1)) ⊂ σ(X1), we get

E
`
f(X2)|X1

´
− E

`
f(X2)|πu(X1)

´
= E

`
f(X2)|X1

´
−E
“

E
`
f(X2)|X1

´
|πu(X1)

”
= Pf(X1)− E

`
Pf(X1)|πu(X1)

´
so that . . .
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‚‚E`f(X2)|X1

´
−È f(X2)|πu(X1)

‚́‚2

2
= ‖Pf(X1)− E

`
Pf(X1)|πu(X1)

´
‖22

≤ ‖Pf(X1)− Pf(πu(X1))‖22

≤ [Pf ]2Lip ‖X1 − πu(X1)‖22 .

Hence

E
“

E
`
f(X2)|X1

´
−E
`
f( bX2)|πu(X1)

´”2

≤ [f ]Lip

“
‖X2− bX2‖22 +[P ]Lip ‖X1 − πu(X1)‖22

”
Integrating with respect to PU1(du) (i.e. the exogenous innovation) yields

‖E
`
f(X2)|X1

´
−E
`
f̂( bX2)| bX1

´‚‚‚2

2
≤
“
‖f(X2)−f̂( bX2)‖22 +[f ]Lip[P ]Lip ‖X1 − πu(X1)‖22

”
since, by the chain rule for conditional expectation,

‖X1 − bX1‖22 =

Z
Rd0

‖X1 − πu(X1)‖22PU1(du). �
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Quantization tree Conditional expectation approximation by quantization

A priori error bounds

Then we have the following general result about the rate of approximation of the
Snell envelope (Vk)0≤k≤n by its “quantized” counterpart (bVk)0≤k≤n.

Theorem (Bally-P.-Printems ’01, P.-Wilbertz ’10)

Let p∈ [1,+∞). Assume that all the functions hk, k = 0, . . . , n, are Lipschitz
continuous. and that the Pk(x, dy) uniformly propagate Lipschitz functions i.e.

[P ]Lip := max
0≤k≤n−1

[Pk]Lip < +∞ and max
0≤k≤n

“
‖Xk‖p + ‖ bXk‖p” < +∞.

(a) If p = 2, then, for every k∈ {0, . . . , n},

‖Vk − bVk‖2 ≤ √2

 
nX
`=k

“
Cn,`([P ]Lip, [h`]Lip)

”2

‖X` − bX`‖22
! 1

2

(b) If p 6= 2, then for every k∈ {0, . . . , n},

‖Vk − bVk‖p ≤ 2

nX
`=k

Cn,`([P ]Lip, [h`]Lip)‖X` − bX`‖p
where Cn,k([P ]Lip, [h.]Lip) = max

k≤`≤n

“
[P ]`−kLip [h`]Lip

”
.
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Proof (not so sketchy)

Proof. Step 1. The functions vk are Lipschitz.

Vk = vk(Xk), k = 0, . . . , n,

where the functions vk are Lipschitz continuous satisfying

vn = hn and vk = max(hk, Pvk+1), k = 0, . . . , n− 1.

In particular, for every k = 0, . . . , n (with the convention [vn+1]Lip = 0),

[vk]Lip ≤ max
`
[hk]Lip, [P ]Lip[vk+1]Lip

´
since | supi∈I ai − supi∈I bi| ≤ supi∈I |ai − bi|.
Standard induction yields

[vk]Lip ≤ max
k≤`≤n

“
[P ]`−kLip [h`]Lip

”
, k = 0, . . . , n.

Step 2.

|Vk − bVk|2 ≤ max
`
|hk(Xk)− hk( bXk)|2, |E(Vk+1|Xk)− E(bVk+1| bXk)|2

´
≤ |hk(Xk)− hk( bXk)|2 + |E(vk+1(Xk+1)|Xk)− E(bvk+1( bXk+1))| bXk)|2

so that by the key lemma‚‚Vk − bVk‚‚2

2
≤ [hk]2Lip

‚‚Xk − bXk‚‚2

2
+ [Pvk+1]Lip‖Xk − bXk‚‚2

2
+
‚‚Vk+1 − bVk+1

‚‚2

2

The result follows from the bounds on [Pvk+1]Lip and the discrete Gronwall lemma.
�
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Quantization tree Conditional expectation approximation by quantization

Applications to diffusions: the Euler scheme (homogeneous)

[Homogeneous case for expository].

