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1. Introduction

The importance of linear and quadratic programming problems is well appreciated in
finite-dimensional optimization. Such problems serve as mathematical models in their
own right and as subproblems solved within the context of general numerical methods of
nonlinear programming. In optimal control only a relatively small class of linear-quadratic
problems has traditionally received much attention, however. A much more general class
has recently been explored by Rockafellar [1] with the aim of opening up a wide domain for
application of techniques of large-scale linear and quadratic programming, in particular the
finite generation method of Rockafellar and Wets [2], [3], [4] that has been implemented in
stochastic programming [5]. Central to this purpose is the development of flexible problem
formulations for which there is a strong duality theory that represents optimal trajectories
and controls in terms of saddlepoints of a “decomposable” Lagrangian.

In the present paper a discrete-time version of the deterministic models in [1] is investi-
gated and corresponding results on optimality and duality are obtained. The formulations
and results are then generalized to the stochastic case. The focus on discrete time is
motivated by the computational possibilities already mentioned, so we do not hesitate to
suppose also that the probability space for our stochastic version is discrete.

Our emphasis is on setting up a general framework for large-scale finite-dimensional
linear-quadratic programming problems that reflect the special structure of optimal con-
trol. Besides being useful for numerical experimentation, such a framework may stimu-
late new applications, for instance in areas like operations research and resource systems
management, where inequality constraints occur that jointly involve states and controls.
Although the task of clarifying the relationship between finite and infinite-dimensional
formulations is an important one, it is not the object of our efforts here.

In fact our discrete-time problems are more general than typical continuous-time prob-
lems in one respect: the dimensionality of the state and control vectors can vary with time.
This feature is important in multistage modeling, where the decision structure in one pe-
riod need not be the same as in another. The flexibility it provides allows us to show that
a much wider class of problems is covered by our format than might at first be imagined.
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2. Generalized Linear-Quadratic Programming.

The control problems that will be formulated are based on a concept of generalized linear-
quadratic programming explained fully in Rockafellar [1]. A problem fits this concept if it
can be expressed in the form

(P) minimize f(u) = sup
v∈V

J(u, v) over all u ∈ U,

where U and V are polyhedral convex sets in lRk and lR`, and J is a quadratic convex-
concave function on U × V , namely

(2.1) J(u, v) = p·u + 1
2u·Pu + q·v − 1

2v·Qv − v·Du,

where P and Q are symmetric and positive semidefinite (possibly 0—we do not exclude
“linear” when we say “quadratic”, as we try to underline by sometimes using the term
“linear-quadratic”). The problem dual to (P) is then

(Q) maximize g(v) = inf
u∈U

J(u, v) over all v ∈ V.

Here f(u) could be ∞ and g(v) could be −∞. We regard u as a feasible solution to
(P) only if u ∈ U and f(u) < ∞; likewise, we regard v as a feasible solution to (Q) only if
v ∈ V and g(v) > −∞.

The expression of problems (P) and (Q) is facilitated by the notation

(2.2) ρV,Q(r) = sup
v∈V

{r·v − 1
2v·Qv} for r ∈ lR`,

(2.3) ρU,P (s) = sup
u∈U

{s·u− 1
2u·Pu} for s ∈ lRk.

Thus ρV,Q is a function on lR` determined by the specification of a polyhedral convex set
V ⊂ lR` and a symmetric positive semidefinite matrix Q ∈ lR`×`. It is in general “piecewise
linear-quadratic” in a sense made precise in [1], and it may take on the value ∞. There
are many special cases deserving of mention, but for these too one should consult to [1].
Let it suffice to observe that when 0 ∈ V , one has ρV,Q(r) ≥ 0 for all r, ρV,Q(0) = 0.
Then ρV,Q(r) can be interpreted as an expression that “monitors deviations of r from 0”.
Similarly for ρU,P .

In this notation our general problems can be written as

(P) minimize p·u + 1
2u·Pu + ρV,Q(q −Du) over u ∈ U,
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(Q) maximize q·v − 1
2v·Qv − ρU,P (D∗v − p) over v ∈ V

(where the asterisk * signals the transpose matrix). In (P), therefore, one has the possi-
bility of linear constraints represented by the condition u ∈ U , and also an objective term
which “monitors deviations of Du from q”. This may be a penalty term that is zero for
some kinds of deviations but positive for others. For example, if V = lR`

+, Q = 0, one has

(2.4) ρV,Q(q −Du) =
{

0 if Du ≥ q,
∞ if Du 6≥ q,

so that the ρ term in (P) is a “sharp” representation of the constraint Du ≥ q. If at the
same time one has U = lRk

+, P = 0, then similarly

(2.5) ρU,P (D∗v − p) =
{

0 if D∗v ≤ p,
∞ if D∗v 6≤ p.

In this case (P) and (Q) reduce to a canonical pair of linear programming problems in
duality. See [1] for discussion of the rich possibilities that such ρ terms provide more
generally in mathematical modeling.

