Optimistic algorithms for function optimization

Rémi Munos

SequeL project: Sequential Learning http://researchers.lille.inria.fr/~munos/

INRIA Lille - Nord Europe

Workshop: Stochastic optimization and dynamic programming, Cadarache 2012

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline of this talk

The "optimism in the face of uncertainty" principle.

- The stochastic multi-armed bandit
- Optimization of a deterministic function
- ... and a noisy function
 - when its "local smoothness" is known,
 - and when it's not.
- Application to planning in MDPs

The stochastic multi-armed bandit problem

Setting:

- Set of K arms, defined by distributions ν_k (with support in [0, 1]), whose law is unknown,
- At each time t, choose an arm k_t and receive reward $x_t \stackrel{i.i.d.}{\sim} \nu_{k_t}$.
- **Goal**: find an arm selection policy such as to maximize the expected sum of rewards.

Exploration-exploitation tradeoff:

- Explore: learn about the environment
- Exploit: act optimally according to our current beliefs

The regret

Definitions:

- Let $\mu_k = \mathbb{E}[\nu_k]$ be the expected value of arm k,
- Let $\mu^* = \max_k \mu_k$ the best expected value,
- The cumulative expected regret:

$$R_n \stackrel{\text{def}}{=} \sum_{t=1}^n \mu^* - \mu_{k_t} = \sum_{k=1}^K (\mu^* - \mu_k) \sum_{t=1}^n \mathbf{1}\{k_t = k\} = \sum_{k=1}^K \Delta_k n_k,$$

where $\Delta_k \stackrel{\text{def}}{=} \mu^* - \mu_k$, and n_k the number of times arm k has been pulled up to time n.

Goal: Find an arm selection policy such as to minimize R_n .

Proposed solutions

This is an old problem! [Robbins, 1952] Maybe surprisingly, not fully solved yet!

Many proposed strategies:

- ϵ -greedy exploration: choose apparent best action with proba 1ϵ , or random action with proba ϵ ,
- **Bayesian exploration**: assign prior to the arm distributions and select arm according to the posterior distributions (Gittins index, Thompson strategy, ...)
- Softmax exploration: choose arm k with proba $\propto \exp(\beta \widehat{X}_k)$ (ex: EXP3 algo)
- Follow the perturbed leader: choose best perturbed arm
- Optimistic exploration: select arm with highest upper bound

The UCB algorithm

Upper Confidence Bound algorithm [Auer, Cesa-Bianchi, Fischer, 2002]: at each time n, select the arm k with highest $B_{k,n_k,n}$ value:

$$B_{k,n_k,n} \stackrel{\text{def}}{=} \underbrace{\frac{1}{n_k} \sum_{s=1}^{n_k} x_{k,s}}_{\widehat{X}_{k,n_k}} + \underbrace{\sqrt{\frac{3 \log(n)}{2 n_k}}}_{c_{n_k,n}},$$

with:

- n_k is the number of times arm k has been pulled up to time n
- $x_{k,s}$ is the *s*-th reward received when pulling arm *k*.

Note that

- Sum of an *exploitation term* and an *exploration term*.
- $c_{n_k,n}$ is a confidence interval term, so $B_{k,n_k,n}$ is a UCB.

Intuition of the UCB algorithm

Idea:

- "Optimism in the face of uncertainty" principle
- Select the arm with highest possible mean value, among all possible models that are compatible with the observations.
- The B-values $B_{k,t,n}$ are UCBs on μ_k . Indeed:

$$\mathbb{P}(B_{k,t,n} \ge \mu_k) \ge 1 - \frac{1}{n^3}$$

(and we also have $\mathbb{P}(\widehat{X}_{k,t} - \mu_k \ge \sqrt{\frac{3\log(n)}{2t}}) \le \frac{1}{n^3}$) This comes from Chernoff-Hoeffding inequality:

$$\begin{split} \mathbb{P}(\widehat{X}_{k,t} - \mu_k \geq \epsilon) &\leq e^{-2t\epsilon^2} \\ \mathbb{P}(\widehat{X}_{k,t} - \mu_k \leq -\epsilon) &\leq e^{-2t\epsilon^2} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Regret bound for UCB

Proposition 1.