• For the above jump diffusion (when p ≥ 2), the Euler scheme with step T
n

satisfies

E
`
X̄

(n),y
T
n

− X̄
(n),x
T
n

´2
= E

˛̨̨
y − x+

T

n
(b(y)− b(x)) + (σ(Y )− σ(x))WT

n
+ (κ(y)− κ(x))ζT

n

˛̨̨2
= |y − x|2 +

`T
n

´2|b(y)− b(x)|2 +
T

n
|σ(y)− σ(x)|2

+(κ(y)− κ(x))2Eζ2
T
n

≤ |y − x|2
“

1 + 2Cb,σ,κ,T
T

n

”
.

so that

|P̄ (n)(f)(x)− P̄ (n)(f)(y)| ≤ [f ]Lip‖X̄(n),y
T
n

− X̄(n),x
T
n

‖1 ≤ [f ]Lip‖X̄(n),y
T
n

− X̄(n),x
T
n

‖2

and finally

[P̄ (n)]Lip ≤
“

1 + Cb,σ,κ,T
T

n

”
.

Conclusion:
sup
n

max
0≤k≤n

[P̄ (n)]kLip ≤ eCb,σ,κ,T T
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Quantization tree Conditional expectation approximation by quantization

Proposition (Bally-P.-Printems ’03 [BP03], Wilbertz-P., (2010) [PW09])

We consider the optimal stopping problem related to a Brownian diffusions (κ ≡ 0)
with coefficient b and σ and with obstacle function h(t, x), all assumed to be Lipschitz
in x∈ Rd uniformly in t∈ [0, T ].

‚‚‚ max
0≤k≤n

|Ytn
k
− d̄Y ntn

k
|
‚‚‚

2
≤ C

r
T

n
+ Cb,σ,h,T

 
nX
k=0

‚‚‚X̄(n)
tn
k
− ̂̄X(n)

tn
k

‚‚‚2

2

! 1
2

≤ C

 r
T

n
+
√
n max

0≤k≤n

‚‚‚X̄(n)
tn
k
− ̂̄X(n)

tn
k

‚‚‚
2

!

This strongly suggests to investigate methods to reduce/minimize

the quantization error(s)‚‚‚X − bX‚‚‚
p

. . . especially when p = 2.
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Optimal quantization(s)

Optimal quantization(s)

or

How to optimize the approximation of X by bX taking at most N values?

We temporarily turn now to this static problem also known as

Optimal (Vector) Quantization. . .

Let Γ ⊂ Rd be a grid with size at most N ≥ 1.

bX = π(X), π : Rd → Γ ( Voronoi quantization).

bX = π(X,U), π : Rd × [0, 1]→ Γ, U ⊥⊥ X ( Delaunay (or dual) quantization).

In practice how to optimize the underlying grid Γ?
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Introduction to Optimal Quantization(s) History

What is Vector Quantization?

Has its origin in the fields of signal processing in the late 1940’s

Describes the discretization of a random signal and analyses the recovery of the
original signal from the discrete one

Examples: Pulse-Code-Modulation(PCM), JPEG-Compression

Extensive Survey about the IEEE-History: [GN98]

Mathematical Foundation of Quantization Theory: [GL00]
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Introduction to Optimal Quantization(s) Voronoi Quantizer

Voronoi-Quantization

B Let X : (Ω,S,P)→ (Rd,Bd, ‖·‖) be a random vector such that

E‖X‖p < +∞ for some p ∈ [1,∞).

B Given a (finite) “grid” Γ = {x1, x2, . . . , xN } ⊂ Rd, we discretize of the r.v. X using
a Nearest Neighbor projection.

Let
`
Ci(Γ)

´
1≤i≤N be a Voronoi partition of Rd generated by Γ, i.e.

`
Ci(Γ)

´
is a

Borel partition of Rd satisfying

Ci(Γ) ⊂
n
z ∈ Rd : ‖z − xi‖ ≤ min

1≤j≤N
‖z − xj‖

o
.

Let πΓ : Rd → Γ the induced Nearest Neighbor projection,

ξ 7→
NX
i=1

xi1Ci(Γ)(ξ).

so that
‖ξ − πΓ(ξ)‖ = dist(ξ,Γ)
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Introduction to Optimal Quantization(s) Voronoi Quantizer

⇒ We define the Voronoi Quantization as

bXΓ = πΓ(X) =

NX
i=1

xi1Ci(Γ)(X).
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Voronoi-Quantization
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PAGÈS et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache 31 / 83



Introduction to Optimal Quantization(s) Voronoi Quantizer

Voronoi-Quantization

X(ω)
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Introduction to Optimal Quantization(s) Voronoi Quantizer

B The companion functional approximation operator is

F( bXΓ) = (F ◦ πΓ)(X).

It maps F in a stepwise constant (on Voronoi partitions. . . ) functions.