The basic facts about the relationship between (P) and (Q) can be derived from the
standard theory of linear and quadratic programming, specifically the duality theorem of
Cottle [6] and the existence theorem of Frank and Wolfe [7].

Theorem 2.1 (Rockafellar and Wets [3, Theorem 2]). If either (P) or (Q) has finite

optimal value, or if both problems have feasible solutions, then both optimal values are

finite and equal, and both problems have optimal solutions. In this case a pair (u, v) is a

saddlepoint of J(u, v) relative to u ∈ U and v ∈ V if and only if u is an optimal solution

to (P) and v is an optimal solution to (Q).
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3. Deterministic Control Model.

We want now to formulate problems in this vein that belong to optimal control. The
dynamical system we consider takes the form

(3.1)
xτ = Aτxτ−1 + Bτuτ + bτ for τ = 1, . . . , T,

x0 = B0u0 + b0, where uτ ∈ Uτ for τ = 0, 1, . . . , T.

The vectors uτ ∈ lRkτ are controls, and the vectors xτ ∈ lRnτ are states (observe that
dimensions can vary with τ). We write u = (u0, u1, . . . , uT ) and x = (x0, x1, ..., xT ). Thus
x is uniquely determined by u, and the transformation u 7→ x is affine. Note that u0 serves
as a supplementary parameter vector more than as a control vector in the usual dynamical
sense.

The sets Uτ ⊂ lRkτ are assumed to be polyhedral convex (nonempty). The matrices
Aτ , Bτ and vectors bτ are of appropriate dimension:

Aτ ∈ lRnτ×nτ−1 , Bτ ∈ lRnτ×kτ , bτ ∈ lRnτ .

(By taking k0 = 0, one could eliminate u0 from (3.1) and have x0 = b0.)
Our deterministic control problem is:

(Pdet)

minimize subject to (3.1) the expression f(u) =
T∑

τ=0

[pτ·uτ + 1
2uτ·Pτuτ − cτ+1·xτ ]

+
T∑

τ=1

ρVτ ,Qτ (qτ − Cτxτ−1 −Dτuτ ) + ρVT+1,QT+1
(qT+1 − CT+1xT ).

Here Vτ is a polyhedral convex set (nonempty) in lR`τ , and the matrices Pτ and Qτ

are symmetric and positive semidefinite. One has

Pτ ∈ lRkτ×kτ , Qτ ∈ lR`τ×`τ , pτ ∈ lRkτ , qτ ∈ lR`τ ,

cτ ∈ lRnτ−1 , Cτ ∈ lR`τ×nτ−1 , Dτ ∈ lR`τ×kτ .

In this notation the elements Aτ and Dτ are defined only for τ = 1, . . . , T , but Bτ , bτ , Pτ , pτ ,
are defined for τ = 0, 1, . . . , T and Cτ , cτ , Qτ , qτ for τ = 1, . . . , T, T + 1.

For the problem that will turn out to be dual to (Pdet), the dynamical system goes
backward in time:

(3.2)
yτ = A∗τyτ+1 + C∗

τ vτ + cτ for τ = 1, . . . , T,

yT+1 = C∗
T+1vT+1 + cT+1, where vτ ∈ Vτ for τ = 1, . . . , T, T + 1.
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The vectors vτ ∈ lR`τ are the dual controls, and the vectors yτ ∈ lRnτ−1 are the dual
states. We write

v = (v1, . . . , vT , vT+1) and y = (y1, . . . , yT , yT+1).

The dual problem then is

(Qdet)

maximize subject to (3.2) the expression g(v) =
T+1∑
τ=1

[qτ·vτ − 1
2vτ·Qτvτ − bτ−1·yτ ]

−
T∑

τ=1

ρUτ ,Pτ (B∗
τyτ+1 −D∗

τvτ − pτ )− ρU0,P0
(B∗

0y1 − p0).

In this formula y is the trajectory uniquely determined from v by (3.2).

Proposition 3.1. Suppose x corresponds to u by (3.1), and y to v by (3.2). Then

(3.3)
T∑

τ=0

yτ+1·[Bτuτ + bτ ] =
T+1∑
τ=1

xτ−1·[C∗
τ vτ + cτ ].

Proof. In view of the relations (3.1) the left side of (3.3) can be written as

y1·x0 +
T∑

τ=1

yτ+1[xτ −Aτxτ−1]

= y1·x0 + y2·x1 + · · ·+ yT+1·xT −
T∑

τ=1

xτ−1·A∗τyτ+1.

Likewise from (3.2) the right side becomes

xT·yT+1 +
T∑

τ=1

xτ−1·[yτ −A∗τyτ+1]

= y1·x0 + y2·x1 + · · ·+ yT+1·xT −
T∑

τ=1

xτ−1·A∗τyτ+1.

Thus the two sides are equal, as claimed.

Proposition 3.2. Let U = U0 × · · · × UT and V = V1 × · · · × VT+1, and for u ∈ U and

v ∈ V define

(3.4)

J(u, v) =
T∑

τ=0

(pτ·uτ + 1
2uτ·Pτuτ ) +

T+1∑
τ=1

(qτ·vτ − 1
2vτ·Qτvτ )

−
T∑

τ=1

vτ·Dτuτ − [u, v],
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where [u, v] denotes the common value of the expression in (3.3).

