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Outline of this talk

The “optimism in the face of uncertainty” principle.

The stochastic multi-armed bandit
Optimization of a deterministic function

e ... and a noisy function
e when its “local smoothness” is known,
e and when it’s not.

Application to planning in MDPs
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The stochastic multi-armed bandit problem

Setting:

e Set of K arms, defined by distributions vy
(with support in [0,1]), whose law is
unknown,

e At each time t, choose an arm k; and
receive reward Xx; iid- V, -

e Goal: find an arm selection policy such as
to maximize the expected sum of rewards.

Exploration-exploitation tradeoff:
e Explore: learn about the environment

e Exploit: act optimally according to our current beliefs
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The regret

Definitions:
o Let py = E[vk] be the expected value of arm k,
e Let u* = maxy uk the best expected value,

e The cumulative expected regret:

n K n K
R, Zu* — [y = Z(M*—Mk) Z ke = k} = ZAk”k’
=1 =1 k=1

k=1

where Ay def w* — g, and ng the number of times arm k has
been pulled up to time n.

Goal: Find an arm selection policy such as to minimize R,,.
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Proposed solutions

This is an old problem! [Robbins, 1952] Maybe surprisingly, not
fully solved yet!
Many proposed strategies:

e-greedy exploration: choose apparent best action with
proba 1 — ¢, or random action with proba e,

Bayesian exploration: assign prior to the arm distributions
and select arm according to the posterior distributions (Gittins
index, Thompson strategy, ...)

Softmax exploration: choose arm k with proba o exp(B)A(k)
(ex: EXP3 algo)

Follow the perturbed leader: choose best perturbed arm

Optimistic exploration: select arm with highest upper bound
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The UCB algorithm

Upper Confidence Bound algorithm [Auer, Cesa-Bianchi,
Fischer, 2002]: at each time n, select the arm k with highest
Bk, n,,n value:

def 1 3lo
knk,ni Z ks g( )7

2ny
H/—/ N——
< Cny ,n
) X k>
with: ko

e ny is the number of times arm k has been pulled up to time n
® Xy s is the s-th reward received when pulling arm k.

Note that
e Sum of an exploitation term and an exploration term.

® Cp,.n is a confidence interval term, so By ,, » is a UCB.
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Intuition of the UCB algorithm

Idea:
e " Optimism in the face of uncertainty” principle

e Select the arm with highest possible mean value, among all
possible models that are compatible with the observations.

e The B-values Byt , are UCBs on . Indeed:

1
IP)(Bk,t,n > Mk) > 1- ﬁ

(and we also have ]P’()A(“ — pg > 3'°27gt(”)) < 713)

This comes from Chernoff-Hoeffding inequality:

P()?k’t —px>e) < e 2t¢
P(in — e < —6) < 672&2
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Regret bound for UCB

Proposition 1.
Each sub-optimal arm k is visited in average, at most:

2

log n
i1+ L

E <
nk(n) <6 Ak 3

times (where Ay e p— g >0).
Thus the expected regret is bounded by:

ER, = ZE[nk]Ak <6 Z

k:A>0

3)'

Lower-bounds: [Lai et Robbins, 1985]

ER, —Q( Z KL(kaz/)IOgn)

k:Ag>
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Intuition of the proof

Let k be a sub-optimal arm, and k* be an optimal arm. At time n,
if arm k is selected, this means that

S 3log(n) S 3log(n)
X > X
k,nk + 2nk - k SN 2nk*
31
k+2 ;iin) > u*, with high proba
6 log(n)
ng < Ai