B If F is Lipschitz continuous˛̨
EF (X)− EF ( bXΓ)

˛̨
≤ [F ]Lip

‚‚X − bXΓ
‚‚

1
= ‖dist(X,Γ)‖1

and, since ξ 7→ dist(ξ,Γ) is 1-Lipschitz, one has

sup
[F ]Lip≤1

˛̨
EF (X)− EF ( bXΓ)

˛̨
=
‚‚X − bXΓ

‚‚
1

=
‚‚dist(X,Γ)

‚‚
1
.

(Wasserstein distance between L(X) and the set of Γ-supported distributions).
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Introduction to Optimal Quantization(s) Lp-mean quantization error

Lp-mean quantization error

B The Lp-mean quantization error induced by a grid Γ ⊂ Rd with size
|Γ| ≤ N, N ∈ N

ep(X; Γ) = ‖dist(X,Γ)‖p =
‚‚‚min
x∈Γ
‖X − x‖

‚‚‚
p
. (3)

B The optimal Lp-mean quantization problem consists in minimizing (3) over all
grids of size |Γ| ≤ N .

We define the Lp-optimal mean quantization error of level N as

ep,N (X) := inf
n‚‚‚min

x∈Γ
‖X − x‖

‚‚‚
p

: Γ ⊂ Rd, |Γ| ≤ N
o
.
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Introduction to Optimal Quantization(s) Lp-mean quantization error

Voronoi-Quantization

One shows the more general optimality result

ep,N (X) = inf
˘
‖X − Ξ‖p : Ξ∈ Lp(Rd), |Ξ(Ω)| ≤ N

¯
.

⇒ Voronoi Quantization bXΓ provides an optimal Lp-mean discretization of X (as
soon as Γ is an optimal quantization grid for X. . . ).

⇒ The Nearest Neighbor projection is the coding rule, which yields the smallest
Lp-mean approximation error for X.

Theorem (Kiefer,. . . , Cuesta-Albertos, P. (1997))

(a) For every level N ≥ 1, there exists (at least) an Lp-optimal quantization grid
ΓN,∗ at level N .

(b) If p = 2, E
“
X | bXΓN,∗

”
= bXΓN,∗ (stationarity/self-consistency).
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¯
.

⇒ Voronoi Quantization bXΓ provides an optimal Lp-mean discretization of X (as
soon as Γ is an optimal quantization grid for X. . . ).
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Introduction to Optimal Quantization(s) Quantization Rates/Zador’s Theorem

Rates of Optimal Quantization

B It is easy to check that (everywhere dense sequence. . . )

ep,N (X)→ 0 as N →∞.

At which rate ?

Theorem (Zador’s Theorem)

(a) Sharp asymptotic (Zador, Kiefer, Bucklew & Wise, Graf & Luschgy, cf.

[GL00]): Let X ∈ Lp+(Rd) with distribution PX = ϕ.λd
⊥
+ ν.

Then

lim
N→∞

N
1
d · ep,N (X) = Qp,‖·‖ ·

„Z
Rd
‖ϕ‖d/(d+p) dλd

«(d+p)/d

where Qp,‖·‖ = infN N
1
d · ep,N

`
U([0, 1]d)

´
.

(b) Non-asymptotic (Luschgy-P. (2007), cf. []): Let p′ > p. There exists Cp,p′,d
such that, for every r.v. Rd-valued X

∀N ≥ 1, ep,N (X) ≤ Cp,p′,d inf
a∈Rd

‖X − a‖p′ ·N−
1
d .
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Introduction to Optimal Quantization(s) Numerical computation of quantizers

A Side Note on Numerical Computation of Quantizers

Computing optimal grids
Consider for DN : (Rd)N → R the optimization problem (here p = 2)

DN (x) := E min
1≤i≤N

‖X − xi‖2 → min
x∈(Rd)N

.

As soon as ‖·‖ is a.s. smooth ⇒ DN is differentiable.

d = 1:

DN (x) =

NX
i=1

Z xi+1/2

xi−1/2

|ξ − xi|2dPX(ξ)

⇒ Evaluation of Voronoi-Cells, Gradient and Hessian is simple  
Newton-Raphson
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Introduction to Optimal Quantization(s) Numerical computation of quantizers

A Side Note on Numerical Computation of Quantizers (p = 2)

d ≥ 2: 1 Stochastic Gradient Method: CLVQ
Simulate ξ1, ξ2, . . . independent copies of X
Generate step sequence γ1, γ2, . . .
Usually: step γn = A

B+n
↘ 0 or γn = η ≈ 0

Grid updating n 7→ n+ 1:
Competition: select winner index: i∗ ∈ argmini|xni − ξn|

Learning:

(
xn+1
i∗ := xni∗ + γn(xni∗ − ξn)

xn+1
j := xnj , for j 6= i∗.