Then U and V are polyhedral convex sets, and J is a quadratic convex-concave func-

tion.

Proof. This is immediate from our assumptions and the fact the expression [u, v] is affine
in u and v separately.

Theorem 3.3. The deterministic optimal control problems (Pdet) and (Qdet) are the

primal and dual problems of generalized linear-quadratic programming associated with

the U , V , and J in Proposition 3.2. In particular, the assertions of Theorem 2.1 are valid

for (Pdet) and (Qdet).

Proof. We need only show that the expressions f(u) and g(v) in (Pdet) and (Qdet) arise
according to the pattern in the general problems (P) and (Q) of §1. First using for [u, v]
in (3.4) the right hand expression in (3.3), we write

(3.5)

J(u, v) =
T∑

τ=0

(pτ·uτ + 1
2uτ·Pτuτ )−

T+1∑
τ=1

cτ·xτ−1

+
T∑

τ=1

([qτ − Cτxτ−1 −Dτuτ ]·vτ − 1
2vτ·Qτvτ )

+ ([qT+1 − CT+1xT ]·vT+1 − 1
2vT+1·QT+1vT+1)

The maximization of this over all v ∈ V reduces to a separate maximization with respect
to each of the components vτ of v. Since by definition

sup
vτ∈Vτ

{[qτ − Cτxτ−1 −Dτuτ ]·vτ − 1
2vτ·Qτvτ} = ρVτ ,Qτ (qτ − Cτxτ−1 −Dτuτ )

and

sup
vT+1∈VT+1

{[qT+1 − CT+1xT·vT+1 − 1
2vT+1·QT+1vT+1} = ρVT+1,QT+1

(qT+1 − CT+1xT ),

we conclude that supv∈V J(u, v) is the f(u) in (Pdet).

Next using for [u, v] the left hand expression in (3.3), we write

(3.6)

J(u, v) =
T+1∑
τ=1

(qτ·vτ − 1
2vt·Qτvτ )−

T∑
τ=0

bτ·yτ+1

−
T∑

τ=1

([B∗
τyτ+1 + D∗

τvτ − pτ ]·uτ − 1
2uτ·Pτuτ )

− ([B∗
0y1 − p0]·u0 − 1

2u0·P0u0).
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The minimization of this over all u ∈ U reduces similarly to a separate minimization with
respect to each of the components uτ . We know that

sup
uτ∈Uτ

{[B∗
τyτ+1 + D∗

τvτ − pτ ]·uτ − 1
2uτ·Pτuτ} = ρuτ , Pτ (B∗

τyτ+1 + D∗
τvτ − pτ )

and

sup
u0∈U0

{[B∗
0y1 − p0]·u0 − 1

2u0·P0u0} = ρu0,P0
(B∗

0y1 − p0).

We conclude that infu∈U J(u, v) is the g(v) in (Qdet).

The proof of Theorem 3.3 reveals an important simplifying feature of our minimax
representation of (Pdet) and (Qdet). We state it as follows.

Theorem 3.4. For the U , V , and J in Theorem 3.3 one has the following decomposability

properties for separate minimization in u or maximization in v. Here u and v are elements

of U and V , and x and y the corresponding trajectories.

(a) ũ ∈ argmin
u∈U

J(u, v) if and only if

ũτ ∈ ∂ρUτ ,Pτ (B∗
τyτ+1 + D∗

τvτ − pτ )

= argmax
uτ∈Uτ

{[B∗
τyτ+1 + D∗

τvτ − pτ ]·uτ − 1
2uτ·Pτuτ ]}

for τ = 1, . . . , T , and

ũ0 ∈ ∂ρU0,P0
(B∗

0y1 − p0)

= argmax
u0∈U0

{[B∗
0y1 − p0]− 1

2u0·P0u0}.

(b) ṽ ∈ argmax
v∈V

J(u, v) if and only if

ṽτ ∈ ∂ρvτ ,Qτ (qτ − Cτxτ−1 −Dτuτ )

= argmax
vτ∈Vτ

{[qτ − Cτxτ−1 −Dτuτ ]·vτ − 1
2vτ·Qτvτ}

for τ = 1, . . . , T , and

ṽT+1 ∈ ∂ρVT+1,QT+1
(qT+1 − CT+1xT )

= argmax
vT+1∈VT+1

{[qT+1 − CT+1xt]·vT+1 − 1
2vT+1·QT+1vT+1}.

Proof. The formulas in terms of “argmax” are justified by the calculations in the proof
of Theorem 3.3. The question that remains is whether the “argmax” sets are truly the
same as the indicated subgradient sets. This is answered by the observation that in the
notation (2.2) one has ρV,Q = θ∗V,Q (convex conjugate), where

(3.7) θV,Q(v) =
{

1
2v·Qv if v ∈ V,
∞ if v 6∈ V.
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Inasmuch as θV,Q is a closed proper convex function, one also has θV,Q = ρ∗V,Q and

∂ρV,Q(r) = argmax
v∈lR`

{r·v − θV,Q(v)}

by the basic rules of convex analysis [8, Theorem 12.2]. When this is applied to the pairs
Vτ , Qτ , and Uτ , Pτ , in place of V,Q, we reach our desired conclusion.