Thus, if n > %87 then there is only a small probability that

arm k be seIected
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Proof of Proposition 1
Wri __ 6log(n) .
rite u = —5—= + 1. We have:

k

m(n) < u+ Y ke = kin(t) > u}
t=u+1

n t t
< u+ Z [ Z l{Xk,s — pk = Ct,s} + Z I{Xk*,s* — i < —Ct,s* }:|

t=u+1l s=u+1 s=1

Now, taking the expectation of both sides,

E[n(n ]<u+Z[Zka5 uk>ct5+ZIF’Xk*s*—uk ct,s*)}

t=u+1 s=u+l

2

SquZ [Z Jth } Glog(n )+1+%

t=u+1 s=u+1
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Variants of UCB

e UCB with variance estimate: [Audibert, M., Szepesvari,
2008]:
Vien, log(1.2n) | 3log(1.2n)

def o
Bk,nk,n = Xk,t+ 2
s Nk

Then the expected regret is bounded by:

ok
< —_— .
ER, <10( Y- At 2) log(n)
k:A>0
e PAC-UCB Let 3> 0. W.p. 1 -,

R, < 6log(KA™) Ai-

k:A>0

e KL-UCB [Garivier & Cappé, 2011] and K;n-UCB [Maillard,
M., Stoltz, 2011]:

Ay

ER,= Y. - —logn+ o(logn).
e KL(llr) 8 (log n)
A >0



Optimistic optimization

The optimization problem

Goal: maximize function f :— R given a finite budget n of (noisy
or noiseless) evaluations.

Protocol:

e For t =1 to n, select state x; € and observe

e Deterministic case: f(x;)
e Stochastic case: f(x;) + €;, with E[e¢|x;] =0

e Return a state x(n).
Loss (or simple regret):

rn = sup f(x) — f(x(n)). (1)

NS
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Optimistic optimization Known smoothness

Unknown smoothness

Optimistic optimization: illustration

fr

f(xq) |-

Assume f : X — R is Lipschitz: |f(x) — f(y)| < £(x,y).

upper-bound on f.

Lipschitz property — the evaluation of f at x; provides a first

Planning



Introduction to bandits

Optimistic optimization

Known smoothness

Unknown smoothness
Example in 1d (continued)

New point — refined upper-bound on f.

Planning



bound.

“Optimism in the face of computational uncertainty”
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Optimistic optimization

Known smoothness

Unknown smoothness
Example in 1d (continued)
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Optimistic optimization: Sample the point with highest upper

Planning
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f(xq)

f is still Lipschitz, but now, the evaluation of f at x; returns a
noisy evaluation r; = f(x¢) + € where E[e;|x¢] = 0.

Optimistic optimization Known smoothness

Unknown smoothness

Lipschitz optimization with noisy evaluations

fr
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Planning
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Optimistic optimization Known smoothness

Unknown smoothness

Where should one sample next?
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How to define a high probability upper bound at any state x?

Planning
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Optimistic optimization

Known smoothness

Unknown smoothness
UCB in a given domain

Y
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‘oo

)
X r

+

Ty

ni

since f is Lipschitz (where diam(X;) = sup, ,ex, (x,y))-

t=1

rt

For a fixed domain X; © x containing n; points {x;} € X;, we have
that > /", re — f(x¢) is a Martingale. Thus by Azuma's inequality,
1 @

(x) — diam(X;)

Planning
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High probability upper bound

Introduction to bandits

Upper-bound

/ —
7’ \\ ’ !
/ \ AR s Nlog1/s
/ \ A AR Y v
, i
, ! X
\\ ’ \\ L7 \ 4 \
<7 ~ - \ x ’x 1
X - n pIAEEY

X
T
I"fl
lo
w.p. 1 -39, —Z g / +d/am(X)>:g§ f(x).

Tradeoff between size of the confidence interval and diameter.
By considering several domains we can derive a tighter upper bound.
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Hierarchical Optimistic Optimization (HOO)

[Bubeck, M., Stoltz, Szepesvari, 2008]: Builds incrementally a
partitions of X

Followed path

HOO Algorithm: Tumed—on
Let 7; denote the set of ex- nodes
panded nodes at round t.

- At t, select a leaf iy of T; by
maximizing the B-values,

- Ter1 = Te U {it}

- Select x; € Xj, (arbitrarily)

- Observe reward r; ~ v(x¢) and
update the B-values:

qﬂl,Zi

elected node

ulled Fointxt

X .