2 Lloyd’s algorithm as a randomized fix-point method.

Initial grid Γ(0) = {x0
1, . . . , x

0
N}

Usual step : bXΓ(n+1)
= E

`
X | bXΓ(n)´

i.e. x
(n+1)
k = E

`
X | bXΓ(n)

= x
(n)
k

´
so that ‖X − bXΓ(n+1)‖2 ≤ ‖X − bXΓ(n)‖2

3 “Batch” approach [. . . ]
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PAGÈS et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache 37 / 83



Introduction to Optimal Quantization(s) Optimal Quantizers

Figure: A Quantizer for N (0, I2) of size N = 500 in (R2, ‖·‖2).
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Quantization and Cubature A Cubature formulae

Quantization for Cubature

Assume that we have access to the Voronoi-Cell weights

wi(Γ) := P(X ∈ Ci(Γ)), i = 1, . . . , N.

=⇒ The computation of EF ( bXΓ) for some Lipschitz continuous F : Rd → R becomes
straightforward:

EF ( bXΓ) =

NX
i=1

wi(Γ)F (xi).

B As a first error estimate, we already know that

|EF (X)− EF ( bXΓ)| ≤ [F ]Lip E‖X − bXΓ‖.
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Quantization and Cubature Error estimates

Further Error Estimates

Moreover

inf
n

sup
[F ]Lip≤1

|EF (X)− EF (Y )|, Y (Ω) ⊂ Γ
o

= sup
[F ]Lip≤1

|EF (X)− EF ( bXΓ)| = E‖X − bXΓ‖

i.e. Quantization is optimal for the class of Lipschitz functions.

Second order rate

B If F ∈ C1
Lip and the grid Γ is stationary, i.e.

bXΓ = E(X| bXΓ),

then a Taylor expansion yields

|EF (X)− EF ( bXΓ)| = |EF (X)− EF ( bXΓ)− EDF ( bXΓ).(X − bXΓ)|
≤ [DF ]Lip · E‖X − bXΓ‖2.
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Quantization and Cubature Error estimates

B Furthermore, if F is convex, then Jensen’s inequality implies for stationary Γ

EF ( bXΓ) ≤ EF (X).
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Quantization and Cubature Applications

Further Applications

Applications for optimal quantization grids

Obstacle Problems: Valuation of Bermuda and American options, Reflected
BSDE’s (Bally-P.-Printems ’01, ’03 et ’05, Illand ’11)

δ-Hedging for American options (ibid. ’05)

Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing
options (Bouthemy-Bardou-P.’09). . . on massively parallel architecture (GPU,
Bronstein-P.-Wilbertz, ’10)

Non-linear filtering and stochastic volatility models (P.-Pham-Pprintems ’05,
Pham-Sellami-Runggaldier’06, Sellami ’09 &’10, Callegaro-Sagna ’10)

Discretization of SPDE’s (stochastic Zakäı & McKean-Vlasov equations)
[Gobet-P.-Pham-Printems ’07]

Quantization based Universal Stratification (variance reduction) [Corlay-P. ’10]

CVaR-based dynamical risk hedging [Bardou-Frikha-P., ’10), etc.
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[Gobet-P.-Pham-Printems ’07]

Quantization based Universal Stratification (variance reduction) [Corlay-P. ’10]

CVaR-based dynamical risk hedging [Bardou-Frikha-P., ’10), etc.
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Quantization and Cubature Applications

First conclusions on Voronoi quantization

Voronoi quantization is optimal for “Lipschitz approximation”

Paradox: it does not preserve regularity

Second order (stationarity) : (almost) only optimal grids ⇒ lack of flexibility

Download free pre-computed grids of N (0; Id) distributions at the URL

www.quantize.maths-fi.com

for d = 1, . . . , 10 and N = 1, . . . 104.

and many others items related to optimal quantization.
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Dual Quantization Motivation and idea

Starting with dual Quantization (d = 1 and d ≥ 2)
P.-Wilbertz ’09 JCF and ’12 SINUM & Num. Meth. in Fin., Springer

Idea

B No longer maps X(ω) to its nearest neighbor, but splits up the projection
randomly between the “surrounding” neighbors of X(ω).

B Let “Γ = {×, . . . ,×}” in the figure below.
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Dual Quantization Motivation and idea

Starting with dual Quantization: d = 2
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Dual Quantization Stationary Operators

Random splitting operator

B Let τ = {x1, . . . , xd+1} ⊂ Rd be a d-simplex in Rd,

i.e. x1, . . . , xd+1 are affinely independent.