The significance of the formulas in Theorem 3.4 lies in their potential use in iterative
methods for solving (Pdet) and (Qdet) when the dimensions

(3.9) k =
T∑

τ=0

kτ and ` =
T+1∑
τ=1

`τ

of the vectors u = (u0, u1, . . . , uT ) and v = (v1, . . . , vT , vT+1) are large. The dimensions
may be expected to be large if T is large, as of course would happen in particular in taking
(Pdet) and (Qdet) to be discrete-time approximations to continuous-time control problems
such as the ones studied in [1]. In the presence of high dimensions, it may be impossible
or inexpedient to solve (Pdet) and (Qdet) directly by reducing them to ordinary quadratic
programming problems in duality and applying a typical finitely-terminating quadratic
programming code (as would be possible in principle in a manner explained in Rockafellar
and Wets [3,§2]).

An alternative approach in that case is the exploration of methods that determine
approximate solutions to (Pdet) and (Qdet) by calculating a sequence of approximate sad-
dlepoints (uν , vν) of J on U × V for ν = 1, 2, . . ., as suggested by the characterization of
optimality in Theorem 3.4. In any such method the ability to calculate

(3.10) f(uν) = max
v∈V

J(uν , v) and ṽν ∈ argmax
v∈V

J(uν , v)

as well as

(3.11) g(vν) = min
u∈U

J(u, vν) and ũν ∈ argmin
u∈U

J(u, vν)

is crucial in producing primal and dual bounds that tell how far uν and vν are from
optimality and as input to possible schemes for updating (uν , vν) to (uν+1, vν+1). Theorem
3.4 says that the calculations in (3.10) and (3.11) can feasibly be carried out in terms of
solving a collection of low-dimensional quadratic programming subproblems indexed by τ .
Moreover these subproblems can even be solved in “closed form”, i.e. without applying a
quadratic programming code, if the functions ρVτ ,Qτ and ρUτ ,Pτ have sufficiently simple
expressions that allow the use of subgradient formulas directly.
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The subgradient formulas are readily usable, for example, in the completely decom-
posable case where Uτ and Vτ are boxes (products of closed intervals, e.g. orthants) and
Pτ and Qτ are diagonal. Indeed, if Pτ and Qτ are nonsingular the subgradients reduce to
gradients given by very elementary expressions.

Theorem 3.5. Consider a control pair u, v, and the corresponding trajectories x and y

determined by (3.1) and (3.2). Define

(3.12) pτ = pτ−B∗
τyτ+1 for τ = 0, 1, . . . , T, and qτ = qτ−CτxT−1 for τ = 1, . . . , T, T+1.

Let (Pτ ) and (Qτ ) for τ = 1, . . . , T denote the primal and dual problems of generalized

linear-quadratic programming associated with

(3.13) Jτ (uτ , vτ ) = pτ·uτ + 1
2uτ·Pτuτ + qτ·vτ − 1

2vτ·Qτvτ − vτ·Dτuτ

on Uτ × Vτ , namely,

(Pτ ) minimize pτ·uτ + 1
2uτ·Pτuτ + ρVτ ,Qτ (qτ −Dτuτ ) over uτ ∈ Uτ ,

(Qτ ) maximize qτ·vτ − 1
2vτ·Qτvτ − ρUτ ,Pτ (D∗

τvτ − pτ ) over vτ ∈ Vτ ,

and consider also the problems

(P0) minimize p0·u0 + 1
2u0·P0u0 over u0 ∈ U0,

(QT+1) maximize qT+1·vT+1 − 1
2vT+1·QT+1vT+1 over vT+1 ∈ UT+1.

Then a necessary and sufficient condition for u and v to be optimal solutions to the

control problems (Pdet) and (Qdet), respectively, is that uτ should be an optimal solution

to the subproblem (Pτ ) for τ = 0, 1, . . . , T , and vτ should be an optimal solution to the

subproblem (Qτ ) for τ = 1, . . . , T, T + 1.

Proof. We know from Theorem 3.3 that a necessary and sufficient condition for the op-
timality of u and v in (Pdet) and (Qdet) is the saddlepoint relation

u ∈ argmin
u∈U

J(u, v) and v ∈ argmax
v∈V

J(u, v).

9
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Furthermore, this reduces to having the argmax conditions in Theorem 3.4 hold for ũ = u

and ṽ = v. These conditions in turn are equivalent to

uτ ∈ argmin
uτ∈Uτ

Jτ (uτ , vτ ) for τ = 1, . . . , T,

u0 ∈ argmin
u0∈U0

{p0·u0 + 1
2u0·P0u0},

and

vτ ∈ argmax
vτ∈Vτ

Jτ (uτ , vτ ) for τ = 1, . . . , T,

vT+1 ∈ argmax
vT+1∈VT+1

{qT+1·vT+1 − 1
2vT+1·QT+1vT+1}.

