(Stochastic) Optimal Control : State x, Control u (Dynamic Programming) Stochastic Programming: Variables (x, u), State: $d_{\xi}-T_{\xi} x$
(Stochastic) Optimal Control : State x, Control u (Dynamic Programming) Stochastic Programming: Variables (x, u), State: $d_{\xi}-T_{\xi} x$

STOCHASTIC DYNAMIC OPTIMIZATION: APPROACHES AND COMPUTATION
Pravin Varaiya and Roger J-B Wets
University of California, Berkeley-Davis
In: "Mathematical Programming, Recent Developments and Applications",
M. Iri \& K. Tanabe (eds), Kluwer Academic Publisher, 1989. pp. 309-332.

Lectures Plan

- Why and how to deal with 'uncertainty' (1)
- Recourse Models (2 \& 3)
- Aggregation Principle (4)
- Approximations (5)
- Duality Theory (6)
- Dispatching Energy-ISO (7)

Stochastic Programs with Recourse

Roger J-B Wets
Mathematics, University of California, Davis

.. with Simple Recourse

decision: $x \rightsquigarrow$ observation: $\xi \rightsquigarrow$ recourse cost evaluation. cost evaluation 'simple' \Rightarrow simple recourse, i.e., $\min _{x \in S \subset \mathbb{R}^{n}} f_{0}(x)+\mathbb{E}\{Q(\xi, x)\} \quad Q$ 'simple'

Product mix problem. With $\xi=(T, d)$,

$$
f_{0}(x)=\langle c, x\rangle, \quad S=\mathbb{R}_{+}^{4}, \quad Q(\xi, x)=\sum_{i=c, f} \max \left[0, \gamma_{i}\left(\left\langle T_{i}, x\right\rangle-d_{i}\right)\right.
$$

NewsVendor: cost: γ, sale price δ,
$\boldsymbol{\xi}$, demand distribution P, order x, \Rightarrow explícít sol'n expected "loss": $\gamma x+\mathbb{E}\{Q(\boldsymbol{\xi}, x)\}$ $Q(\xi, x)=-\delta \cdot \min \{x, \xi\}$

Magnet Alignment I

Tuesday, June 26, 2012
$\min \langle-c, x\rangle+p_{1}\left\langle q, y^{1}\right\rangle \quad+p_{2}\left\langle q, y^{2}\right\rangle \cdots+p_{L}\left\langle q, y^{L}\right\rangle$
$\begin{array}{llll}\text { s.t. } & T^{1} x & -y^{1} & \leq d^{1} \\ T^{2} x & & -y^{2} & \leq d^{2}\end{array}$
EXF

$$
\begin{gathered}
\begin{array}{c}
T^{L} x \\
x \geq 0,
\end{array} y^{1} \geq 0, \quad y^{2} \geq 0, \quad \ldots \quad y^{y^{y} \geq 0 .} \\
\text { Deterministic Equivalent Problem }
\end{gathered}
$$

$$
\begin{aligned}
& Q(\xi, x)=\min \left\{\langle q, y\rangle \mid T_{\xi} x+y \geq d_{\xi}, y \geq 0\right\} \\
& E Q(x)=\mathbb{E}\{Q(\boldsymbol{\xi}, x)\}=\sum_{\xi \in \Xi} p_{\xi} Q(\xi, x)
\end{aligned}
$$ the equivalent deterministic program:

DEP $\min \langle-c, x\rangle+E Q(x)$ such that $x \in \mathbb{R}_{+}^{n}$
product mix problem