B Let λ(ξ) be the barycentric coordinates of ξ ∈ conv(τ).

Definiton of the τ -splitting operator

J Uτ : conv(τ) −→ τ

ξ 7−→
d+1X
i=1

xi1˘i−1P
j=1

λj(ξ)≤U <
iP
j=1

λj(ξ)
¯

where U ∼ U([0, 1]) is defined on an exogeneous space (Ω0,S0,P0).

B This τ -splitting operator always satisfies a mean preserving property:

E0

`
J Uτ (ξ)

´
=

d+1X
i=1

λi(ξ) · xi = ξ, ∀ξ ∈ conv(τ). (4)
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Dual Quantization Stationary Operators

Functional approximation operator

B The τ -splitting operator is in fact a probabilistic representation of the classical
interpolation operator

Jτ (F ) ≡ ξ 7−→ E0

`
F (J Uτ (ξ))

´
=

d+1X
i=1

λi(ξ) · F (xi), ∀ξ ∈ conv(τ). (5)

P1. Jτ (F ) is affine on conv(τ).

P2. If F is convex Jτ (F ) ≥ F .
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Dual Quantization Stationary Operators

(Not so) naive extension to triangulations: Cubature I

B The notion of τ -splitting operator can be extended to any given triangulation TΓ of
a grid Γ = {x1, . . . , xN }, so that (4) and (5) hold for any ξ∈ conv(Γ) for JTΓ and JTΓ .

Such an operator JTΓ also satisfies

P’1. JTΓ(F ) is continuous, piecewise affine on conv(Γ).

P’2. If F is convex JTΓ is convex on conv(Γ) and Jτ (F ) ≥ F .

P3. Random splitting operators preserve the convex order on distributions, namely“
∀F : conv(Γ)

convex−→ R, EF (X) ≤ EF (Y )
”

=⇒
“
∀F : conv(Γ)

convex−→ R, EF
`
JTΓ(X)

´
≤ EF

`
JTΓ(Y )

´”
B Induced cubature formulas. Let F : Rd → R.

EF (JTΓ(X)) = E
`
JTΓ(F )(X)

´
=

X
τ∈TΓ

X
a∈τ

E(λa(X))F (a) =
X
a∈Γ

“ X
τ∈TΓ,a∈τ

E(λa(X))
”
F (a)

=
X
a∈Γ

waF (a).
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Dual Quantization Stationary Operators

Intrinsic (dual) stationarity

Motivated by this observation. . .

B Definition. Let Γ be a grid of Rd. An application

JΓ : Ω0 × Rd → Γ

is intrinsic stationary if

∀ξ ∈ conv(Γ), E0

`
JΓ(ξ)

´
= ξ.

B The following proposition is an easy consequence of Fubini’s Theorem

Proposition

JΓ is intrinsic stationary, if and only if it satisfies the dual stationarity condition

EP⊗P0

`
JΓ(X)|X

´
= X

for any r.v. X : (Ω,S,P)→ (Rd,Bd) with supp(PX) ⊂ conv(Γ).

B Question. Are all intrinsic stationary operators random splitting operators
defined on a triangulation? (YES. . . )

NEW! This (dual) kind of stationarity is very robust, since it holds by construction
for any r.v. X with support in Γ.
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Dual Quantization Stationary Operators

Dual stationarity II

B Like with “regular” quantization, intrinsic stationary operators also yields an
improved second order bound.

Proposition

(a) Let F ∈ C1
Lip(Γ), Γ ⊂ Rd and JΓ be intrinsic stationary. Then it holds for any

r.v. X ∈ L2(P) with supp(PX) ⊂ conv(Γ),

|EF (X)− EF (JΓ(X))| = |EF (JΓ(X))− EF (X)− E
`
DF (X)(JΓ(X)−X)

´
|

≤ [F ′]Lip · E‖X − JΓ(X)‖2.

(b) If F : Γ→ Rd is convex, then Jensen’s inequality implies

EF (JΓ(X)) ≥ EF (X)

(c) JΓ preserves convex order on random vectors.

This property also follows from the dual stationarity.

Remark. If JΓ is a random splitting operator, it follows from the stronger fact that

F (JΓ(X)) = JΓ(F )(X) ≥ F (X).
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Dual Quantization Definition Dual Quantization

Question

Let Γ be a grid of size N ∈ N. What is the best approximation, which can be
achieved by an intrinsic stationary operator JΓ?

Problem: The grid Γ gives raise to (finitely) many possible triangulations.

