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Outline of this talk

The “optimism in the face of uncertainty” principle.

• The stochastic multi-armed bandit

• Optimization of a deterministic function

• ... and a noisy function
• when its “local smoothness” is known,
• and when it’s not.

• Application to planning in MDPs



. . . . . .

Introduction to bandits Optimistic optimization Known smoothness Unknown smoothness Planning

The stochastic multi-armed bandit problem

Setting:

• Set of K arms, defined by distributions νk
(with support in [0, 1]), whose law is
unknown,

• At each time t, choose an arm kt and

receive reward xt
i .i .d .∼ νkt .

• Goal: find an arm selection policy such as
to maximize the expected sum of rewards.

Exploration-exploitation tradeoff:

• Explore: learn about the environment

• Exploit: act optimally according to our current beliefs
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The regret

Definitions:

• Let µk = E[νk ] be the expected value of arm k,

• Let µ∗ = maxk µk the best expected value,

• The cumulative expected regret:

Rn
def
=

n∑
t=1

µ∗−µkt =
K∑

k=1

(µ∗−µk)
n∑

t=1

1{kt = k} =
K∑

k=1

∆knk ,

where ∆k
def
= µ∗ − µk , and nk the number of times arm k has

been pulled up to time n.

Goal: Find an arm selection policy such as to minimize Rn.
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Proposed solutions

This is an old problem! [Robbins, 1952] Maybe surprisingly, not
fully solved yet!
Many proposed strategies:

• ϵ-greedy exploration: choose apparent best action with
proba 1− ϵ, or random action with proba ϵ,

• Bayesian exploration: assign prior to the arm distributions
and select arm according to the posterior distributions (Gittins
index, Thompson strategy, ...)

• Softmax exploration: choose arm k with proba ∝ exp(βX̂k)
(ex: EXP3 algo)

• Follow the perturbed leader: choose best perturbed arm

• Optimistic exploration: select arm with highest upper bound
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The UCB algorithm

Upper Confidence Bound algorithm [Auer, Cesa-Bianchi,
Fischer, 2002]: at each time n, select the arm k with highest
Bk,nk ,n value:

Bk,nk ,n
def
=

1

nk

nk∑
s=1

xk,s︸ ︷︷ ︸
X̂k,nk

+

√
3 log(n)

2nk︸ ︷︷ ︸
cnk ,n

,

with:

• nk is the number of times arm k has been pulled up to time n

• xk,s is the s-th reward received when pulling arm k.

Note that

• Sum of an exploitation term and an exploration term.

• cnk ,n is a confidence interval term, so Bk,nk ,n is a UCB.
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Intuition of the UCB algorithm

Idea:

• ”Optimism in the face of uncertainty” principle

• Select the arm with highest possible mean value, among all
possible models that are compatible with the observations.

• The B-values Bk,t,n are UCBs on µk . Indeed:

P(Bk,t,n ≥ µk) ≥ 1− 1

n3

(and we also have P(X̂k,t − µk ≥
√

3 log(n)
2t ) ≤ 1

n3
)

This comes from Chernoff-Hoeffding inequality:

P(X̂k,t − µk ≥ ϵ) ≤ e−2tϵ2

P(X̂k,t − µk ≤ −ϵ) ≤ e−2tϵ2
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Regret bound for UCB

Proposition 1.

Each sub-optimal arm k is visited in average, at most:

Enk(n) ≤ 6
log n

∆2
k

+ 1 +
π2

3

times (where ∆k
def
= µ∗ − µk > 0).

Thus the expected regret is bounded by:

ERn =
∑
k

E[nk ]∆k ≤ 6
∑

k:∆k>0

log n

∆k
+ K (1 +

π2

3
).

Lower-bounds: [Lai et Robbins, 1985]

ERn = Ω
( ∑

k:∆k>0

∆k

KL(νk ||ν∗)
log n

)



. . . . . .