Closed Loop vs Open Loop

Closed Loop:
Observation of state $s \rightarrow$ control function $u(s)$ (optimal \pm) $\forall s$. Stochastic Optimal Control: state $s\left(\xi_{t}\right)$, control function $u\left(s\left({\underset{\rightarrow}{\xi} t}^{\xi}\right)\right)$
Hopefully, $u(\cdot)$ is simple, manageable, ..., (maybe) time continuous
Open Loop:
Observation of state $s \rightarrow$ control function $u(s)$ (optimal \pm) $\forall s$.
Decision Process: from state $s\left(\xi_{t}\right)$ to decision $u(s(\underset{\rightarrow}{\xi}))$
usually no 'closed form' expression may involve solving an optim. problem essentially 'closed loop' if decision occurs at $t+\Delta t, \Delta t$ small

deterministic version:
$\min \langle c, x\rangle \quad$ such that $A x=b, T x=\hat{\xi}, x \geq 0$
stochastic program with simple recourse RHS:
$\min _{x}\langle c, x\rangle+\mathbb{E}\{Q(\boldsymbol{\xi}, x)\}$ such that $A x=b, x \geq 0$
Deterministic Equivalent Problem: (SPWSR)
$\min _{x}\langle c, x\rangle+E Q(x)$ such that $A x=b, x \geq 0$

- $f_{0}=\langle c, x\rangle$ is linear;
- $S=\left\{x \in \mathbb{R}_{+}^{n} \mid A x=b\right\}$ is a polyhedral set, A is $m_{1} \times n$;
- $Q(\xi, x)=q(\xi-T x), T$ a non-random $m_{2} \times n$ matrix;
- the recourse cost function $q: \mathbb{R}^{m_{2}} \rightarrow \mathbb{R}$ is convex;
- the expectation functional $E Q(x)=\int_{\Xi} q(\xi-T x) P(d \xi)$.

Convex optim., linear constraints

$\mathcal{P}: \quad f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex, $\quad X$ polyhedral,

$$
\begin{aligned}
\min & f_{0}(x), \quad x \in X \subset \mathbb{R}^{n} \\
\text { such that } & \left\langle A_{i}, x\right\rangle \geq b_{i}, \quad i=1, \ldots, s \\
& \left\langle A_{i}, x\right\rangle=b_{i}, \quad i=s+1, \ldots, m
\end{aligned}
$$

x^{*} is an optimal solution of $(\mathcal{P}) \Longleftrightarrow \exists$, KKT-multipliers $y \in \mathbb{R}^{m}$:
(a) $\left\langle A_{i}, x^{*}\right\rangle \geq b_{i}, i=1, \ldots, s, \quad\left\langle A_{i}, x^{*}\right\rangle=b_{i}, i=s+1, \ldots, m$,
(b) for $i=1, \ldots, s$: $\quad y_{i} \geq 0, y_{i}\left(\left\langle A_{i}, x^{*}\right\rangle-b_{i}\right)=0$,
(c) $x^{*} \in \operatorname{argmin}\left\{f_{0}(x)-\left\langle A^{\top} y, x\right\rangle \mid x \in X\right\}$.
\sim version of $(\mathrm{c}): \exists-v \in N_{X}\left(x^{*}\right)=\left\{u \mid\left\langle u, x-x^{*}\right\rangle \leq 0, \forall x \in X\right\}$

WHMHMHMHMHMHWHMN
Optimality: Simple Recourse (SPWSR)

Suppose $E Q$ finite-valued, x^{*} solves SP-simple recourse \Longleftrightarrow one can find KKT-multipliers $u \in \mathbb{R}^{m_{1}}$ \& summable KKT-multipliers $v: \Xi \rightarrow \mathbb{R}^{m_{2}}$:

1. $x^{*} \geq 0, \quad A x^{*}=b$;
2. for all $\xi \in \Xi: \quad v(\xi) \in \partial q\left(\xi-T x^{*}\right)$;
3. $x^{*} \in \operatorname{argmin}\left\{\left\langle c-A^{\top} u-T^{\top} \bar{v}, x\right\rangle \mid x \in \mathbb{R}_{+}^{n}\right\}$ where $\bar{v}=E\{v(\boldsymbol{\xi})\}$.