The latter mean that u0 is optimal for (P0), vT+1 is optimal for (QT+1), and (uτ , vτ )
is a saddlepoint of Jτ (uτ , vτ ) relative to uτ ∈ Uτ and vτ ∈ Vτ for τ = 1, . . . , T . This
saddlepoint condition is equivalent by Theorem 2.1 to uτ and vτ being optimal solutions
to the primal and dual subproblems (Pτ ) and (Qτ ).

Optimality conditions of the kind in Theorem 3.5 were developed for continuous-time
problems in Rockafellar [1]. They resemble conditions first detected in a special setting
known as “continuous linear programming” by Grinold [9].

Besides being of interest in the study of what optimality might mean in a particular
application modeled directly in terms of (Pdet) and (Qdet), the conditions in Theorem 3.5,
like those in Theorem 3.4, have import for computations. Having arrived at a control pair
(uν , vν) and associated trajectories (xν , yν) in some iteration ν of a numerical method,
one can construct a new pair (uν , vν) ∈ U × V by taking uν

τ to be an optimal solution to
(Pν

τ ) for τ = 0, 1, . . . , T and vν
τ an optimal solution to (Qν

τ ) for τ = 1, . . . , T, T + 1, where
(Pν

τ ) and (Qν

τ ) are the subproblems corresponding to uν and vν in the sense of Theorem
3.5. Then uν and vν generate new trajectories xν and yν that may be compared with
xν and yν , and for so forth. This procedure, like the one described after Theorem 3.4,
provides another tool that might be used constructively in the generation of a sequence of
approximate saddlepoints.

10
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4. Stochastic Control Model.

The probability space we work with in this paper is simply a finite set Ω, for reasons given
in §1. The probability associated with an element ω ∈ Ω is πω ≥ 0; one has

∑
ω∈Ω πω = 1.

The vectors, matrices and sets introduced in the formulation of our deterministic problems
persist notationally in the stochastic problems, but all are now treated as (potentially)
random variables. Thus, for example, pτ now denotes a mapping ω 7→ pωτ ∈ lRkτ rather
than necessarily just a single vector. Likewise Pτ is a matrix-valued mapping ω 7→ Pωτ ,
and Uτ is a set-valued mapping ω 7→ Uωτ . In line with our earlier assumptions, we suppose
that Pωτ and Qωτ are positive semidefinite (symmetric), and Uωτ and Vωτ are polyhedral
convex (nonempty). The expectation of a random variable such as pτ is

E{pτ} = Eω{pωτ} :=
∑
ω∈Ω

πωpωτ .

The information available to the decision-making process at time τ is modeled by the
specification of a (finite) field Gτ of subsets of Ω for τ = 0, 1, . . . , T, T + 1. The fields Gτ

may differ from the complete information fields Fτ , and no particular relation between
them is presupposed, although the case where the Gτ ’s are increasing with Gτ contained
in Fτ is, for instance, an important one. More will be said about this after the statement
of our primal and dual problems. We assume that

(4.1) Uτ , Vτ , pτ , Pτ , qτ , Qτ , and Dτ are Gτ -measurable,

but in general do not place this restriction on Aτ , Bτ , Cτ , bτ or cτ . Trivially the latter
are measurable with respect to the underlying field F of complete information, comprised
here of all the subsets of Ω.

Because Gτ is a finite collection of subsets of Ω, the notion of Gτ -measurability has
an especially simple representation for our purposes. Let Aτ denote the subcollection
of Gτ consisting of all Gτ -atoms, i.e. nonempty Gτ -measurable sets that do not properly
include any other nonempty Gτ -measurable set. Such atoms are mutually disjoint. A
set is Gτ -measurable if and only if it is a union of Gτ -atoms. Thus there is a one-to-one
correspondence between Gτ -measurable sets in Ω and sets of Gτ -atoms, i.e. subsets of
Aτ . A function is Gτ -measurable if and only if it is constant relative to every Gτ -atom.
Each Gτ -measurable function can in this way be identified uniquely with a function on Aτ

rather than on Ω. We can indicate this notationally, when we wish to, by writing pατ for
α ∈ Aτ to denote the common value that pωτ has for all ω ∈ α when p is Gτ -measurable.
(Obviously Ω itself in this setting might be identified with the set of atoms of some finite
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field of information chosen within a larger, possibly “continuous” probability space by
some kind of approximation. We don’t go into this matter here.)

Conditional expectation with respect to Gτ is denoted by EGτ . This can be viewed in
the present setting as the linear transformation that takes a random variable such as Bτ

and redefines it to have a constant value on each Gτ -atom α ∈ Aτ , that value being, of
course, the “weighted average” [∑

ω∈α

πωBωτ

]
/

[∑
ω∈α

πω

]
.

The stochastic dynamical systems for our primal and dual problems are taken again
to have the forms (3.1) and (3.2), but with all elements now interpreted as (potentially)
random, and with the restriction that

(4.2) uτ is Gτ −measurable,

(4.3) vτ is Gτ −measurable.