B We aim at selecting the triangulation with the lowest p-inertia i.e.

∀ ξ∈ conv(Γ), F pp (ξ; Γ) = min
λ∈RN

 
NX
i=1

λi ‖ξ − xi‖p
! 1
p

s.t.
h x1 ... xN

1 ... 1

i
λ=

h
ξ
1

i
, λ≥0

Hence, for every ξ ∈ conv(Γ) we choose the best “triangle” in Γ which contains ξ.

B The optimal Lp dual quantization error is then defined as

dp,N (X) = inf
˘
‖Fp(X; Γ)‖p, Γ ⊂ Rd, |Γ| ≤ N

¯
.
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Dual Quantization Definition Dual Quantization

Optimality regions for F p(ξ; Γ)

B To design a splitting operator matching F p(ξ; Γ), we need to determine optimality
regions, counterparts of the Voronoi regions for regular quantization.

B (λi)1≤i≤N 7→ minλ∈RN
“PN

i=1 λi ‖ξ − xi‖
p
” 1
p

s.t.
h x1 ... xN

1 ... 1

i
λ=

h
ξ
1

i
, λ≥0

atteins a minimum (at least) at an

extremal N -tuple λ∗(ξ) of the convex constraint set.

B Therefore, I∗(ξ) := {i : λ∗i (ξ) > 0} defines an affinely independent family
(xi)i∈I∗(ξ) which can be completed into a Γ-valued affine basis.

Let
I ∈ I(Γ) =

˘
J ⊂ {1, . . . , N} : |J | = d+ 1, rk(AJ) = d+ 1

¯
.

Set

DI(Γ) =
˘
ξ ∈ Rd : ∃I∗(ξ) ⊂ I},
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Dual Quantization Definition Dual Quantization

or equivalently, in term of linear programming,

DI(Γ) =
n
ξ ∈ Rd : λI = A−1

I

ˆ
ξ
1

˜
≥ 0 and

X
i∈I

λIi ‖ξ − xi‖p = F p(ξ; Γ)
o
,

where AI denotes the submatrix of
ˆ x1 ... xN

1 ... 1

˜
whose columns are given by I and
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Dual Quantization Properties of Dual Quantization

Quadratic Euclidean case

B In the case ‖·‖ = | · |2 and p = 2,

optimality regions are the Delaunay “triangles” in Γ,

i.e. the spheres spanned by such optimal d-simplex contain no further point in its
interior.

B The following theorem is an extention of Rajan’s Theorem ([Raj91]).

Theorem (Euclidean case (Rajan ’91))
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ˆ
ξ
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DI(Γ) = conv{xj : j ∈ I}.

(b) Conversly, if I ∈ I(Γ) satisfies D̊I(Γ) 6= ∅, then the triangle (or d-simplex)
defined by I has the Delaunay property for Γ.
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Dual Quantization Properties of Dual Quantization

Optimal dual quantization operator

For a Γ = {x1, . . . , xN } ⊂ Rd with aff. dim(Γ) = d,

choose a Borel partition (CI(Γ))I∈I(Γ) of conv(Γ) such that

CI(Γ) ⊂ DI(Γ),

let U ∼ U [0, 1] on (Ω0,S0,P0).

The optimal dual quantization operator J ∗Γ is defined as

J ∗Γ (ξ) =
X

I∈I(Γ)

"
kIX
`=1

xi` · 1˘`−1P
j=1

λIij
(ξ)≤U<

P̀
j=1

λIij
(ξ)
¯#1CI (Γ)(ξ).

where I = {i1, . . . , ikI}.

One easily checks that this operator is intrinsic stationary.
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Dual Quantization Properties of Dual Quantization

Equivalence of optimal dual quantization

The operator J ∗Γ then leads to the following characterizations of the optimal dual
quantization error:

Theorem ([PW10a])

Let X ∈ Lp(P) and N ∈ N. Then

dp,N (X) =

inf
n`

E‖X − JΓ(X)‖p
´ 1
p : JΓ : Ω0 × Rd → Γ is intrinsic stationary,

supp(PX) ⊂ conv(Γ), |Γ| ≤ N
¯

= inf
˘
E‖X − bY ‖p : bY is a r.v. on (Ω× Ω0,S ⊗ S0,P⊗ P0),

|bY (Ω× Ω0)| ≤ N, E(bY |X) = X
o
.
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Dual Quantization Unbounded support

Extension to unbounded support

B It is not possible to obtain intrinsic stationarity for ξ /∈ conv(Γ)

B We extend JΓ(X) outside conv(Γ) by using a Nearest Neighbor projection (which
only preserves stationarity inside conv(Γ)).