Reformulation: ... with Tenders

Change of variables (tenders): $\chi=T x$
$\min _{x, \chi}\langle c, x\rangle+\mathbb{E}\{\psi(\boldsymbol{\xi}, \chi)\}$ s.t. $A x=b, T x=\chi, x \geq 0$
$\psi(\xi, \chi)=q(\xi-\chi), \quad$ with $\quad E \psi(\chi)=\int_{\Xi} \psi(\xi, \chi) P(d \xi)$
Deterministic equivalent problem:

$$
\min _{x, \chi}\langle c, x\rangle+E \psi(\chi) \text { s.t. } A x=b, T x-\chi=0, x \geq 0
$$

$E \psi \& E Q$ same properties \& $\partial E \psi(\chi)=-\mathbb{E}\{\partial q(\boldsymbol{\xi}-\chi)\}$ Usually, $\psi, E \psi$, are separable while $E Q$ is not,

$$
\begin{aligned}
& \psi(\xi, \chi)=\sum_{i=1}^{m_{2}} \psi_{i}\left(\xi_{i}, \chi_{i}\right),=\sum_{i=1}^{m_{2}} q_{i}\left(\bar{\xi}_{i}-\chi_{i}\right) \\
& E \psi(\chi)=\sum_{i=1}^{m_{2}} E \psi_{i}\left(\chi_{i}\right)
\end{aligned}
$$

Separable Simple Recourse (hhs)

$\min _{x, \chi}\langle c, x\rangle+\mathbb{E}\left\{\sum_{i=1}^{m_{2}} \psi_{i}\left(\boldsymbol{\xi}_{i}, \chi_{i}\right)\right\}$ such that $A x=b, T x=\chi, x \geq 0$ $\psi_{i}\left(\xi_{i}, \chi_{i}\right)=q_{i}\left(\xi_{i}-\chi_{i}\right), q_{i}$ is convex, P_{i} marginal of $\boldsymbol{\xi}_{i}$, support $\Xi_{i} \subset \mathbb{R}$.

$$
E \psi_{i}\left(\chi_{i}\right)=\mathbb{E}\left\{\psi_{i}\left(\boldsymbol{\xi}_{i}, \chi_{i}\right)\right\}=\int_{\Xi_{i}} \psi_{i}\left(\zeta, \chi_{i}\right) P_{i}(d \zeta)
$$

the deterministic equivalent problem is then,

Linearly constrained convex program, but also separable.
$\partial E \psi_{i}\left(\chi_{i}\right)=\left\{-\int_{\Xi_{i}} v_{i}(\zeta) P_{i}(d \zeta) \mid \forall \zeta \in \Xi_{i}, v_{i}(\zeta) \in \partial q_{i}\left(\zeta-\chi_{i}\right), v_{i}\right.$ summable $\}$.

$\left(x^{*}, \chi^{*}\right)$ optimal $\Longleftrightarrow \exists$ KKT-multipliers $u \in \mathbb{R}^{m_{1}}$ and
for $i=1, \ldots, m_{2}$, summable KKT-multipliers $v_{i}: \Xi_{i} \rightarrow \mathbb{R}$ such that
(a) $A x^{*}=b, \quad T x^{*}=\chi^{*}$;
(b) for $i=1, \ldots, m_{2}: \quad \forall \zeta \in \Xi_{i}, \quad v_{i}(\zeta) \in \partial q_{i}\left(\zeta-\chi_{i}^{*}\right)$;
(c) $x^{*} \in \operatorname{argmin}\left\{\left\langle c-A^{\top} u-T^{\top} \bar{v}, x\right\rangle \mid x \in \mathbb{R}_{+}^{n}\right\} . \quad \bar{v}_{i}=\mathbb{E}\left\{v_{i}\left(\boldsymbol{\xi}_{i}\right)\right\}$

When $q_{i}(y)=\max \left[\gamma_{i} y, \delta_{i} y\right]$ with $\gamma_{i} \leq \delta_{i}, \quad E\left\{\boldsymbol{\xi}_{i}\right\}$ finite
$\left(x^{*}, \chi^{*}\right)$ optimal solution $\Longleftrightarrow \exists$ KKT-multipliers $u \in \mathbb{R}^{m_{1}}$ and $\bar{v} \in \mathbb{R}^{m_{2}}$:
(a) $A x^{*}=b, \quad T x^{*}=\chi^{*}$;
(b) for $i=1, \ldots, m_{2}, \quad P_{i}(z)=$ prob. $\left[\boldsymbol{\xi}_{i} \leq z\right], \quad p_{z}=\operatorname{prob} .\left[\boldsymbol{\xi}_{i}=z\right]$

$$
\begin{aligned}
& P_{i}\left(\chi_{i}^{*}\right)-p_{\chi_{i}^{*}} \leq \frac{\delta_{i}-\bar{v}_{i}}{\delta_{i}-\gamma_{i}} \leq P_{i}\left(\chi_{i}^{*}\right),
\end{aligned}
$$