The condition uτ ∈ Uτ in (3.1) is interpreted to mean that uωτ ∈ Uωτ for all ω ∈ Ω, and
similarly for vτ ∈ Vτ . Our primal problem of stochastic control is

(Psto)

minimize subject to (3.1) and (4.2) the function f(u) =
T∑

τ=0

E{pτ·uτ + 1
2uτ·Pτuτ} −

T+1∑
τ=1

E{cτ·xτ−1}

+
T∑

τ=1

E{ρVτ ,Qτ (qτ − EGτ {Cτxτ−1} −Dτuτ )}

+ E{ρVT+1,QT+1
(qT+1 − EGT+1{CT+1xT })}.

The corresponding dual problem is

(Qsto)

maximize subject to (3.2) and (4.3) the function g(v) =
T+1∑
τ=1

E{qτ·vτ − 1
2vτ·Qτvτ} −

T∑
τ=1

E{bτ·yτ+1}

−
T∑

τ=1

E{ρUτ ,Pτ (EGτ {B∗
τyτ+1}+ D∗

τvτ − pτ )} − E{ρU0,P0
(EG0{B∗

0y1 − p0})}.

Here ρVτ ,Qτ and ρUτ ,Pτ are “random functions” that depend Gτ -measurably on ω ∈ Ω
by virtue of (4.1). The random variables

ξτ := EGτ {Cτxτ−1} and ητ := EGτ {B∗
τyτ+1}

12
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are Gτ -measurable too, of course, so the arguments to which ρVτ ,Qτ and ρUτ ,Pτ are applied
are always Gτ -measurable. The ρ terms at time τ thus monitor “constraint expressions”
based solely on the information available to the decision maker at time τ . Note from the
dynamics that ξωτ depends affinely on uω0, . . . , uω,τ−1, whereas ηωτ depends affinely on
vω,τ+1, . . . , vω,T+1.

In order to appreciate the generality of problem (Psto) it is important, especially for
readers accustomed to the traditional approach to stochastic control, to understand the
nature of the information structure that is adopted. This structure, which is typical of
the literature on stochastic programming, has sometimes been interpreted narrowly as
excluding models where the information on which decisions can be based is generated by
observations that may be influenced by previous control decisions, cf. the comments of
Bertsekas and Shreve [13, pp. 10–11]. Such is not actually the case when measurability
requirements are referred to a single underlying space, as we shall explain. Thus the
specification of the information field Gτ as independent of u0, u1, . . . , uτ−1, should not be
taken to mean, for instance, that in choosing uτ we are unable to respond to complete or
partial observations of the states x0, x1, . . . , xτ−1, inasmuch as those states are generally
random variables whose distributions depend on u0, u1, . . . , uτ−1.

The crucial distinction is that of controls uτ seen directly as functions on the space
Ω, rather than controls represented in a feedback mode as functions of past observations
and expressible only in a secondary way, through composition, as functions on Ω. The
feedback mode of representation, while conceptually very appealing, can be a handicap in
our opinion when imposed right from the beginning in the problem formulation. We prefer
to proceed at first without it and to recover feedback laws later from optimality conditions,
if desired.

Let us imagine, to make this more explicit, that at each time τ = 0, 1, . . . , N an
observation zτ ∈ lRmτ is made before the control decision uτ is chosen. Of course zτ

is a random variable whose distribution is given by a probability measure µτ on lRmτ ,
which in general might depend on the controls u0, u1, . . . , uτ−1. Let us suppose that
the only information available for the selection of uτ is the sequence z0, z1, . . . , zτ . In
stochastic control it is common to express this requirement by taking uτ to be a function
of z0, z1, . . . , zτ , i.e. as a function of a random argument in lRm0 × lRm1 × · · · × lRmτ .
What we propose instead is to handle z0, z1, . . . , zτ as functions defined on the underlying
probability space Ω and take uτ to be a function on Ω that is measurable with respect to
the σ-field generated by z0, z1, . . . , zτ ; it is this field that should be identified with Gτ in our
model. (We have assumed in this paper that Ω is a finite, discrete set, but the idea under
consideration applies more generally.) This condition is tantamount to the requirement

13
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that uτ be representable by composition of (z0, z1, . . . , zτ ) with some mapping into lRkτ

from the probability space in lRm0 × lRm1 ×· · ·× lRmτ induced by these random variables,
but it leaves the particular representation open to later investigation.

The advantage to our approach in this setting is that the field Gτ may well be inde-
pendent of u0, u1, . . . , uτ−1, even though the distribution of (z0, z1, . . . , zτ ) might not. To
this extent we are able to make use of properties of convexity and duality that otherwise
could be overlooked.

Before we return to the characterization of optimal controls and trajectories, let us
also note that because we allow the dimensionality of the state and control vectors to vary
over time, our model also includes classical multistage recourse problems. Suppose that
the equations (3.1) have the special form

xτ =
[

I
0

]
xτ−1 +

[
0
I

]
uτ for τ = 1, . . . , T,

x0 = u0,

where the identity matrices I and zero matrices 0 are of the appropriate dimensions. Then

x0 = u0, x1 =
[

u0

u1

]
, x2 =

u0

u1

u2

 , etc.