Introduction to bandits Optimistic optimization Known smoothness Unknown smoothness Planning

Intuition of the proof

Let k be a sub-optimal arm, and k∗ be an optimal arm. At time n,
if arm k is selected, this means that

Bk,nk ,n ≥ Bk∗,nk∗ ,n

X̂k,nk +

√
3 log(n)

2nk
≥ X̂k∗,nk∗ +

√
3 log(n)

2nk∗

µk + 2

√
3 log(n)

2nk
≥ µ∗, with high proba

nk ≤ 6 log(n)

∆2
k

Thus, if nk > 6 log(n)
∆2

k
, then there is only a small probability that

arm k be selected.
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Proof of Proposition 1

Write u = 6 log(n)
∆2

k
+ 1. We have:

nk(n) ≤ u +
n∑

t=u+1

1{kt = k; nk(t) > u}

≤ u +
n∑

t=u+1

[ t∑
s=u+1

1{X̂k,s − µk ≥ ct,s}+
t∑

s=1

1{X̂k∗,s∗ − µk ≤ −ct,s∗}
]

Now, taking the expectation of both sides,

E[nk(n)] ≤ u +
n∑

t=u+1

[ t∑
s=u+1

P
(
X̂k,s − µk ≥ ct,s

)
+

t∑
s=1

P
(
X̂k∗,s∗ − µk ≤ −ct,s∗

)]
≤ u +

n∑
t=u+1

[ t∑
s=u+1

t−3 +
t∑

s=1

t−3
]
≤ 6 log(n)

∆2
k

+ 1 +
π2

3
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Variants of UCB
• UCB with variance estimate: [Audibert, M., Szepesvári,
2008]:

Bk,nk ,n
def
= X̂k,t +

√
2
Vk,nk log(1.2n)

nk
+

3 log(1.2n)

nk
.

Then the expected regret is bounded by:

ERn ≤ 10
( ∑

k:∆k>0

σ2
k

∆k
+ 2

)
log(n).

• PAC-UCB Let β > 0. W.p. 1− β,

Rn ≤ 6 log(Kβ−1)
∑

k:∆k>0

1

∆k
.

• KL-UCB [Garivier & Cappé, 2011] and Kinf-UCB [Maillard,
M., Stoltz, 2011]:

ERn =
∑

k:∆k>0

∆k

KL(νk ||ν∗)
log n + o(log n).
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The optimization problem

Goal: maximize function f :→ IR given a finite budget n of (noisy
or noiseless) evaluations.

Protocol:

• For t = 1 to n, select state xt ∈ and observe
• Deterministic case: f (xt)
• Stochastic case: f (xt) + ϵt , with E[ϵt |xt ] = 0

• Return a state x(n).

Loss (or simple regret):

rn = sup
x∈

f (x)− f (x(n)). (1)
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Optimistic optimization: illustration

Assume f : X → IR is Lipschitz: |f (x)− f (y)| ≤ ℓ(x , y).

f(x )t

xt

f

f *

Lipschitz property → the evaluation of f at xt provides a first
upper-bound on f .
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Example in 1d (continued)

New point → refined upper-bound on f .
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Example in 1d (continued)

Optimistic optimization: Sample the point with highest upper
bound.
“Optimism in the face of computational uncertainty”
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Lipschitz optimization with noisy evaluations

f is still Lipschitz, but now, the evaluation of f at xt returns a
noisy evaluation rt = f (xt) + ϵt where E[ϵt |xt ] = 0.

f(x )t

xt

f

f *
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Where should one sample next?

x

How to define a high probability upper bound at any state x?
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UCB in a given domain

xt

f(xt)

rt

x

For a fixed domain Xi ∋ x containing ni points {xt} ∈ Xi , we have
that

∑ni
t=1 rt − f (xt) is a Martingale. Thus by Azuma’s inequality,

1

ni

ni∑
t=1

rt +

√
log 1/δ

2ni
≥ 1

ni

ni∑
t=1

f (xt) ≥ f (x)− diam(Xi ),

since f is Lipschitz (where diam(Xi ) = supx ,y∈Xi
ℓ(x , y)).