Each sub-optimal arm k is visited in average, at most:

$$\mathbb{E}n_k(n) \leq 6\frac{\log n}{\Delta_k^2} + 1 + \frac{\pi^2}{3}$$

times (where $\Delta_k \stackrel{\text{def}}{=} \mu^* - \mu_k > 0$).

Thus the expected regret is bounded by:

$$\mathbb{E}R_n = \sum_k \mathbb{E}[n_k] \Delta_k \leq 6 \sum_{k:\Delta_k>0} \frac{\log n}{\Delta_k} + \mathcal{K}(1+\frac{\pi^2}{3}).$$

Lower-bounds: [Lai et Robbins, 1985]

$$\mathbb{E}R_n = \Omega\Big(\sum_{k:\Delta_k>0}\frac{\Delta_k}{\mathsf{KL}(\nu_k||\nu^*)}\log n\Big)$$

Intuition of the proof

Let k be a sub-optimal arm, and k^* be an optimal arm. At time n, if arm k is selected, this means that

$$\begin{array}{rcl} B_{k,n_k,n} &\geq & B_{k^*,n_{k^*},n} \\ \widehat{X}_{k,n_k} + \sqrt{\frac{3\log(n)}{2n_k}} &\geq & \widehat{X}_{k^*,n_{k^*}} + \sqrt{\frac{3\log(n)}{2n_{k^*}}} \\ \mu_k + 2\sqrt{\frac{3\log(n)}{2n_k}} &\geq & \mu^*, \text{ with high proba} \\ n_k &\leq & \frac{6\log(n)}{\Delta_k^2} \end{array}$$

Thus, if $n_k > \frac{6 \log(n)}{\Delta_k^2}$, then there is only a small probability that arm k be selected.

Proof of Proposition 1

Write
$$u = \frac{6 \log(n)}{\Delta_k^2} + 1$$
. We have:

$$n_k(n) \leq u + \sum_{t=u+1}^n \mathbf{1}\{k_t = k; n_k(t) > u\}$$

$$\leq u + \sum_{t=u+1}^{n} \left[\sum_{s=u+1}^{t} \mathbf{1}\{\hat{X}_{k,s} - \mu_k \ge c_{t,s}\} + \sum_{s=1}^{t} \mathbf{1}\{\hat{X}_{k^*,s^*} - \mu_k \le -c_{t,s^*}\} \right]$$

Now, taking the expectation of both sides,

$$\mathbb{E}[n_k(n)] \le u + \sum_{t=u+1}^n \Big[\sum_{s=u+1}^t \mathbb{P}(\hat{X}_{k,s} - \mu_k \ge c_{t,s}) + \sum_{s=1}^t \mathbb{P}(\hat{X}_{k^*,s^*} - \mu_k \le -c_{t,s^*}) \Big] \\ \le u + \sum_{t=u+1}^n \Big[\sum_{s=u+1}^t t^{-3} + \sum_{s=1}^t t^{-3} \Big] \le \frac{6\log(n)}{\Delta_k^2} + 1 + \frac{\pi^2}{3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Variants of UCB

• UCB with variance estimate: [Audibert, M., Szepesvári, 2008]:

$$B_{k,n_k,n} \stackrel{\text{def}}{=} \widehat{X}_{k,t} + \sqrt{2 \frac{V_{k,n_k} \log(1.2n)}{n_k} + \frac{3 \log(1.2n)}{n_k}}$$

Then the expected regret is bounded by:

$$\mathbb{E}R_n \leq 10\Big(\sum_{k:\Delta_k>0}\frac{\sigma_k^2}{\Delta_k}+2\Big)\log(n).$$

• **PAC-UCB** Let
$$\beta > 0$$
. W.p. $1 - \beta$,
 $R_n \le 6 \log(K\beta^{-1}) \sum_{k:\Delta_k > 0} \frac{1}{\Delta_k}$.

• KL-UCB [Garivier & Cappé, 2011] and *K*_{inf}-UCB [Maillard, M., Stoltz, 2011]:

$$\mathbb{E}R_n = \sum_{k:\Delta_k>0} \frac{\Delta_k}{KL(\nu_k || \nu^*)} \log n + o(\log n).$$

The optimization problem

Goal: maximize function $f :\to R$ given a finite budget *n* of (noisy or noiseless) evaluations.