B We therefore drop the requirement supp(PX) ⊂ conv(Γ) in above theorem and set

d̄p,N (X) = inf
n`

E‖X − JΓ(X)‖p
´ 1
p : JΓ is intrinsic stationary, |Γ| ≤ N

o
.
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Dual Quantization Existence

Existence of optimal dual quantizers

Theorem ([PW10a])

Let p > 1.

(a) Assume that PX has a compact support. Then, for every N ≥ d+ 1 there exists at
least one optimal dual quantizer at level N (i.e. the dual quantization problem dp

N
(X)

attains its infimum).
Moreover, dp

N
(X) strictly decreases to 0 as N →∞, if not vanishing.

(b) Assume that the distribution PX is strongly continuous. Then the same holds for
d̄p
N

(X) for every N ≥ 1.
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Dual Quantization Asymptotics

Asymptotic behavior

Theorem (Sharp rate [PW10b])

(a) Let X ∈ Lp+(Rd) with distribution PX = ϕ.λd
⊥
+ ν.

Then

lim
N→∞

N1/d · d̄p,N (X) = Qd,p,‖·‖ ·
„Z

Rd
ϕd/(d+p) dλd

« d+p
d

where Qd,p,‖·‖ = inf
N
N1/d · dpN

`
U([0, 1]d)

´
.

(b) If d = 1, Qd,p,‖·‖ = 21+1/p

(p+2)1/p
lim
N→∞

N1/d · ep,N
`
U([0, 1])

´
. If d ≥ 2, ???

(c) Let p′ > p. There exists Cdualp,p′,d and Ndual
p,p′,d such that, for every r.v. Rd-valued X

∀N ≥ Ndual
p,p′,d, d̄p,N (X) ≤ Cdualp,p′,d inf

a∈Rd
‖X − a‖p′ ·N−

1
d .

(d) The same holds for compactly supported r.v. for the mean quantization error
dn,p(X) with the same asymptotic constant Qd,p,‖‖̇.
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Dual Quantization Asymptotics

Asymptotic behavior

Sketch of the proof

Prove existence of the limit for U([0, 1]d)

Derive upper and lower bounds for piecewise constant densities (with compact
support) on hypercubes

Use Differentiation of measure to cover the general case (still compact support)

Random dual quantization argument (so-called extended Pierce Lemma) to get
the unbounded case.
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Numerical aspects Numerical computations: the grids

Numerical computations: the grids

B Differentiability as a function of Γ for every ξ∈ conv(Γ),

Γ = (x1, . . . , xN ) 7−→ F pp (ξ,Γ)

is differentiables except at a grid Γ0 except for a λd-negligible set of values of ξ,
namely ∪I∈I(Γ)∂DI(Γ).

B Hence, if X has an absolutely continuous distribution,

Γ 7−→ E(F pp (X,Γ)) is differentiable

with gradient at Γ given by

E
“∂F pp
∂ξ

(X,Γ)
”

B Provides a stochasic gradient descent procedure (counterpart of CLV Q) or a
couterpart of randomized Lloyd’s procedure..
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Figure: Dual Quantization for U([0, 1]2) and n = 8
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Figure: Dual Quantization for U([0, 1]2) and n = 12
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Figure: Dual Quantization for U([0, 1]2) and n = 13
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Figure: Dual Quantization for U([0, 1]2) and n = 16
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Figure: Dual Quantization for N (0, I2) and N = 250
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Figure: Joint Dual Quantization of the BM and its supremum, N = 250
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Numerical computations: the weights

B Static weight computation. Let Γ = {x1, . . . , xN }. How to compute

pi = P(J UΓ (X) = xi) ?

By a (possibly massively parallel) Monte Carlo simulation

pi = lim
M→∞

1

M

MX
m=1

P
“
J UmΓ (X(m)) = xi|X(m)

”
where (X(m), U (m)), m ≥ 1 are independent copies of X ⊥⊥ U and

E
“
J UmΓ (X(m))|X(m)

”
= barycentric coordinate of X(m)

in “its” simplex 3 xi
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Bermuda options

In the same way we use the Backward Dynamic Principle for the valuation of
Bermuda options:

BDP for Bermuda options

bVn = ϕtn( bXn)bVk = max
n
ϕtk ( bXk); E

`bVk+1

˛̨ bXk´o, 0 ≤ k ≤ n− 1,

so that bV0 yields an approximation to the Bermuda option premium

V0 = esssup{Eϕ(Xτ ) : τ is {t0, . . . , tn}-valued stopping time}.
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Error bounds

Theorem (P.-Wilbertz 2010)

Vk = vk(Xk) and bVk =: bvk( bXk), k = 0, . . . , n

and

‖vk(Xk)− bvk( bXk)‖p ≤ κp,p′
nX
`=k

Cn,`([v]Lip, [P ]Lip)σp′(Xk)N
− 1
d

k

where σp′(Xk) = mina∈Rd ‖Xk − a‖p′ is the Lp
′
-median of Xk, p′ > p.