B; % min [5\(,-,,7,. + 4/ 2|°g( )+ diam(i), maxjcc(j) B
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Example in 1d

re ~ B(f(x¢)) a Bernoulli distribution with parameter f(x;)

AN TR

mew 'u' : b "‘;v 'ug“;' T x;a

Resulting tree at time n = 1000 and at n = 10000.

N
" u ‘
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Experiments in computer-go

MoGo program [Gelly, Wang, M., Teytaud, 2006] uses a modified
version of HOO called UCT [Kocsis and Szepesvari, 2006].

Features:
e Hierarchical UCB bandits .

e Asymmetric tree
expansion e T

e Explore first the most . . - -
promising branches —_—

e Average converges to max

’? .
h - ”JI"

e Anytime algo
e Use of features

e Generalization among
nodes

e Parallelization

T

Among world best programs!
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General problem
Assumptions:
1. U(x,y) is a semi-metric ({(x,y) =0« x =y and
symmetric)

2. f is locally “smooth” around its max.: for all x € X,

f(x*) = f(x) < £(x,x).

fla7)




Known smoothness

Analysis of HOO

Let d be the near-optimality dimension of f in X: i.e. such that
the set of e-optimal states

X i e X, f(x) > —e}

can be covered by O(¢~9) balls of radius ¢.

Theorem 1.
The loss of HOO is

~ 1
e In the stochastic case: Er, = O(n~ d+2).

e In the deterministic case: r, = 5(n_%) for d >0, and
rn=0(e”d") ford = 0.
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Example 1:

Assume the function is locally peaky around its maximum:

F(x*) = F(x) = O(lIx* — x[]).

It takes O(€%) balls of radius € to cover X.. Thus d = 0 and the
regret is 1/4/n.
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Example 2:

Assume the function is locally quadratic around its maximum:

f(x*) — f(x) = O(||x* — x||*), with a = 2.

1\/?1

o For {(x,y) = ||x — y||, it takes O(e~P/?) balls of radius € to
cover X. (of size O(eP/?)). Thus d = D/2.

e For {(x,y) = ||x — y||?, it takes O(€®) ¢-balls of radius € to
cover X;. Thus d =0 and the regret is 1/4/n.
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Known smoothness around the maximum

Consider X = [0,1]9. Assume that f has a finite number of global
maxima and is locally a-smooth around each maximum x*, i.e.

F(x7) = F(x) = O(IIx" = x[[%).

Then, by choosing ¢(x,y) = ||x — y||%, Xc is covered by O(1) balls
of “radius” €. Thus the near-optimality dimension d = 0, and the
regret of HOO is:

ER, = O(1/v/n),

i.e. the rate of growth is independent of the dimension.
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Discussion about smoothness

The near-optimality dimension may be seen as an excess order of
smoothness of f (around its maxima) compared to what is known:

e If the smoothness order of the function is known then the
regret of HOO algorithm is O(1/+/n)

¢ If the smoothness is underestimated, for example f is
a-smooth but we only use £(x,y) = ||x — y||?, with 8 < a,
then the near-optimality dimension is d = D(1/8 — 1/a) and
the regret is O(n~1/(d+2))

¢ If the smoothness is overestimated, the weak-Lipschitz
assumption is violated, thus there is no guarantee (e.g., UCT)
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Assume that 7 is unknown

f is locally smooth w.r.t. the semi-metric ¢ but now £ is unknown!

Is it possible to implement an optimistic algorithm with
performance guarantees?

Simultaneous Optimistic Optimization (SO0) [M., 2011]

Expand several leaves simultaneously!

