Optimistic algorithms for function optimization

Rémi Munos
SequeL project: Sequential Learning http://researchers.lille.inria.fr/~munos/
INRIA Lille - Nord Europe

Workshop: Stochastic optimization and dynamic programming, Cadarache 2012

Outline of this talk

The "optimism in the face of uncertainty" principle.

- The stochastic multi-armed bandit
- Optimization of a deterministic function
- ... and a noisy function
- when its "local smoothness" is known,
- and when it's not.
- Application to planning in MDPs

The stochastic multi-armed bandit problem

Setting:

- Set of K arms, defined by distributions ν_{k} (with support in $[0,1]$), whose law is unknown,
- At each time t, choose an arm k_{t} and receive reward $x_{t} \stackrel{\text { i.i.d. }}{\sim} \nu_{k_{t}}$.
- Goal: find an arm selection policy such as to maximize the expected sum of rewards.

Exploration-exploitation tradeoff:

- Explore: learn about the environment
- Exploit: act optimally according to our current beliefs

The regret

Definitions:

- Let $\mu_{k}=\mathbb{E}\left[\nu_{k}\right]$ be the expected value of arm k,
- Let $\mu^{*}=\max _{k} \mu_{k}$ the best expected value,
- The cumulative expected regret:
$R_{n} \stackrel{\text { def }}{=} \sum_{t=1}^{n} \mu^{*}-\mu_{k_{t}}=\sum_{k=1}^{K}\left(\mu^{*}-\mu_{k}\right) \sum_{t=1}^{n} \mathbf{1}\left\{k_{t}=k\right\}=\sum_{k=1}^{K} \Delta_{k} n_{k}$,
where $\Delta_{k} \stackrel{\text { def }}{=} \mu^{*}-\mu_{k}$, and n_{k} the number of times arm k has been pulled up to time n.
Goal: Find an arm selection policy such as to minimize R_{n}.

Proposed solutions

This is an old problem! [Robbins, 1952] Maybe surprisingly, not fully solved yet!
Many proposed strategies:

- ϵ-greedy exploration: choose apparent best action with proba $1-\epsilon$, or random action with proba ϵ,
- Bayesian exploration: assign prior to the arm distributions and select arm according to the posterior distributions (Gittins index, Thompson strategy, ...)
- Softmax exploration: choose arm k with proba $\propto \exp \left(\beta \widehat{X}_{k}\right)$ (ex: EXP3 algo)
- Follow the perturbed leader: choose best perturbed arm
- Optimistic exploration: select arm with highest upper bound

The UCB algorithm

Upper Confidence Bound algorithm [Auer, Cesa-Bianchi, Fischer, 2002]: at each time n, select the arm k with highest $B_{k, n_{k}, n}$ value:
with:

$$
B_{k, n_{k}, n} \stackrel{\text { def }}{=} \underbrace{\frac{1}{n_{k}} \sum_{s=1}^{n_{k}} x_{k, s}}_{\widehat{x}_{k, n_{k}}}+\underbrace{\sqrt{\frac{3 \log (n)}{2 n_{k}}}}_{c_{n_{k}, n}},
$$

- n_{k} is the number of times arm k has been pulled up to time n
- $x_{k, s}$ is the s-th reward received when pulling arm k.

Note that

- Sum of an exploitation term and an exploration term.
- $c_{n_{k}, n}$ is a confidence interval term, so $B_{k, n_{k}, n}$ is a UCB.