Protocol:

- For t = 1 to *n*, select state $x_t \in$ and observe
 - Deterministic case: $f(x_t)$
 - Stochastic case: $f(x_t) + \epsilon_t$, with $\mathbb{E}[\epsilon_t | x_t] = 0$
- Return a state x(n).

Loss (or simple regret):

$$r_n = \sup_{x \in f(x)} f(x) - f(x(n)). \tag{1}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Optimistic optimization: illustration

Assume $f : X \to \mathbb{R}$ is Lipschitz: $|f(x) - f(y)| \le \ell(x, y)$.

Lipschitz property \rightarrow the evaluation of f at x_t provides a first upper-bound on f.

э

Example in 1d (continued)

New point \rightarrow refined upper-bound on f.

(日) (同) (日) (日)

Example in 1d (continued)

Optimistic optimization: Sample the point with highest upper bound.

"Optimism in the face of computational uncertainty"

イロト 不得 トイヨト イヨト

э

Lipschitz optimization with noisy evaluations

f is still Lipschitz, but now, the evaluation of *f* at x_t returns a noisy evaluation $r_t = f(x_t) + \epsilon_t$ where $\mathbb{E}[\epsilon_t | x_t] = 0$.

イロト イポト イヨト イヨト

Where should one sample next?

How to define a high probability upper bound at any state x?

UCB in a given domain

For a fixed domain $X_i \ni x$ containing n_i points $\{x_t\} \in X_i$, we have that $\sum_{t=1}^{n_i} r_t - f(x_t)$ is a Martingale. Thus by Azuma's inequality,

$$\frac{1}{n_i}\sum_{t=1}^{n_i}r_t+\sqrt{\frac{\log 1/\delta}{2n_i}}\geq \frac{1}{n_i}\sum_{t=1}^{n_i}f(x_t)\geq f(x)-diam(X_i),$$

since *f* is Lipschitz (where $diam(X_i) = \sup_{x,y \in X_i} \ell(x,y)$).

High probability upper bound

Tradeoff between size of the confidence interval and diameter. By considering several domains we can derive a tighter upper bound.

Hierarchical Optimistic Optimization (HOO)

[Bubeck, M., Stoltz, Szepesvári, 2008]: Builds incrementally a partitions of X

э

Example in 1d

$r_t \sim \mathcal{B}(f(x_t))$ a Bernoulli distribution with parameter $f(x_t)$

Resulting tree at time n = 1000 and at n = 10000.

Experiments in computer-go

MoGo program [Gelly, Wang, M., Teytaud, 2006] uses a modified version of HOO called UCT [Kocsis and Szepesvári, 2006]. Features:

- Hierarchical UCB bandits
- Asymmetric tree expansion
- Explore first the most promising branches
- Average converges to max
- Anytime algo
- Use of features
- Generalization among nodes
- Parallelization

Among world best programs!

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

General problem

Assumptions:

- 1. $\ell(x, y)$ is a semi-metric ($\ell(x, y) = 0 \Leftrightarrow x = y$ and symmetric)
- 2. *f* is locally "smooth" around its max.: for all $x \in \mathcal{X}$,

$$f(x^*) - f(x) \leq \ell(x, x^*).$$

Analysis of HOO

Let *d* be the **near-optimality dimension** of *f* in *X*: i.e. such that the set of ε -optimal states

$$X_{\varepsilon} \stackrel{\mathrm{def}}{=} \{x \in X, f(x) \geq f^* - \varepsilon\}$$

can be covered by $O(\varepsilon^{-d})$ balls of radius ε .

Theorem 1.

The loss of HOO is

- In the stochastic case: $\mathbb{E}r_n = \widetilde{O}(n^{-\frac{1}{d+2}}).$
- In the deterministic case: $r_n = \widetilde{O}(n^{-\frac{1}{d}})$ for d > 0, and $r_n = O(e^{-\frac{c}{D}n})$ for d = 0.