(c) $x^{*} \geq 0, \quad A^{\top} u+T^{\top} \bar{v} \leq c$, and $\left\langle c-A^{\top} u-T^{\top} \bar{v}, x^{*}\right\rangle=0$.

Whan
Approximation
Let $P: \mathbb{R} \rightarrow[0,1]$ continuous, increasing on interval Ξ,

$$
E \psi(\chi)=\delta(\bar{\xi}-\chi)+(\delta-\gamma)\left[\chi P(\chi)-\int_{-\infty}^{\chi} \zeta P(d \zeta)\right]
$$

Hence,

$$
P\left(\chi^{*}\right)=\frac{\delta-\bar{v}}{\delta-\gamma}=: \kappa, \quad \chi^{*}=P^{-1}(\kappa)
$$

When Q has the same κ-quantile, $Q^{-1}(\kappa)=P^{-1}(\kappa)$, same optimal sol'n.

$\min f_{0}(x), x \in X \subset \mathbb{R}^{n}$ polyhedral

$$
\left\langle A_{i}, x\right\rangle \geq b_{i}, i=1, \ldots, s, \quad\left\langle A_{i}, x\right\rangle=b_{i}, i=s+1, \ldots, m
$$

The Lagrangian:

$$
L(x, y)=f_{0}(x)+\langle y, b-A x\rangle \text { on } X \times Y, Y=\mathbb{R}_{+}^{s} \times \mathbb{R}^{m-s} .
$$

x^{*} optimal $\Longleftrightarrow \exists$ a pair $\left(x^{*}, y^{*}\right)$ that satisfies:

$$
x^{*} \in \operatorname{argmin}_{x \in \mathbb{R}^{n}} L\left(x, y^{*}\right), \quad y^{*} \in \operatorname{argmax}_{y \in Y} L\left(x^{*}, y\right) .
$$

primal \& dual problems:
linear programs: $\min \langle c, x\rangle, A x=b, x \geq 0 \& \max \langle b, y\rangle, A^{\top} y \leq 0$ quadratic programs: $\min \langle c, x\rangle+\frac{1}{2}\langle x, Q x\rangle, A x \geq b, x \in \mathbb{R}^{n}$

$$
\begin{array}{r}
\max \alpha+\langle d, y\rangle-\frac{1}{2}\langle y, P y\rangle, \bar{y} \in \mathbb{R}_{+}^{m} \\
\alpha=-\frac{1}{2}\left\langle c, Q^{-1} c\right\rangle, d=b+A Q^{-1} c \text { and } P=A Q^{-1} A^{\top} .
\end{array}
$$

penalty substítutes
A monitoring function $\theta_{P, Q}(x)=\sup _{v \in \mathbb{R}^{n}}\left\{\left.\langle x, v\rangle-\frac{1}{2}\langle v, Q v\rangle \right\rvert\, v \in P\right\}$, convex linear-quadratic function for P polyhedral, Q psd. On \mathbb{R}

$$
\theta_{r, \beta}=\theta_{I, \beta}(x)=\sup \left\{\left.x v-\frac{\beta}{2} v^{2} \right\rvert\, v \in I \subset \mathbb{R}\right\}, \quad \beta \geq 0, P=[0, r](r \leq \infty)
$$

Monitoring Functions
penalty substitutes
A monitoring function $\theta_{P, Q}(x)=\sup _{v \in \mathbb{R}^{n}}\left\{\left.\langle x, v\rangle-\frac{1}{2}\langle v, Q v\rangle \right\rvert\, v \in P\right\}$, convex linear-quadratic function for P polyhedral, Q psd. On \mathbb{R}

$$
\theta_{r, \beta}=\theta_{I, \beta}(x)=\sup \left\{\left.x v-\frac{\beta}{2} v^{2} \right\rvert\, v \in I \subset \mathbb{R}\right\}, \quad \beta \geq 0, P=[0, r](r \leq \infty)
$$