Intuition of the UCB algorithm

Idea:

- "Optimism in the face of uncertainty" principle
- Select the arm with highest possible mean value, among all possible models that are compatible with the observations.
- The B-values $B_{k, t, n}$ are UCBs on μ_{k}. Indeed:

$$
\mathbb{P}\left(B_{k, t, n} \geq \mu_{k}\right) \geq 1-\frac{1}{n^{3}}
$$

(and we also have $\left.\mathbb{P}\left(\widehat{X}_{k, t}-\mu_{k} \geq \sqrt{\frac{3 \log (n)}{2 t}}\right) \leq \frac{1}{n^{3}}\right)$
This comes from Chernoff-Hoeffding inequality:

$$
\begin{aligned}
\mathbb{P}\left(\widehat{X}_{k, t}-\mu_{k} \geq \epsilon\right) & \leq e^{-2 t \epsilon^{2}} \\
\mathbb{P}\left(\widehat{X}_{k, t}-\mu_{k} \leq-\epsilon\right) & \leq e^{-2 t \epsilon^{2}}
\end{aligned}
$$

Regret bound for UCB

Proposition 1.
Each sub-optimal arm k is visited in average, at most:

$$
\mathbb{E} n_{k}(n) \leq 6 \frac{\log n}{\Delta_{k}^{2}}+1+\frac{\pi^{2}}{3}
$$

times (where $\Delta_{k} \stackrel{\text { def }}{=} \mu^{*}-\mu_{k}>0$).
Thus the expected regret is bounded by:

$$
\mathbb{E} R_{n}=\sum_{k} \mathbb{E}\left[n_{k}\right] \Delta_{k} \leq 6 \sum_{k: \Delta_{k}>0} \frac{\log n}{\Delta_{k}}+K\left(1+\frac{\pi^{2}}{3}\right)
$$

Lower-bounds: [Lai et Robbins, 1985]

$$
\mathbb{E} R_{n}=\Omega\left(\sum_{k: \Delta_{k}>0} \frac{\Delta_{k}}{K L\left(\nu_{k} \| \nu^{*}\right)} \log n\right)
$$

Intuition of the proof

Let k be a sub-optimal arm, and k^{*} be an optimal arm. At time n, if arm k is selected, this means that

$$
\begin{aligned}
B_{k, n_{k}, n} & \geq B_{k^{*}, n_{k^{*}, n}} \\
\widehat{X}_{k, n_{k}}+\sqrt{\frac{3 \log (n)}{2 n_{k}}} & \geq \widehat{X}_{k^{*}, n_{k^{*}}}+\sqrt{\frac{3 \log (n)}{2 n_{k^{*}}}} \\
\mu_{k}+2 \sqrt{\frac{3 \log (n)}{2 n_{k}}} & \geq \mu^{*}, \text { with high proba } \\
n_{k} & \leq \frac{6 \log (n)}{\Delta_{k}^{2}}
\end{aligned}
$$

Thus, if $n_{k}>\frac{6 \log (n)}{\Delta_{k}^{2}}$, then there is only a small probability that arm k be selected.

Proof of Proposition 1

Write $u=\frac{6 \log (n)}{\Delta_{k}^{2}}+1$. We have:

$$
\begin{aligned}
n_{k}(n) & \leq u+\sum_{t=u+1}^{n} \mathbf{1}\left\{k_{t}=k ; n_{k}(t)>u\right\} \\
& \leq u+\sum_{t=u+1}^{n}\left[\sum_{s=u+1}^{t} \mathbf{1}\left\{\hat{X}_{k, s}-\mu_{k} \geq c_{t, s}\right\}+\sum_{s=1}^{t} \mathbf{1}\left\{\hat{X}_{k^{*}, s^{*}}-\mu_{k} \leq-c_{t, s^{*}}\right\}\right]
\end{aligned}
$$

Now, taking the expectation of both sides,

$$
\begin{aligned}
\mathbb{E}\left[n_{k}(n)\right] & \leq u+\sum_{t=u+1}^{n}\left[\sum_{s=u+1}^{t} \mathbb{P}\left(\hat{X}_{k, s}-\mu_{k} \geq c_{t, s}\right)+\sum_{s=1}^{t} \mathbb{P}\left(\hat{X}_{k^{*}, s^{*}}-\mu_{k} \leq-c_{t, s^{*}}\right)\right] \\
& \leq u+\sum_{t=u+1}^{n}\left[\sum_{s=u+1}^{t} t^{-3}+\sum_{s=1}^{t} t^{-3}\right] \leq \frac{6 \log (n)}{\Delta_{k}^{2}}+1+\frac{\pi^{2}}{3}
\end{aligned}
$$