. . . . . .

Introduction to bandits Optimistic optimization Known smoothness Unknown smoothness Planning

High probability upper bound

1

ni

∑ni

t=1 rt

diam(Xi)
√

log 1/δ
2ni

Upper-bound

x
w.p. 1− δ,

1

ni

ni∑
t=1

rt +

√
log 1/δ

2ni
+ diam(Xi ) ≥ sup

x∈Xi

f (x).

Tradeoff between size of the confidence interval and diameter.

By considering several domains we can derive a tighter upper bound.
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Hierarchical Optimistic Optimization (HOO)

[Bubeck, M., Stoltz, Szepesvári, 2008]: Builds incrementally a
partitions of X

HOO Algorithm:
Let Tt denote the set of ex-
panded nodes at round t.
- At t, select a leaf it of Tt by
maximizing the B-values,
- Tt+1 = Tt ∪ {it}
- Select xt ∈ Xit (arbitrarily)
- Observe reward rt ∼ ν(xt) and
update the B-values:

h,i
B

B
h+1,2i−1

B
h+1,2i

Xt

Turned−on
nodes

Followed path

Selected node

Pulled point

Bi
def
= min

[
X̂i ,ni +

√
2 log(n)

ni
+ diam(i),maxj∈C(i) Bj

]
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Example in 1d

rt ∼ B(f (xt)) a Bernoulli distribution with parameter f (xt)

Resulting tree at time n = 1000 and at n = 10000.
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Experiments in computer-go
MoGo program [Gelly, Wang, M., Teytaud, 2006] uses a modified
version of HOO called UCT [Kocsis and Szepesvári, 2006].
Features:

• Hierarchical UCB bandits

• Asymmetric tree
expansion

• Explore first the most
promising branches

• Average converges to max

• Anytime algo

• Use of features

• Generalization among
nodes

• Parallelization

Among world best programs!
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General problem
Assumptions:

1. ℓ(x , y) is a semi-metric (ℓ(x , y) = 0 ⇔ x = y and
symmetric)

2. f is locally “smooth” around its max.: for all x ∈ X ,

f (x∗)− f (x) ≤ ℓ(x , x∗).

x∗ X

f(x∗) f

f(x∗)− ℓ(x, x∗)
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Analysis of HOO

Let d be the near-optimality dimension of f in X : i.e. such that
the set of ε-optimal states

Xε
def
= {x ∈ X , f (x) ≥ f ∗ − ε}

can be covered by O(ε−d) balls of radius ε.

Theorem 1.
The loss of HOO is

• In the stochastic case: Ern = Õ(n−
1

d+2 ).

• In the deterministic case: rn = Õ(n−
1
d ) for d > 0, and

rn = O(e−
c
D
n) for d = 0.
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Example 1:

Assume the function is locally peaky around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||).

ε

ε

It takes O(ϵ0) balls of radius ϵ to cover Xε. Thus d = 0 and the
regret is 1/

√
n.
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Example 2:
Assume the function is locally quadratic around its maximum:

f (x∗)− f (x) = Θ(||x∗ − x ||α), with α = 2.

ε

ε

• For ℓ(x , y) = ||x − y ||, it takes O(ϵ−D/2) balls of radius ϵ to
cover Xε (of size O(ϵD/2)). Thus d = D/2.

• For ℓ(x , y) = ||x − y ||2, it takes O(ϵ0) ℓ-balls of radius ϵ to
cover Xε. Thus d = 0 and the regret is 1/

√
n.
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Known smoothness around the maximum

Consider X = [0, 1]d . Assume that f has a finite number of global
maxima and is locally α-smooth around each maximum x∗, i.e.

f (x∗)− f (x) = Θ(||x∗ − x ||α).