Example 1:

Assume the function is locally peaky around its maximum:

It takes $O(\epsilon^0)$ balls of radius ϵ to cover X_{ϵ} . Thus d = 0 and the regret is $1/\sqrt{n}$.

Example 2:

Assume the function is locally quadratic around its maximum:

$$f(x^*) - f(x) = \Theta(||x^* - x||^{lpha})$$
, with $lpha = 2$.

- For ℓ(x, y) = ||x y||, it takes O(ε^{-D/2}) balls of radius ε to cover X_ε (of size O(ε^{D/2})). Thus d = D/2.
- For ℓ(x, y) = ||x y||², it takes O(ϵ⁰) ℓ-balls of radius ϵ to cover X_ε. Thus d = 0 and the regret is 1/√n.

Known smoothness around the maximum

Consider $X = [0, 1]^d$. Assume that f has a finite number of global maxima and is locally α -smooth around each maximum x^* , i.e.

$$f(x^*) - f(x) = \Theta(||x^* - x||^{\alpha}).$$

Then, by choosing $\ell(x, y) = ||x - y||^{\alpha}$, X_{ε} is covered by O(1) balls of "radius" ε . Thus the near-optimality dimension d = 0, and the regret of HOO is:

$$\mathbb{E}R_n = \widetilde{O}(1/\sqrt{n}),$$

i.e. the rate of growth is independent of the dimension.

Discussion about smoothness

The near-optimality dimension may be seen as an excess order of smoothness of f (around its maxima) compared to what is known:

- If the smoothness order of the function is known then the regret of HOO algorithm is $\widetilde{O}(1/\sqrt{n})$
- If the smoothness is underestimated, for example f is α -smooth but we only use $\ell(x, y) = ||x y||^{\beta}$, with $\beta < \alpha$, then the near-optimality dimension is $d = D(1/\beta 1/\alpha)$ and the regret is $\widetilde{O}(n^{-1/(d+2)})$
- If the smoothness is overestimated, the weak-Lipschitz assumption is violated, thus there is no guarantee (e.g., UCT)

Assume that ℓ is unknown

f is locally smooth w.r.t. the semi-metric ℓ but now ℓ is unknown!

Is it possible to implement an optimistic algorithm with performance guarantees?

Simultaneous Optimistic Optimization (SOO) [M., 2011]

- Expand several leaves simultaneously!
- SOO expands at most one leaf per depth
- SOO expands a leaf only if it has the largest value among all leaves of same or lower depths.
- At round t, SOO does not expand leaves with depth larger than $h_{\max}(t)$

SOO algorithm

Input: the maximum depth function $t \mapsto h_{\max}(t)$ Initialization: $\mathcal{T}_1 = \{(0,0)\}$ (root node). Set t = 1. while True do Set $v_{\max} = -\infty$. for h = 0 to min(depth(\mathcal{T}_t), $h_{\max}(t)$) do Select the leaf $(h, j) \in \mathcal{L}_t$ of depth h with max $f(x_{h,j})$ value if $f(x_{h,i}) > v_{\max}$ then Expand the node (h, i), Set $v_{\max} = f(x_{h,i})$, Set t = t + 1if t = n then return $x(n) = \arg \max_{(h,i) \in \mathcal{T}_n} x_{h,i}$

end if

end for

end while.

•	•	۲

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

			•			
•	۲	•	۲	•		
			•			
•	•	•	•	•		
•	•	•				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	•		•	
•	•	•	• • •	•
	•		•	
•	۲	•	۲	•
•	•		•	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

	•			• • •		•	•	•		•		•		
• • •	•	•	•	•	•	• • =	•	•	•	•		•		
	۲		•	•	•	•	•	•	•	• •		•		
•	•	•		•		•	•	•		•		•		
•••	•	•	•	•	•	•	•	•	•	•		•		
•••	•	•	•	•••••••••••••••••••••••••••••••••••••••	•	•	•	•	•	• •	•	•	•	
•			•			•		•	•					
•	•	•	•			•	•	•	•		•			
••••			•	• ••• •	•	•		۲	•	•				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Extension of SOO to the stochastic case

• Play the leaves k according to SOO based on the values

$$\widehat{X}_{k,n_k} + c\sqrt{\frac{\log n}{n_k}},$$

• If a leaf has been played more than $\frac{n}{(\log n)^3}$ times, then expand it.