SOO expands at most one leaf per depth

SOO expands a leaf only if it has the largest value among all
leaves of same or lower depths.

e At round t, SOO does not expand leaves with depth larger
than Amax(t)
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SOO algorithm

Input: the maximum depth function t — hmax(t)
Initialization: 71 = {(0,0)} (root node). Set t = 1.
while True do
Set Viax = — 0.
for h = 0 to min(depth(7;), hmax(t)) do
Select the leaf (h,j) € L; of depth h with max f(x4 ) value
if f(Xpi) > Vmax then
Expand the node (h, i), Set Vmax = f(xp;), Set t =t +1
if t=nthen return x(n) = arg max j\e7, Xh,i
end if
end for
end while.
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Optimistic optimization

Known smoothness

Unknown smoothness

Planning
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Extension of SOO to the stochastic case

e Play the leaves k according to SOO based on the values

S log n
Xk,nk + c )
Nk

__n

e If a leaf has been played more than (log n)? times, then expand
it.
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Performance of SOO

Theorem 2.
If there exists a semi-metric ¢ such that f is locally smooth w.r.t. ¢
and the near-optimality dimension d = 0, then

e Stochastic case: Er, = (N)(l/f)

e Deterministic case: r, = O(e D\[)

This is almost as good as HOO optimally fitted!.
Remarks:
e Since the algorithm does not depend on ¢, the analysis holds
for the best possible choice of the semi-metric ¢ satisfying the
assumptions.

e SOO adapts to the local unknown smoothness of 7.
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Example

Let f be such that f* — f(x) = ©(||x* — x||*) for some unknown
a > 0.

SOO algorithm does not require the knowledge of ¢,

thus the analysis holds for any ¢ satisfying Assumptions 1-4,
for example £(x,y) = ||x — y||“.

Then the near-optimality dimension d = 0 and the loss of
SOO is r, = O(2~ V™) (stretched-exponential loss),

This is almost as good as HOO optimally fitted!
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Comparison with the DIRECT algorithm

The DIRECT (Dlviding RECTangles) algorithm [Jones et al., 1993]
is a Lipschitz optimization algorithm where the Lipschitz constant
L of f is unknown.

DIRECT uses a similar optimistic splitting technique.

Comparison SOO versus DIRECT:

e Finite-time analysis of SOO (whereas only a consistency
property lim,_,oc r, = 0 is available for DIRECT in [Finkel and
Kelley, 2004])

e Setting of SOO much more general than DIRECT: the
function is only locally smooth and the space is semi-metric.

¢ SOO (deterministic) is a rank-based algorithm

e And SOO is easier to implement...



Planning

Application to planning in MDPs

Setting:
e Assume we have a model of an MDP.

e The state space is large: no way to represent the value
function

e Search for the best policy given an initial state, given a
computational budget.

e Ex: from current state s;, given n calls to the model, return

the action a(n), play this action in the real environment,
observe next state s;y1, and repeat

Simple regret:  r, & max Q" (st,a) — Q(st,a(n)).
ac
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Planning in deterministic systems

From the current state, build the look-ahead tree:

Initial state
e From the current state s;
action 1 action 2

e Search space X = set of paths
(infinite sequence of actions)

Path

e Value of any path x:
F(X) = Liz0're
o Metric: 4(x,y) = ) \ \

1—y
e Prop: f is Lipschitz w.r.t. ¢ ;

e Use optimistic search to explore
the tree with budget n resources
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Optimistic exploration

(HOO algo in deterministic setting)
e For any node i of depth d,

define the B-values:

Optimal path

e At each round n, expand the
node with highest B-value

e Observe reward, update
B-values,

e Repeat until no more
available resources

e Return immediate action
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Analysis of the regret

[Hren and M., 2008] Define § such that the proportion of e-optimal
paths is O(¢”) (this is related to the near-optimal dimension). Let

k< KyP e 1, K]

_logl/y
rh=0(n Ter |,

_log1/
(whereas for uniform planning R, = O(n IEgKW)_)

e If kK > 1, then

e If Kk =1, then we obtain the exponential rate

1—y)"° : .
rh = O(’y 3 ”), where c is such that the proportion of

e-path is bounded by céP.
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Open Loop Optimistic Planning
Setting:
¢ Rewards are stochastic but depend on sequence of actions
(and not resulting states)
e Goal : find the sequence of actions that maximizes the
expected discounted sum of rewards
e Search space: open-loop policies (sequences of actions)
[Bubeck et M., 2010] OLOP algorithm has expected regret