A monitoring function $\theta_{P, Q}(x)=\sup _{v \in \mathbb{R}^{n}}\left\{\left.\langle x, v\rangle-\frac{1}{2}\langle v, Q v\rangle \right\rvert\, v \in P\right\}$, convex linear-quadratic function for P polyhedral, Q psd. On \mathbb{R}

$$
\theta_{r, \beta}=\theta_{I, \beta}(x)=\sup \left\{\left.x v-\frac{\beta}{2} v^{2} \right\rvert\, v \in I \subset \mathbb{R}\right\}, \quad \beta \geq 0, P=[0, r](r \leq \infty)
$$

$\min _{0 \leq x \leq s}\langle c, x\rangle+\frac{1}{2} \sum_{j=1}^{n} \delta_{j} x_{j}^{2}+\sum_{i=1}^{m} \theta_{r_{i}, \beta_{i}}\left(d_{i}-\left\langle T_{i}, x\right\rangle\right)$ and
$\max _{0 \leq v \leq r}\langle d, v\rangle-\frac{1}{2} \sum_{i=1}^{m} \beta_{i} v_{i}^{2}-\sum_{j=1}^{n} \theta_{s_{j}, \delta_{j}}\left(\left\langle T^{j}, v\right\rangle-c_{j}\right)$ are a dual pair when $\delta_{j}, r_{j}, \beta_{i}, s_{i}$ strictly positive.

Water quality: $\boldsymbol{z}_{i}=T_{i}(\boldsymbol{\xi}) x-d(\boldsymbol{\xi}), i=I, \ldots, I V$, technical, $\ldots: A x \leq b$ Monitoring deviations from the desired quality: for $i=I, \ldots, I V$,

$$
\theta_{r_{i}, \beta_{i}}(\tau)=\left\{\begin{array}{lll}
0 & \text { if } \tau<0, & \text { (excellent) } \\
\tau^{2} / 2 \beta_{i} & \text { if } \tau \in\left[0, r_{i} \beta_{i}\right] & \text { acceptable) } \\
r_{i} \tau-r_{i}^{2} \beta_{i} / 2 & \text { if } \tau>r_{i} \beta_{i} & \text { (unacceptable) }
\end{array}\right.
$$

+ direct costs with building treatment plants and reed basins,

$$
\begin{aligned}
& \sum_{j=1}^{n} c_{j} x_{j}+\frac{1}{2} \sum_{j=1}^{n} \delta_{j} x_{j}^{2}, \quad D=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{n}\right): \quad \text { leads to } \\
& \min \langle c, x\rangle+\frac{1}{2}\langle x, D x\rangle+\mathbb{E}\left\{\sum_{i=I}^{I V} \theta_{r_{i}, \beta_{i}}\left(d_{i}(\boldsymbol{\xi})-\left\langle T_{i}(\boldsymbol{\xi}), x\right\rangle\right)\right\}, A x \leq b, 0 \leq x
\end{aligned}
$$ with random rhs \& technology T-matrix (hydro-dynamics, atmospheric).

$\min \langle c, x\rangle+\frac{1}{2}\langle x, D x\rangle+\sum_{i=1}^{m_{2}} \mathbb{E}^{i}\left\{\theta_{r_{i}, \beta_{i}}\left(\boldsymbol{w}_{i}\right)\right\}, A x \geq b, \quad \boldsymbol{w}=\boldsymbol{d}-\boldsymbol{T} x, 0 \leq x \leq s$
for all $i, \boldsymbol{\xi}_{i}=\left(\boldsymbol{r}_{i}, \boldsymbol{\beta}_{i}, \boldsymbol{d}_{i}, \boldsymbol{t}_{i 1}, \ldots, \boldsymbol{t}_{i n}\right), \boldsymbol{w}$ and, later, \boldsymbol{v} as very long vectors.
The dual takes on the form, with $u \geq 0, \quad 0 \leq \boldsymbol{v}_{i} \leq \boldsymbol{r}_{i}, \forall i$