Variants of UCB

- UCB with variance estimate: [Audibert, M., Szepesvári, 2008]:

$$
B_{k, n_{k}, n} \stackrel{\text { def }}{=} \widehat{X}_{k, t}+\sqrt{2 \frac{V_{k, n_{k}} \log (1.2 n)}{n_{k}}}+\frac{3 \log (1.2 n)}{n_{k}}
$$

Then the expected regret is bounded by:

$$
\mathbb{E} R_{n} \leq 10\left(\sum_{k: \Delta_{k}>0} \frac{\sigma_{k}^{2}}{\Delta_{k}}+2\right) \log (n)
$$

- PAC-UCB Let $\beta>0$. W.p. $1-\beta$,

$$
R_{n} \leq 6 \log \left(K \beta^{-1}\right) \sum_{k: \Delta_{k}>0} \frac{1}{\Delta_{k}}
$$

- KL-UCB [Garivier \& Cappé, 2011] and $\mathcal{K}_{\text {inf }}$-UCB [Maillard, M., Stoltz, 2011]:

$$
\mathbb{E} R_{n}=\sum_{k: \Delta_{k}>0} \frac{\Delta_{k}}{K L\left(\nu_{k} \| \nu^{*}\right)} \log n+o(\log n)
$$

The optimization problem

Goal: maximize function $f: \rightarrow \boldsymbol{R}$ given a finite budget n of (noisy or noiseless) evaluations.

Protocol:

- For $t=1$ to n, select state $x_{t} \in$ and observe
- Deterministic case: $f\left(x_{t}\right)$
- Stochastic case: $f\left(x_{t}\right)+\epsilon_{t}$, with $\mathbb{E}\left[\epsilon_{t} \mid x_{t}\right]=0$
- Return a state $x(n)$.

Loss (or simple regret):

$$
\begin{equation*}
r_{n}=\sup _{x \in} f(x)-f(x(n)) \tag{1}
\end{equation*}
$$

Optimistic optimization: illustration

Assume $f: X \rightarrow \boldsymbol{R}$ is Lipschitz: $|f(x)-f(y)| \leq \ell(x, y)$.

Lipschitz property \rightarrow the evaluation of f at x_{t} provides a first upper-bound on f.

Example in 1d (continued)

New point \rightarrow refined upper-bound on f.

Example in 1d (continued)

Optimistic optimization: Sample the point with highest upper bound.
"Optimism in the face of computational uncertainty"

Lipschitz optimization with noisy evaluations

f is still Lipschitz, but now, the evaluation of f at x_{t} returns a noisy evaluation $r_{t}=f\left(x_{t}\right)+\epsilon_{t}$ where $\mathbb{E}\left[\epsilon_{t} \mid x_{t}\right]=0$.

Where should one sample next?

How to define a high probability upper bound at any state x ?

UCB in a given domain

For a fixed domain $X_{i} \ni x$ containing n_{i} points $\left\{x_{t}\right\} \in X_{i}$, we have that $\sum_{t=1}^{n_{i}} r_{t}-f\left(x_{t}\right)$ is a Martingale. Thus by Azuma's inequality,

$$
\frac{1}{n_{i}} \sum_{t=1}^{n_{i}} r_{t}+\sqrt{\frac{\log 1 / \delta}{2 n_{i}}} \geq \frac{1}{n_{i}} \sum_{t=1}^{n_{i}} f\left(x_{t}\right) \geq f(x)-\operatorname{diam}\left(X_{i}\right)
$$

since f is Lipschitz (where $\operatorname{diam}\left(X_{i}\right)=\sup _{x, y \in X_{i}} \ell(x, y)$).