Thus xτ is the “memory” of all decisions up through time τ . Assuming that Gτ−1 ⊂ Gτ ,
we get xτ , like uτ , to be Gτ -measurable. Then in (Psto) the term

qτ − EGτ {Cτxτ−1} −Dτuτ

represents a general affine expression in u0, u1, . . . , uτ . When ρVτ ,Qτ is of the type (2.4),
we can rewrite (Psto) in terms of linear constraints and a quadratic objective involving
only the control variables u0, u1, . . . , uT . This problem, with its block angular structure, is
in the usual format for the multistage stochastic programs with recourse; see [11] or [12],
for example.

Problem (Psto) revolves around the choice of the random variable u = (u0, u1, . . . , uT ),
which can be regarded as a function from Ω to lRk0×· · ·× lRkT and therefore as an element
of the finite-dimensional vector space consisting of all such functions. The dimension of this
space may be very large indeed just from the size of Ω and possibly T , even if k0, . . . , kT

are themselves relatively small, as might generally be supposed. We must therefore think
of (Psto) as inherently a “large-scale” problem for which approximate methods of solution
will be more appropriate than “exact” ones.

14
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Nevertheless it is well to keep in mind that the representation of u as a function from
Ω to lRk0 × · · · × lRkT tends to exaggerate the dimensionality of (Psto). The constraint
that uτ be Gτ -measurable means, as already noted, that uτ can be identified uniquely with
a certain function from Aτ to lRkτ . The dimension of the space of all functions from Aτ

to lRkτ is aτkτ , where

ak = |Ak| (the number of atoms in Gk).

Thus the “true” dimensionality of (Psto), in the sense of the number of real-valued decision
variables, is

(4.5) k∗ = a0k0 + a1k1 + · · ·+ aT kT .

By the same token, the “true ” dimensionality of (Qsto), where the random variable v =
(v1, . . . , vT , vT+1) must be optimized, is

(4.6) `∗ = a1`1 + · · ·+ aT `T + aT+1`T+1.

Proposition 4.1. Let

U = {u = (u0, u1, . . . , uT )| uτ is Gτ -measurable with uτ ∈ Uτ},

V = {v = (v1, . . . , vT , vT+1)| vτ is Gτ -measurable with vτ ∈ Vτ},

and define J (u, v) = E{J(u, v)}, where J(u, v) is the expression in Proposition 3.2 (re-

garded now as a random variable depending on the choice of the random variables u and v).

Then U and V are polyhedral convex sets (nonempty), and J is a quadratic convex-concave

function.

Proof. By definition U is a subset of the space of all functions from Ω to lRk0 ×· · ·× lRkT

consisting of the functions u such that uωτ ∈ Uωτ for all ω and τ , and Uωτ is constant in
ω with respect to each Gτ -atom α ∈ Aτ . These conditions can be represented by a finite
system of linear equations and inequalities, because Ω is finite and Uωτ is by assumption
a convex polyhedron for each ω and τ . (Alternatively U can be viewed as a direct product
of polyhedral convex sets Uατ indexed by α ∈ Aτ and τ = 0, 1, . . . , T , inasmuch as Uτ is
Gτ -measurable.) Thus U is a convex polyhedron. Similarly V is a convex polyhedron. We
have by definition

J (u, v) =
∑
ω∈Ω

πωJ(uω0, uω1, . . . , uωT ; vω1, . . . , vωT , vω,T+1)
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where the J term for each ω is quadratic convex-concave function and the coefficients πω

are nonnegative therefore J is a quadratic convex-concave function.

Theorem 4.2. The stochastic optimal control problems (Psto) and (Qsto) are the primal

and dual problems of generalized linear-quadratic programming associated with the U ,V
and J in Proposition 4.1. In particular, the assertions of Theorem 2.1 are valid for (Psto)
and (Qsto).

Proof. We must show that the supremum of J (u, v) over all v ∈ V is the function f(u) in
(Psto), and the infimum of J (u, v) over all u ∈ U is g(u) in (Qsto). Starting with J(u, v) in
the form of (3.5) (which is obtained by using the right hand expression in (3.3) for [u, v])
and taking the expectation, we get by (4.1) that

J (u, v) =
T∑

τ=0

E{pτ·uτ + 1
2uτ·Pτuτ} −

T+1∑
τ=1

E{cτ·xτ−1}

+
T∑

τ=1

E{[qτ − EGτ {Cτxτ−1} −Dτuτ ]·vτ − 1
2vτ·Qτvτ}

+ E{[qT+1 − EGT+1{CT+1xT }]·vT+1 − 1
2vT+1·QT+1vT+1}

To maximize this over all v ∈ V, we must maximize separately in each of the vτ ’s subject
to vτ being a Gτ -measurable function with vτ ∈ Vτ . Denote the random variable qτ −
EGτ {cτxτ} − Dτuτ temporarily by rτ for τ = 1, . . . , T and qT+1 − EGT+1{CT+1xT } by
rT+1. Then each rτ is Gτ -measurable and