Then, by choosing ℓ(x , y) = ||x − y ||α, Xε is covered by O(1) balls
of “radius” ε. Thus the near-optimality dimension d = 0, and the
regret of HOO is:

ERn = Õ(1/
√
n),

i.e. the rate of growth is independent of the dimension.
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Discussion about smoothness

The near-optimality dimension may be seen as an excess order of
smoothness of f (around its maxima) compared to what is known:

• If the smoothness order of the function is known then the
regret of HOO algorithm is Õ(1/

√
n)

• If the smoothness is underestimated, for example f is
α-smooth but we only use ℓ(x , y) = ||x − y ||β, with β < α,
then the near-optimality dimension is d = D(1/β − 1/α) and
the regret is Õ(n−1/(d+2))

• If the smoothness is overestimated, the weak-Lipschitz
assumption is violated, thus there is no guarantee (e.g., UCT)



. . . . . .

Introduction to bandits Optimistic optimization Known smoothness Unknown smoothness Planning

Assume that ℓ is unknown

f is locally smooth w.r.t. the semi-metric ℓ but now ℓ is unknown!

Is it possible to implement an optimistic algorithm with
performance guarantees?

Simultaneous Optimistic Optimization (SOO) [M., 2011]

• Expand several leaves simultaneously!

• SOO expands at most one leaf per depth

• SOO expands a leaf only if it has the largest value among all
leaves of same or lower depths.

• At round t, SOO does not expand leaves with depth larger
than hmax(t)
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SOO algorithm

Input: the maximum depth function t 7→ hmax(t)
Initialization: T1 = {(0, 0)} (root node). Set t = 1.
while True do
Set vmax = −∞.
for h = 0 to min(depth(Tt), hmax(t)) do

Select the leaf (h, j) ∈ Lt of depth h with max f (xh,j) value
if f (xh,i ) > vmax then

Expand the node (h, i), Set vmax = f (xh,i ), Set t = t + 1
if t = n then return x(n) = argmax(h,i)∈Tn xh,i

end if
end for

end while.
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Extension of SOO to the stochastic case

• Play the leaves k according to SOO based on the values

X̂k,nk + c

√
log n

nk
,

• If a leaf has been played more than n
(log n)3

times, then expand
it.
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Performance of SOO

Theorem 2.
If there exists a semi-metric ℓ such that f is locally smooth w.r.t. ℓ
and the near-optimality dimension d = 0, then

• Stochastic case: Ern = Õ(1/
√
n).

• Deterministic case: rn = O
(
e−

c
D

√
n
)
.

This is almost as good as HOO optimally fitted!.
Remarks:

• Since the algorithm does not depend on ℓ, the analysis holds
for the best possible choice of the semi-metric ℓ satisfying the
assumptions.

• SOO adapts to the local unknown smoothness of f .
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Example

Let f be such that f ∗ − f (x) = Θ(||x∗ − x ||α) for some unknown
α ≥ 0.

• SOO algorithm does not require the knowledge of ℓ,

• thus the analysis holds for any ℓ satisfying Assumptions 1-4,
for example ℓ(x , y) = ∥x − y∥α.

• Then the near-optimality dimension d = 0 and the loss of
SOO is rn = O(2−

√
nα) (stretched-exponential loss),

• This is almost as good as HOO optimally fitted!
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Comparison with the DIRECT algorithm

The DIRECT (DIviding RECTangles) algorithm [Jones et al., 1993]
is a Lipschitz optimization algorithm where the Lipschitz constant
L of f is unknown.

DIRECT uses a similar optimistic splitting technique.

Comparison SOO versus DIRECT:

• Finite-time analysis of SOO (whereas only a consistency
property limn→∞ rn = 0 is available for DIRECT in [Finkel and
Kelley, 2004])

• Setting of SOO much more general than DIRECT: the
function is only locally smooth and the space is semi-metric.

• SOO (deterministic) is a rank-based algorithm

• And SOO is easier to implement...
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Application to planning in MDPs

Setting:

• Assume we have a model of an MDP.

• The state space is large: no way to represent the value
function

• Search for the best policy given an initial state, given a
computational budget.