High probability upper bound

$$
\text { w.p. } 1-\delta, \quad \frac{1}{n_{i}} \sum_{t=1}^{n_{i}} r_{t}+\sqrt{\frac{\log 1 / \delta}{2 n_{i}}}+\operatorname{diam}\left(X_{i}\right) \geq \sup _{x \in X_{i}} f(x)
$$

Tradeoff between size of the confidence interval and diameter.
By considering several domains we can derive a tighter upper bound.

Hierarchical Optimistic Optimization (HOO)

[Bubeck, M., Stoltz, Szepesvári, 2008]: Builds incrementally a partitions of X

HOO Algorithm:

Let \mathcal{T}_{t} denote the set of expanded nodes at round t.

- At t, select a leaf i_{t} of \mathcal{T}_{t} by maximizing the B -values,
- $\mathcal{T}_{t+1}=\mathcal{T}_{t} \cup\left\{i_{t}\right\}$
- Select $x_{t} \in X_{i_{t}}$ (arbitrarily)
- Observe reward $r_{t} \sim \nu\left(x_{t}\right)$ and update the B -values:

$B_{i} \stackrel{\text { def }}{=} \min \left[\widehat{X}_{i, n_{i}}+\sqrt{\frac{2 \log (n)}{n_{i}}}+\operatorname{diam}(i), \max _{j \in \mathcal{C}(i)} B_{j}\right]$

Example in 1d

$r_{t} \sim \mathcal{B}\left(f\left(x_{t}\right)\right)$ a Bernoulli distribution with parameter $f\left(x_{t}\right)$

Resulting tree at time $n=1000$ and at $n=10000$.

Experiments in computer-go

MoGo program [Gelly, Wang, M., Teytaud, 2006] uses a modified version of HOO called UCT [Kocsis and Szepesvári, 2006]. Features:

- Hierarchical UCB bandits
- Asymmetric tree expansion
- Explore first the most promising branches
- Average converges to max
- Anytime algo
- Use of features
- Generalization among nodes
- Parallelization

Among world best programs!

General problem

Assumptions:

1. $\ell(x, y)$ is a semi-metric $(\ell(x, y)=0 \Leftrightarrow x=y$ and symmetric)
2. f is locally "smooth" around its max.: for all $x \in \mathcal{X}$,

$$
f\left(x^{*}\right)-f(x) \leq \ell\left(x, x^{*}\right)
$$

Analysis of HOO

Let d be the near-optimality dimension of f in X : i.e. such that the set of ε-optimal states

$$
X_{\varepsilon} \stackrel{\text { def }}{=}\left\{x \in X, f(x) \geq f^{*}-\varepsilon\right\}
$$

can be covered by $O\left(\varepsilon^{-d}\right)$ balls of radius ε.

Theorem 1.

The loss of HOO is

- In the stochastic case: $\mathbb{E} r_{n}=\widetilde{O}\left(n^{-\frac{1}{d+2}}\right)$.
- In the deterministic case: $r_{n}=\widetilde{O}\left(n^{-\frac{1}{d}}\right)$ for $d>0$, and $r_{n}=O\left(e^{-\frac{c}{D} n}\right)$ for $d=0$.

Example 1:

Assume the function is locally peaky around its maximum:

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x^{*}-x\right\|\right)
$$

It takes $O\left(\epsilon^{0}\right)$ balls of radius ϵ to cover X_{ε}. Thus $d=0$ and the regret is $1 / \sqrt{n}$.

Example 2:

Assume the function is locally quadratic around its maximum:

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x^{*}-x\right\|^{\alpha}\right), \text { with } \alpha=2 .
$$

- For $\ell(x, y)=\|x-y\|$, it takes $O\left(\epsilon^{-D / 2}\right)$ balls of radius ϵ to cover X_{ε} (of size $O\left(\epsilon^{D / 2}\right)$). Thus $d=D / 2$.
- For $\ell(x, y)=\|x-y\|^{2}$, it takes $O\left(\epsilon^{0}\right) \ell$-balls of radius ϵ to cover X_{ε}. Thus $d=0$ and the regret is $1 / \sqrt{n}$.