J (u, v) =
T∑

τ=0

E{pτuτ + 1
2uτ·Pτuτ} −

T+1∑
τ=1

E{cτ·xτ−1}

T∑
τ=0

sup
vτ∈Vτ

E{rτ·vτ − 1
2vτ·Qτvτ},

where Vτ is the set of all Gτ -measurable vτ with vτ ∈ Vτ . Since Gτ -measurable functions
can be indexed by α ∈ Aτ in place of ω ∈ Ω, as explained above, we can write

E{rτ·vτ − 1
2vτ·Qτvτ} =

∑
α∈Aτ

πα[rατ·vατ − 1
2vατ·Qατvατ ],

where πα is the probability of the atom α, i.e.

πα =
∑
ω∈α

πω.
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The supremum of this expression over all vτ ∈ Vτ is∑
α∈Aτ

πα sup
vατ∈Vατ

{rατ·vατ − 1
2vατ·Qατvατ}

=
∑

α∈Aτ

παρVατ ,Qατ (rατ = E{ρVτ ,Qτ (rτ )}.

Thus the supremum of J (u, v) over v ∈ V is

T∑
τ=0

E{pτ·uτ − 1
2uτ·Pτuτ} −

T∑
τ=1

E{cτ·xτ−1}+
T+1∑
τ=1

E{ρVτ ,Qτ (rτ )},

which from choice of the rτ ’s is the objective f(u) in (Psto). The argument that the
infimum of J (u, v) over u ∈ U is g(v) in (Qsto) follows the same lines.

Theorem 4.3. For the U , V, and J in Theorem 4.2 one has the following decomposability

properties for separate minimization in u or maximization in v. The notation is used that

vτ = qτ − EGτ {Cτxτ−1} −Dτuτ for τ = 1, . . . , T,

rT+1 = qT+1 − EGT+1{CT+1xT },

sτ = EGτ {B∗
τyτ+1}+ D∗

τvτ − pτ for τ = 1, . . . , T,

s0 = EG0{B∗
0y1} − p0,

where u and v are elements of U and V, and x and y are the corresponding trajectories.

(a) ũ ∈ argmin
u∈U

J (u, v̄) if and only if

ũατ ∈ ∂ρUατ ,Pατ (sατ ) = argmax
uατ∈Uατ

{sατ·uατ − 1
2uατ·Pατuατ}

for τ = 0, 1, . . . , T and all α ∈ Aτ .

(b) ṽ ∈ argmax
v∈V

J (ū, v) if and only if

ṽατ ∈ ∂ρVατ ,Pατ (rατ ) = argmax
vατ∈Vατ

{rατ·vατ − 1
2vατ·Qατvατ}

for τ = 1, . . . , T, T + 1 and all α ∈ Aτ .

Proof. This combines the argument of Theorem 4.2 with the conjugacy facts noted in the
proof of Theorem 3.4.

Theorem 4.4. Consider Gτ -measurable u, v, and the corresponding trajectories x and y

determined by (3.1) and (3.2). Define the Gτ -measurable random variables

pτ = pτ − EGτ {B∗
τyτ+1} for τ = 0, 1, . . . , T,

qτ = qτ − EGτ {Cτxτ−1} for τ = 1, . . . , T, T + 1.
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For each τ = 1, . . . , T and α ∈ Aτ let (Pατ ) and (Qατ ) denote the primal and dual

problems of generalized linear-quadratic programming associated with

Jατ (uατ , vατ ) = pατ·uατ + 1
2uατ·Pατuατ + qατvατ − 1

2vατ·Qατvατ − vατ·Dατuατ

on Uατ × Vατ , namely

(Pατ ) minimize pατ·uατ + 1
2uατ·Pατuατ + ρVατ ,Qατ (qατ −Dατuατ ) over uατ ∈ Uατ ,

(Qατ ) maximize qατ·vατ − 1
2vατ·Qατvατ − ρUατ ,Pατ (D∗

ατvατpατ ) over vατ ∈ Vατ ,

and consider also the problems

(Pα0) minimize pα0·uα0 + 1
2uα0·Pα0uα0 over uα0 ∈ Uα0

for α ∈ A0, and

(Qα,T+1) maximize qα,T+1·uα,T+1 − 1
2uα,T+1·Pα,T+1 over uα,T+1 ∈ Uα,T+1

for α ∈ AT+1.

Then a necessary and sufficient condition for u and v to be optimal solutions to the

control problems (Psto) and (Qsto), respectively, is that uατ should be an optimal solution

to the subproblem (Pατ ) for every α ∈ Aτ and τ = 0, 1, . . . , T , and vατ should be an

optimal solution to the subproblem (Qατ ) for every α ∈ Aτ and τ = 1, . . . , T, T + 1.

Proof. The argument imitates the one for Theorem 3.5 but uses the relations in Theorem
4.3.
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