O n"fif) if yyE > 1,
Er, = B )
0] n_2> if vvk <1
Remarks:
e For vy/k > 1, this is the same rate as for deterministic
systems!

e This is not a consequence of HOO



Introduction to bandits Optimistic optimization Known smoothness Unknown smoothness Planning

[Busoniu and M., 2012]

B-values: upper-bounds on the optimal Q-values Qto B(s) =

1 1—v for leaves
B(s) = max, Y. p(s']s, a)[r(s,a,s’) + v maxy b(s’, a")| Compute
the optimistic policy.
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Optimistic Planning in MDPs

Expand leaf in the optimistic policy with largest contribution:

,.yh(s)
P .
s P




Introduction to bandits Optimistic optimization Known smoothness Unknown smoothness Planning

Performance analysis of OP-MDP

Define X, the set of states
e whose “contribution” is at least €

e and that belong to an e-optimal policy

Define the measure of complexity of planning in the MDP as the
smallest 3 > 0 such that |X.| = O(¢77).

Theorem 3.
The performance of OP-MDP is r, = O(n_l/ﬁ).

Remarks: § is small when
e Structured rewards

e Transition probabilities are heterogeneous
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Conclusions on optimistic planning

Can be seen as applications of hierarchical bandits
Perform optimistic search in policy space.

Interesting when the state-space is large (e.g., continuous),
and the MDP has structured rewards and transition
probabilities.

Possible extentions to planning in POMDPs
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General conclusion

Optimism in the face of uncertainty principle seems successful
in several decision making problems:

e Multi-armed bandit problems

e Optimization of deterministic and stochastic functions in
general spaces

e For example in planning

Regret analysis = how fast an algorithm converges to the optimal
solutions.

Key ingredients of the analysis:
e measure of the quantity of near-optimal solutions,
e and its knowledge
e or design adaptive strategies (SOO).



Planning

Related references

J.Y. Audibert, R. Munos, and C. Szepesvari, Tuning bandit algorithms in
stochastic environments, ALT, 2007.

P. Auer, N. Cesa-Bianchi, and P. Fischer, Finite time analysis of the
multiarmed bandit problem, Machine Learning, 2002.

S. Bubeck and R. Munos, Open Loop Optimistic Planning, COLT 2010.

S. Bubeck, R. Munos, G. Stoltz, Cs. Szepesvari, Online Optimization in
X-armed Bandits, NIPS 2008. Long version X-armed Bandits JMLR 2011.

L. Busoniu, R. Munos, Optimistic Planning for Markov Decision
Processes, AISTATS 2012.

P.-A. Coquelin and R. Munos, Bandit Algorithm for Tree Search, UAI
2007.

S. Gelly, Y. Wang, R. Munos, and O. Teytaud, Modification of UCT with
Patterns in Monte-Carlo Go, RR INRIA, 2006.



Planning

Related references (cont’ed)

J.-F. Hren and R. Munos, Optimistic planning in deterministic systems.
EWRL 2008.

M. Kearns, Y. Mansour, A. Ng, A Sparse Sampling Algorithm for
Near-Optimal Planning in Large Markov Decision Processes, Machine
Learning, 2002.

R. Kleinberg, A. Slivkins, and E. Upfal, Multi-Armed Bandits in Metric
Spaces, ACM Symposium on Theory of Computing, 2008.

L. Kocsis and Cs. Szepesvri, Bandit based Monte-Carlo Planning, ECML
2006.

T. L. Lai and H. Robbins, Asymptotically Efficient Adaptive Allocation
Rules, Advances in Applied Mathematics, 1985.



	Introduction to bandits
	Optimistic optimization
	Known smoothness
	Unknown smoothness
	Planning