Known smoothness around the maximum

Consider $X=[0,1]^{d}$. Assume that f has a finite number of global maxima and is locally α-smooth around each maximum x^{*}, i.e.

$$
f\left(x^{*}\right)-f(x)=\Theta\left(\left\|x^{*}-x\right\|^{\alpha}\right) .
$$

Then, by choosing $\ell(x, y)=\|x-y\|^{\alpha}, X_{\varepsilon}$ is covered by $O(1)$ balls of "radius" ε. Thus the near-optimality dimension $d=0$, and the regret of HOO is:

$$
\mathbb{E} R_{n}=\widetilde{O}(1 / \sqrt{n})
$$

i.e. the rate of growth is independent of the dimension.

Discussion about smoothness

The near-optimality dimension may be seen as an excess order of smoothness of f (around its maxima) compared to what is known:

- If the smoothness order of the function is known then the regret of HOO algorithm is $\widetilde{O}(1 / \sqrt{n})$
- If the smoothness is underestimated, for example f is α-smooth but we only use $\ell(x, y)=\|x-y\|^{\beta}$, with $\beta<\alpha$, then the near-optimality dimension is $d=D(1 / \beta-1 / \alpha)$ and the regret is $\widetilde{O}\left(n^{-1 /(d+2)}\right)$
- If the smoothness is overestimated, the weak-Lipschitz assumption is violated, thus there is no guarantee (e.g., UCT)

Assume that ℓ is unknown

f is locally smooth w.r.t. the semi-metric ℓ but now ℓ is unknown! Is it possible to implement an optimistic algorithm with performance guarantees?

Simultaneous Optimistic Optimization (SOO) [M., 2011]

- Expand several leaves simultaneously!
- SOO expands at most one leaf per depth
- SOO expands a leaf only if it has the largest value among all leaves of same or lower depths.
- At round t, SOO does not expand leaves with depth larger than $h_{\max }(t)$

SOO algorithm

Input: the maximum depth function $t \mapsto h_{\max }(t)$ Initialization: $\mathcal{T}_{1}=\{(0,0)\}$ (root node). Set $t=1$. while True do
Set $v_{\text {max }}=-\infty$.
for $h=0$ to $\min \left(\operatorname{depth}\left(\mathcal{T}_{t}\right), h_{\max }(t)\right)$ do
Select the leaf $(h, j) \in \mathcal{L}_{t}$ of depth h with max $f\left(x_{h, j}\right)$ value if $f\left(x_{h, i}\right)>v_{\text {max }}$ then

Expand the node (h, i), Set $v_{\text {max }}=f\left(x_{h, i}\right)$, Set $t=t+1$
if $t=n$ then return $x(n)=\arg \max _{(h, i) \in \mathcal{T}_{n}} x_{h, i}$ end if
end for
end while.

Extension of SOO to the stochastic case

- Play the leaves k according to SOO based on the values

$$
\widehat{X}_{k, n_{k}}+c \sqrt{\frac{\log n}{n_{k}}}
$$

- If a leaf has been played more than $\frac{n}{(\log n)^{3}}$ times, then expand it.

Performance of SOO

Theorem 2.

If there exists a semi-metric ℓ such that f is locally smooth w.r.t. ℓ and the near-optimality dimension $d=0$, then

- Stochastic case: $\mathbb{E} r_{n}=\tilde{O}(1 / \sqrt{n})$.
- Deterministic case: $r_{n}=O\left(e^{-\frac{c}{D} \sqrt{n}}\right)$.

This is almost as good as HOO optimally fitted!. Remarks:

- Since the algorithm does not depend on ℓ, the analysis holds for the best possible choice of the semi-metric ℓ satisfying the assumptions.
- SOO adapts to the local unknown smoothness of f.