B Optimization of the quantization tree structure for a given budget N

min
N0+···Nn≤N

nX
k=0

Cn,k([v]Lip, [P ]Lip)σp′(Xk)N
− 1
d

k

=⇒ Nk =
...

...
, k = 0, . . . , n.
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Numerical experiments I

Example

2d-asset (uncorrelated) Black-Scholes model with maturity T = 1, 11 exercise dates:
k/10, k = 0, . . . , 10, and

si0 = 40
2
d , i = 1, . . . , k, si0 = 40

2
d , i = k + 1, . . . , d, r = 0.05,

σi = 0.2, i = 1, . . . , d, δi = 0.05, i = 1, . . . , k, δi = 0.0, i = k + 1, . . . , d.

for a geometric exchange put option

ϕ(S1
t , S

2
t ) =

“ kY
i=1

Sit −
dY

i=k+1

Sit

”
+
.

This can be reduced for any d to a 2-dim exchange option.
Hence reference values are available using a Boyle-Evnine-Gibbs tree with 10 000
time steps.
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Printems’s paradigm: log-log plots for true rates
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Figure: Log-Log plot of both quantization methods in dimension 2

PAGÈS et al. (LPMA-UPMC) Quantization: Voronoi vs Delaunay Cadarache 72 / 83



Numerical aspects ... to Bermuda options

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 6  6.5  7  7.5  8  8.5  9

N

VQ
DQ

Figure: Log-Log plot of both quantization method in dimension 4

2d = 2 2d = 4

Voronoi Quantization 0.73 0.36
Dual Quantization 0.86 0.38

Table: Rates of convergence for the exchange option.
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Richardson-Romberg extrapolation

B We proceed a (heuristic) Richardson-Romberg extrapolation on the (guessed) error
expansion.

EF (X) ≈ EF ( bX) + κN−α

B We extrapolate the unknown κ using two different grids sizes N1 and N2. As a
result, we obtain in the above setting for

P̂Rom
0 = P̂N1

0 +
P̂N1

0 − P̂N2
0

N−α2 −N−α1

N−α1
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Figure: Convergence of the extrapolated quantization methods for the geometric exchange
option in dimension 2
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Figure: Convergence of the extrapolated quantization methods for the geometric exchange
option in dimension 4

Suggestion: Adopt the mid-price 0.5× (PriceV Q + PriceDQ) computed on an
optimal Voronoi quantization tree.
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Bermuda: Numerical experiments II

Example

2-asset Black-Scholes model with

s1
0 = s2

0 = 40, r = 0.05, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, K = 40,

for a put on the min, i.e. payoff

ϕ(S1
t , S

2
t ) = (K −min{S1

t , S
2
t })+.

As underlying Markov process we have chosen a 2-dimensional Brownian Motion
with correlation ρ.

Reference values still computed using a Boyle-Evnine-Gibbs tree with 10.000
timesteps.
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Martingale Adjustment

B If the structure process (Xk)0≤k≤nis a martingale (. . . ) and X0 = x0, the attached
quantization trees loose this property.

B One idea is to restore the martingality by moving the grids Γk:

– Define by a backward induction eΓn = Γn and for every k = 0, . . . , n− 1,

eΓk =
nexk1 , . . . , exkNko where exki =

Nk+1X
j=1

pkijexk+1
j , i = 1, . . . , Nk.

– Re-center the grids by setting

Γmartk = eΓk + x0 − ex0.

B The resulting quantization tree (Γmartk ,pk)0≤k≤n has the distribution of a
martingale starting at x0 at time 0. (It is observed that the translation x0 − ex0 is
negligible in practice).
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Martingale Adjustment: numerical experiments. . .

Bermudan option: #exercise days: 10

regular + martgl adj dual + martgl adj european ref value
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including Longstaff-Schwartz by Premia
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Conclusion / Outlook

Conclusion / Summary

Interesting and challenging extention of regular Quantization

Provides a stationarity, which holds independently of the choice of the
quantization grid

Represented in the Euclidean case by the dual concept of Voronoi tesselations:
the Delaunay triangulation

Yields very promising results in first numerical applications

Further applications in optimal grid generation, adaptive grid refinements
possible

Application to 3-factor models, etc.
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