Performance of SOO

Theorem 2.

If there exists a semi-metric ℓ such that f is locally smooth w.r.t. ℓ and the near-optimality dimension d = 0, then

- Stochastic case: $\mathbb{E}r_n = \tilde{O}(1/\sqrt{n})$.
- Deterministic case: $r_n = O(e^{-\frac{c}{D}\sqrt{n}})$.

This is almost as good as HOO optimally fitted!. Remarks:

- Since the algorithm does not depend on ℓ , the analysis holds for the best possible choice of the semi-metric ℓ satisfying the assumptions.
- SOO adapts to the local unknown smoothness of *f*.

Example

Let f be such that $f^* - f(x) = \Theta(||x^* - x||^{\alpha})$ for some **unknown** $\alpha \ge 0$.

- SOO algorithm does not require the knowledge of $\ell,$
- thus the analysis holds for any ℓ satisfying Assumptions 1-4, for example ℓ(x, y) = ||x - y||^α.
- Then the near-optimality dimension d = 0 and the loss of SOO is $r_n = O(2^{-\sqrt{n\alpha}})$ (stretched-exponential loss),
- This is almost as good as HOO optimally fitted!

Comparison with the DIRECT algorithm

The DIRECT (Dividing RECTangles) algorithm [Jones et al., 1993] is a Lipschitz optimization algorithm where the Lipschitz constant L of f is unknown.

DIRECT uses a similar optimistic splitting technique.

Comparison SOO versus DIRECT:

- Finite-time analysis of SOO (whereas only a consistency property $\lim_{n\to\infty} r_n = 0$ is available for DIRECT in [Finkel and Kelley, 2004])
- Setting of SOO much more general than DIRECT: the function is only locally smooth and the space is semi-metric.
- SOO (deterministic) is a rank-based algorithm
- And SOO is easier to implement...

Application to planning in MDPs

Setting:

- Assume we have a model of an MDP.
- The state space is large: no way to represent the value function
- Search for the best policy given an initial state, given a computational budget.
- Ex: from current state s_t , given n calls to the model, return the action a(n), play this action in the real environment, observe next state s_{t+1} , and repeat

Simple regret:
$$r_n \stackrel{\text{def}}{=} \max_{a \in A} Q^*(s_t, a) - Q^*(s_t, a(n)).$$

Planning in deterministic systems

From the current state, build the look-ahead tree:

- From the current state *s*_t
- Search space X = set of paths (infinite sequence of actions)
- Value of any path x: $f(x) = \sum_{t \ge 0} \gamma^t r_t$

• Metric:
$$\ell(x,y) = \frac{\gamma^{h(x,y)}}{1-\gamma}$$

- Prop: f is Lipschitz w.r.t. ℓ
- Use optimistic search to explore the tree with budget *n* resources

Optimistic exploration

(HOO algo in deterministic setting)

• For any node *i* of depth *d*, define the B-values:

$$B_i \stackrel{\mathrm{def}}{=} \sum_{t=0}^{d-1} \gamma^t r_t + rac{\gamma^d}{1-\gamma} \geq v_i$$

- At each round *n*, expand the node with highest B-value
- Observe reward, update B-values,
- Repeat until no more available resources
- Return immediate action

Analysis of the regret

[Hren and M., 2008] Define β such that the proportion of ϵ -optimal paths is $O(\epsilon^{\beta})$ (this is related to the near-optimal dimension). Let

$$\kappa \stackrel{\mathrm{def}}{=} K \gamma^{\beta} \in [1, K].$$

• If $\kappa > 1$, then

$$r_n = O\left(n^{-\frac{\log 1/\gamma}{\log \kappa}}\right).$$

(whereas for uniform planning $R_n = O(n^{-\frac{\log 1/\gamma}{\log K}})$.)

• If $\kappa = 1$, then we obtain the exponential rate $r_n = O(\gamma^{\frac{(1-\gamma)^{\beta}}{c}n})$, where c is such that the proportion of ϵ -path is bounded by $c\epsilon^{\beta}$.