Example

Let f be such that $f^{*}-f(x)=\Theta\left(\left\|x^{*}-x\right\|^{\alpha}\right)$ for some unknown $\alpha \geq 0$.

- SOO algorithm does not require the knowledge of ℓ,
- thus the analysis holds for any ℓ satisfying Assumptions 1-4, for example $\ell(x, y)=\|x-y\|^{\alpha}$.
- Then the near-optimality dimension $d=0$ and the loss of SOO is $r_{n}=O\left(2^{-\sqrt{n} \alpha}\right)$ (stretched-exponential loss),
- This is almost as good as HOO optimally fitted!

Comparison with the DIRECT algorithm

The DIRECT (Dlviding RECTangles) algorithm [Jones et al., 1993] is a Lipschitz optimization algorithm where the Lipschitz constant
L of f is unknown.
DIRECT uses a similar optimistic splitting technique.
Comparison SOO versus DIRECT:

- Finite-time analysis of SOO (whereas only a consistency property $\lim _{n \rightarrow \infty} r_{n}=0$ is available for DIRECT in [Finkel and Kelley, 2004])
- Setting of SOO much more general than DIRECT: the function is only locally smooth and the space is semi-metric.
- SOO (deterministic) is a rank-based algorithm
- And SOO is easier to implement...

Application to planning in MDPs

Setting:

- Assume we have a model of an MDP.
- The state space is large: no way to represent the value function
- Search for the best policy given an initial state, given a computational budget.
- Ex: from current state s_{t}, given n calls to the model, return the action $a(n)$, play this action in the real environment, observe next state s_{t+1}, and repeat

Simple regret: $\quad r_{n} \xlongequal{\text { def }} \max _{a \in A} Q^{*}\left(s_{t}, a\right)-Q^{*}\left(s_{t}, a(n)\right)$.

Planning in deterministic systems

From the current state, build the look-ahead tree:

- From the current state s_{t}
- Search space $X=$ set of paths (infinite sequence of actions)
- Value of any path x : $f(x)=\sum_{t \geq 0} \gamma^{t} r_{t}$
- Metric: $\ell(x, y)=\frac{\gamma^{h(x, y)}}{1-\gamma}$
- Prop: f is Lipschitz w.r.t. ℓ
- Use optimistic search to explore the tree with budget n resources

Optimistic exploration

(HOO algo in deterministic setting)

- For any node i of depth d, define the B-values:

$$
B_{i} \stackrel{\text { def }}{=} \sum_{t=0}^{d-1} \gamma^{t} r_{t}+\frac{\gamma^{d}}{1-\gamma} \geq v_{i}
$$

- At each round n, expand the node with highest B-value
- Observe reward, update B-values,
- Repeat until no more available resources

- Return immediate action

Analysis of the regret

[Hren and M., 2008] Define β such that the proportion of ϵ-optimal paths is $O\left(\epsilon^{\beta}\right)$ (this is related to the near-optimal dimension). Let

$$
\kappa \stackrel{\text { def }}{=} K \gamma^{\beta} \in[1, K]
$$

- If $\kappa>1$, then

$$
r_{n}=O\left(n^{-\frac{\log 1 / \gamma}{\log \kappa}}\right)
$$

(whereas for uniform planning $R_{n}=O\left(n^{-\frac{\log 1 / \gamma}{\log K}}\right)$.)

- If $\kappa=1$, then we obtain the exponential rate
$r_{n}=O\left(\gamma^{\frac{(1-\gamma)^{\beta}}{c} n}\right)$, where c is such that the proportion of ϵ-path is bounded by $c \epsilon^{\beta}$.