• Ex: from current state st , given n calls to the model, return
the action a(n), play this action in the real environment,
observe next state st+1, and repeat

Simple regret: rn
def
= max

a∈A
Q∗(st , a)− Q∗(st , a(n)).
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Planning in deterministic systems

From the current state, build the look-ahead tree:

• From the current state st

• Search space X = set of paths
(infinite sequence of actions)

• Value of any path x :
f (x) =

∑
t≥0 γ

trt

• Metric: ℓ(x , y) = γh(x,y)

1−γ

• Prop: f is Lipschitz w.r.t. ℓ

• Use optimistic search to explore
the tree with budget n resources

Path

action 1 action 2

Initial state

xy
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Optimistic exploration

(HOO algo in deterministic setting)
• For any node i of depth d ,
define the B-values:

Bi
def
=

d−1∑
t=0

γtrt +
γd

1− γ
≥ vi

• At each round n, expand the
node with highest B-value

• Observe reward, update
B-values,

• Repeat until no more
available resources

• Return immediate action

Optimal path

Expanded
nodes

Node i
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Analysis of the regret

[Hren and M., 2008] Define β such that the proportion of ϵ-optimal
paths is O(ϵβ) (this is related to the near-optimal dimension). Let

κ
def
= Kγβ ∈ [1,K ].

• If κ > 1, then

rn = O

(
n−

log 1/γ
log κ

)
.

(whereas for uniform planning Rn = O
(
n−

log 1/γ
log K

)
.)

• If κ = 1, then we obtain the exponential rate

rn = O
(
γ

(1−γ)β

c
n
)
, where c is such that the proportion of

ϵ-path is bounded by cϵβ.
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Open Loop Optimistic Planning
Setting:

• Rewards are stochastic but depend on sequence of actions
(and not resulting states)

• Goal : find the sequence of actions that maximizes the
expected discounted sum of rewards

• Search space: open-loop policies (sequences of actions)

[Bubeck et M., 2010] OLOP algorithm has expected regret

Ern =


Õ

(
n−

log 1/γ
log κ

)
if γ

√
κ > 1,

Õ

(
n−

1
2

)
if γ

√
κ ≤ 1.

Remarks:

• For γ
√
κ > 1, this is the same rate as for deterministic

systems!

• This is not a consequence of HOO
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[Buşoniu and M., 2012]

B-values: upper-bounds on the optimal Q-values Qto B(s) =
1
1−γ for leaves

B(s) = maxa
∑

s′ p(s
′|s, a)

[
r(s, a, s ′) + γmaxa′ b(s

′, a′)
]
Compute

the optimistic policy.
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Optimistic Planning in MDPs

Expand leaf in the optimistic policy with largest contribution:

argmax
s∈L

P(s)
γh(s)

1− γ
.
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Performance analysis of OP-MDP

Define Xϵ the set of states

• whose “contribution” is at least ϵ

• and that belong to an ϵ-optimal policy

Define the measure of complexity of planning in the MDP as the
smallest β ≥ 0 such that |Xϵ| = O(ϵ−β).

Theorem 3.
The performance of OP-MDP is rn = O(n−1/β).

Remarks: β is small when

• Structured rewards

• Transition probabilities are heterogeneous
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Conclusions on optimistic planning

• Can be seen as applications of hierarchical bandits

• Perform optimistic search in policy space.

• Interesting when the state-space is large (e.g., continuous),
and the MDP has structured rewards and transition
probabilities.

• Possible extentions to planning in POMDPs
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General conclusion

Optimism in the face of uncertainty principle seems successful
in several decision making problems:

• Multi-armed bandit problems

• Optimization of deterministic and stochastic functions in
general spaces

• For example in planning

Regret analysis = how fast an algorithm converges to the optimal
solutions.

Key ingredients of the analysis:

• measure of the quantity of near-optimal solutions,

• and its knowledge

• or design adaptive strategies (SOO).
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