$$
\begin{gathered}
\max \langle b, u\rangle-\sum_{j=1}^{n} \theta_{s_{j}, \delta_{j}}\left(z_{j}\right)+\sum_{i=1}^{m_{2}} E^{i}\left\{\boldsymbol{d}_{i} \boldsymbol{v}_{i}-\frac{1}{2} \boldsymbol{\beta}_{i} \boldsymbol{v}_{i}^{2}\right\} \\
\text { such that } z_{j}=\left\langle A^{j}, u\right\rangle+\sum_{i=1}^{m_{2}} E^{i}\left\{\boldsymbol{t}_{i j} \boldsymbol{v}_{i}\right\}-c_{j}, \quad j=1, \ldots, n,
\end{gathered}
$$

Only "simple" stochastic box constraints: $0 \leq \boldsymbol{v}_{i} \leq \boldsymbol{r}_{i}, \quad i=1, \ldots, m_{2}$. Lake Stoöpt: r and β are non-random.

Step 0. $\boldsymbol{V}_{\nu}=\left[\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{\nu}\right], \boldsymbol{v}_{i}^{k}: \Xi_{i} \rightarrow\left[0, \boldsymbol{r}_{i}\right], \forall i$
Step 1. Compute $d^{\nu}=E\left\{\boldsymbol{V}_{\nu}^{\top} \boldsymbol{d}\right\}, \quad B^{\nu}=E\left\{\boldsymbol{V}_{\nu}^{\top} B \boldsymbol{V}_{\nu}\right\}, \quad T_{\nu}^{\top}=E\left\{\boldsymbol{T}^{\top} \boldsymbol{V}_{\nu}\right\}$
Step 2. Solve the (deterministic) approximating dual program:
$\max \langle b, u\rangle+\left\langle d^{\nu}, \lambda\right\rangle-\frac{1}{2}\left\langle\lambda, B^{\nu} \lambda\right\rangle-\sum_{j=1}^{n} \theta_{s_{j}, \delta_{j}}\left(z_{j}\right)$

$$
\text { s.t } A^{\top} u+T_{\nu}^{\top} \lambda-z=c, \quad \sum_{k=1}^{\nu} \lambda_{k}=1, \quad u \geq 0, \quad \lambda \geq 0
$$

($u^{\nu}, \lambda^{\nu}, z^{\nu}$) optimal, and x^{ν} KKT-multipliers of equality constraints.

$$
\text { set } \hat{\boldsymbol{v}}^{\nu}=\boldsymbol{V}_{\nu} \lambda^{\nu}, \quad \boldsymbol{w}_{i}^{\nu}=\boldsymbol{d}_{i}-\left\langle\boldsymbol{T}_{i}, x^{\nu}\right\rangle, i=1, \ldots, m_{2}
$$

Step 3 (saddle point check) Stop, if for each i,

$$
\hat{\boldsymbol{v}}_{i}^{\nu} \in \operatorname{argmax}_{\boldsymbol{v}_{i} \in\left[0, r_{i}\right]}\left\langle\boldsymbol{w}_{i}^{\nu}, \boldsymbol{v}_{i}\right\rangle-\frac{1}{2} \beta_{i} \boldsymbol{v}_{i}^{2},
$$

otherwise, for $i=1, \ldots, m_{2}$ and every $\zeta \in \Xi_{i}$, define
$v_{i}^{\nu+1}(\zeta) \in \operatorname{argmax}_{0 \leq v \leq r_{i}}\left[w_{i}^{\nu}(\zeta) v-\frac{1}{2} \beta_{i} v^{2}\right]$ with value $\theta_{r_{i}, \beta_{i}}\left(w_{i}^{\nu}(\zeta)\right)$
Augment $\boldsymbol{V}_{\nu+1}=\left[\begin{array}{ll}\boldsymbol{V} & \overline{\boldsymbol{v}}^{\nu+1}\end{array}\right]$, set $\nu \leftarrow \nu+1$, return to Step 1 .