Open Loop Optimistic Planning

Setting:

- Rewards are stochastic but depend on sequence of actions (and not resulting states)
- Goal : find the sequence of actions that maximizes the expected discounted sum of rewards
- Search space: open-loop policies (sequences of actions)
[Bubeck et M., 2010] OLOP algorithm has expected regret

$$
\mathbb{E} r_{n}= \begin{cases}\tilde{O}\left(n^{-\frac{\log 1 / \gamma}{\log \kappa}}\right) & \text { if } \gamma \sqrt{\kappa}>1 \\ \tilde{O}\left(n^{-\frac{1}{2}}\right) & \text { if } \gamma \sqrt{\kappa} \leq 1\end{cases}
$$

Remarks:

- For $\gamma \sqrt{\kappa}>1$, this is the same rate as for deterministic systems!
- This is not a consequence of HOO
[Buşoniu and M., 2012]

B-values: upper-bounds on the optimal Q-values Qto

$$
B(s)=
$$

$1 \overline{1-\gamma \text { for leaves }}$
$B(s)=\max _{a} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[r\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} b\left(s^{\prime}, a^{\prime}\right)\right]$ Compute the optimistic policy.

Optimistic Planning in MDPs

Expand leaf in the optimistic policy with largest contribution:

$$
\arg \max _{s \in \mathcal{L}} P(s) \frac{\gamma^{h(s)}}{1-\gamma}
$$

Performance analysis of OP-MDP

Define X_{ϵ} the set of states

- whose "contribution" is at least ϵ
- and that belong to an ϵ-optimal policy

Define the measure of complexity of planning in the MDP as the smallest $\beta \geq 0$ such that $\left|X_{\epsilon}\right|=O\left(\epsilon^{-\beta}\right)$.
Theorem 3.
The performance of OP-MDP is $r_{n}=O\left(n^{-1 / \beta}\right)$.
Remarks: β is small when

- Structured rewards
- Transition probabilities are heterogeneous

Conclusions on optimistic planning

- Can be seen as applications of hierarchical bandits
- Perform optimistic search in policy space.
- Interesting when the state-space is large (e.g., continuous), and the MDP has structured rewards and transition probabilities.
- Possible extentions to planning in POMDPs

General conclusion

Optimism in the face of uncertainty principle seems successful in several decision making problems:

- Multi-armed bandit problems
- Optimization of deterministic and stochastic functions in general spaces
- For example in planning

Regret analysis $=$ how fast an algorithm converges to the optimal solutions.

Key ingredients of the analysis:

- measure of the quantity of near-optimal solutions,
- and its knowledge
- or design adaptive strategies (SOO).

Related references

- J.Y. Audibert, R. Munos, and C. Szepesvari, Tuning bandit algorithms in stochastic environments, ALT, 2007.
- P. Auer, N. Cesa-Bianchi, and P. Fischer, Finite time analysis of the multiarmed bandit problem, Machine Learning, 2002.
- S. Bubeck and R. Munos, Open Loop Optimistic Planning, COLT 2010.
- S. Bubeck, R. Munos, G. Stoltz, Cs. Szepesvari, Online Optimization in X-armed Bandits, NIPS 2008. Long version X-armed Bandits JMLR 2011.
- L. Bușoniu, R. Munos, Optimistic Planning for Markov Decision Processes, AISTATS 2012.
- P.-A. Coquelin and R. Munos, Bandit Algorithm for Tree Search, UAI 2007.
- S. Gelly, Y. Wang, R. Munos, and O. Teytaud, Modification of UCT with Patterns in Monte-Carlo Go, RR INRIA, 2006.

Related references (cont'ed)

- J.-F. Hren and R. Munos, Optimistic planning in deterministic systems. EWRL 2008.
- M. Kearns, Y. Mansour, A. Ng, A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes, Machine Learning, 2002.
- R. Kleinberg, A. Slivkins, and E. Upfal, Multi-Armed Bandits in Metric Spaces, ACM Symposium on Theory of Computing, 2008.
- L. Kocsis and Cs. Szepesvri, Bandit based Monte-Carlo Planning, ECML 2006.
- T. L. Lai and H. Robbins, Asymptotically Efficient Adaptive Allocation Rules, Advances in Applied Mathematics, 1985.