Open Loop Optimistic Planning

Setting:

- **Rewards are stochastic** but depend on sequence of actions (and not resulting states)
- Goal : find the sequence of actions that maximizes the expected discounted sum of rewards
- Search space: open-loop policies (sequences of actions) [Bubeck et M., 2010] OLOP algorithm has expected regret

$$\mathbb{E}r_n = \begin{cases} \tilde{O}\left(n^{-\frac{\log 1/\gamma}{\log \kappa}}\right) & \text{if } \gamma\sqrt{\kappa} > 1, \\ \tilde{O}\left(n^{-\frac{1}{2}}\right) & \text{if } \gamma\sqrt{\kappa} \le 1. \end{cases}$$

Remarks:

- For $\gamma\sqrt{\kappa}>$ 1, this is the same rate as for deterministic systems!
- This is not a consequence of HOO

[Buşoniu and M., 2012]

B-values: upper-bounds on the optimal Q-values Qto $B(s) = 1_{\overline{1-\gamma} \text{ for leaves}} B(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a, s') + \gamma \max_{a'} b(s', a')]$ Compute the **optimistic policy**.

Optimistic Planning in MDPs

Expand leaf in the optimistic policy with largest contribution:

$$\arg\max_{s\in\mathcal{L}}P(s)\frac{\gamma^{h(s)}}{1-\gamma}.$$

Performance analysis of OP-MDP

Define X_{ϵ} the set of states

- whose "contribution" is at least ϵ
- and that belong to an ϵ -optimal policy

Define the measure of complexity of planning in the MDP as the smallest $\beta \ge 0$ such that $|X_{\epsilon}| = O(\epsilon^{-\beta})$.

Theorem 3.

The performance of OP-MDP is $r_n = O(n^{-1/\beta})$.

Remarks: β is small when

- Structured rewards
- Transition probabilities are heterogeneous

Conclusions on optimistic planning

- Can be seen as applications of hierarchical bandits
- Perform optimistic search in policy space.
- Interesting when the state-space is large (e.g., continuous), and the MDP has structured rewards and transition probabilities.
- Possible extentions to planning in POMDPs

General conclusion

Optimism in the face of uncertainty principle seems successful in several decision making problems:

- Multi-armed bandit problems
- Optimization of deterministic and stochastic functions in general spaces
- For example in planning

Regret analysis = how fast an algorithm converges to the optimal solutions.

Key ingredients of the analysis:

- measure of the quantity of near-optimal solutions,
- and its knowledge
- or design adaptive strategies (SOO).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Related references

- J.Y. Audibert, R. Munos, and C. Szepesvari, *Tuning bandit algorithms in stochastic environments*, ALT, 2007.
- P. Auer, N. Cesa-Bianchi, and P. Fischer, *Finite time analysis of the multiarmed bandit problem*, Machine Learning, 2002.
- S. Bubeck and R. Munos, Open Loop Optimistic Planning, COLT 2010.
- S. Bubeck, R. Munos, G. Stoltz, Cs. Szepesvari, Online Optimization in X-armed Bandits, NIPS 2008. Long version X-armed Bandits JMLR 2011.
- L. Buşoniu, R. Munos, *Optimistic Planning for Markov Decision Processes*, AISTATS 2012.
- P.-A. Coquelin and R. Munos, Bandit Algorithm for Tree Search, UAI 2007.
- S. Gelly, Y. Wang, R. Munos, and O. Teytaud, *Modification of UCT with Patterns in Monte-Carlo Go*, RR INRIA, 2006.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Related references (cont'ed)

- J.-F. Hren and R. Munos, *Optimistic planning in deterministic systems*. EWRL 2008.
- M. Kearns, Y. Mansour, A. Ng, A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes, Machine Learning, 2002.
- R. Kleinberg, A. Slivkins, and E. Upfal, *Multi-Armed Bandits in Metric Spaces*, ACM Symposium on Theory of Computing, 2008.
- L. Kocsis and Cs. Szepesvri, Bandit based Monte-Carlo Planning, ECML 2006.
- T. L. Lai and H. Robbins, *Asymptotically Efficient Adaptive Allocation Rules*, Advances in Applied Mathematics, 1985.