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Optimization problem

min f0 (x), x ∈S,   

   S = x ∈Rn fi (x) ≤ 0, i = 1→ s, fi (x) = 0, i = s +1→ m{ }

S 

η

x

f0
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min f  on E, f = f0 + ιS (x), ιS  indicator function of S

S = dom f

f

η

x
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min f  on E, f = f0 + ιS (x), ιS  indicator function of S

S = dom f

f

η

xS = dom f

epi f

levα f

η

α

x

epi f  = (x,α ) ∈E × R f (x) ≤ α{ }, levα f = x ∈E f (x) ≤ α{ }
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1. pointwise convergence �⇒ convergence of minimizers
fν ≡ 1 except f(1/ν) = 0, fν →

p
f ≡ 1

ff

1/ν

ν

dom fν

fν

2. uniform convergence implies convergence of minimizers
but applies rarely, never when constraints depend on ν
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1. pointwise convergence �⇒ convergence of minimizers
fν ≡ 1 except f(1/ν) = 0, fν →

p
f ≡ 1

ff

1/ν

ν

f

dom f

2. uniform convergence implies convergence of minimizers
but applies rarely, never when constraints depend on ν

One-sided
uniform

convergence
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1. pointwise convergence �⇒ convergence of minimizers
fν ≡ 1 except f(1/ν) = 0, fν →

p
f ≡ 1

ff

1/ν

ν

f

dom f

2. uniform convergence implies convergence of minimizers
but applies rarely, never when constraints depend on ν

Variational
epi-

convergence
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Epi-Convergence 

fν →e f if for all x ∈ E,

1. ∀xν → x, lim infν fν(xν) ≥ f(x)

2. ∃xν → x, lim supν f
ν(xν) ≤ f(x)

“Geometrically”: epi fν → epi f (later)

Pointwise:
lim infν fν(x) ≥ f(x), lim supν f

ν(x) ≤ f(x)
Continuous: ∀xν → x,

lim infν fν(xν) ≥ f(x), lim supν f
ν(xν) ≤ f(x)

Wednesday, July 4, 2012



Aν  = arg min f ν , ε-Aν : ε > 0 approximate minimizers,
A = argmin f   of limit problem, ε-A  approx. minimizers

Aν  v-converges to A,  written Aν ⇒v A,  if

           a)  x ∈  cluster-points xν ∈Aν{ }⇒ x ∈A

           b)  x ∈A⇒∃ εν  0, xν ∈εν -Aν → x

Epi-Convergence  ⇒
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Aν  = arg min f ν , ε-Aν : ε > 0 approximate minimizers,
A = argmin f   of limit problem, ε-A  approx. minimizers

Aν  v-converges to A,  written Aν ⇒v A,  if

           a)  x ∈  cluster-points xν ∈Aν{ }⇒ x ∈A

           b)  x ∈A⇒∃ εν  0, xν ∈εν -Aν → x

fν →e f implies ε-Aν ⇒v ε-A, ∀ ε ≥ 0
A unique minimizer, εν-Aν →→ A as εν �0.

(inf f > -∞)

Epi-Convergence  ⇒
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Expectation
Functionals

Mathematical Framework:
Random lsc functions &
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f :Ξ × E→ , random lsc function,   f (ξ, x)= f0 (ξ, x)  when x ∈C(ξ)
           E ⊂ M(Ξ,A;n ) : Lp(Ξ,A,P;n ),…

           others: C (Ξ,τ );n( ),Orlicz, Sobolev, lsc-fcns(E)

Ef (x) = f (ξ, x(ξ))P(dξ) = E f (ξ, x(ξ)){ }
Ξ∫

         = ∞ whenever f+ (ξ, x(ξ))P(dξ) = ∞
Ξ∫

Ef :E→  always defined

Regression: (E  is not a linear space)

min φ(y − h(x))P(dx,dy) h ∈  lsc-fcns(n )∩H
x∈[0,1]n∫y∈∫{ }

           H   shape restrictions (convex, unimodal, ...)

Ef = {f(ξ, ·)}
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f :Ξ × E→  a random lsc function, ξ  values in (Ξ,A,P)
    (a) lsc (lower semicontinuous) in x, (∀ξ ∈Ξ); x decision variable
    (b) (ξ, x)-measurable        (A × BE )-measurable
    recall:  f (ξ, x)= f0 (ξ, x)  when x ∈C(ξ)  -- stochastic constraints

f ν (ξ, x) =
1
ν

f (ξ l , x) if  x ∈C(ξ l )( )l=1

ν∑    (typically)

∞ otherwise    ( ~ SAA of optimisation problems)

⎧
⎨
⎪

⎩⎪

Question:  Do the f ν (ξ, ·) epi-converge to E f (ξ,i ){ }  P-a.s.?

                 does xν ∈argmin f ν ⇒v x
* ∈arg min E f (ξ, x){ } P-a.s.?

Random lsc functions
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f :Ξ × E→  a random lsc function, ξ  values in (Ξ,A,P)
    (a) lsc (lower semicontinuous) in x, (∀ξ ∈Ξ); x decision variable
    (b) (ξ, x)-measurable        (A × BE )-measurable
    recall:  f (ξ, x)= f0 (ξ, x)  when x ∈C(ξ)  -- stochastic constraints

f ν (ξ, x) =
1
ν

f (ξ l , x) if  x ∈C(ξ l )( )l=1

ν∑    (typically)

∞ otherwise    ( ~ SAA of optimisation problems)

⎧
⎨
⎪

⎩⎪

Question:  Do the f ν (ξ, ·) epi-converge to E f (ξ,i ){ }  P-a.s.?

                 does xν ∈argmin f ν ⇒v x
* ∈arg min E f (ξ, x){ } P-a.s.?

Law of Large Numbers for random lsc functions

∼ LLN for Stochastic Optimization Problems.

Random lsc functions
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f :Ξ × E→  a random lsc function, ξ  values in (Ξ,A,P)
    (a) lsc (lower semicontinuous) in x, (∀ξ ∈Ξ); x decision variable
    (b) (ξ, x)-measurable        (A × BE )-measurable
    recall:  f (ξ, x)= f0 (ξ, x)  when x ∈C(ξ)  -- stochastic constraints

f ν (ξ, x) =
1
ν

f (ξ l , x) if  x ∈C(ξ l )( )l=1

ν∑    (typically)

∞ otherwise    ( ~ SAA of optimisation problems)

⎧
⎨
⎪

⎩⎪

Question:  Do the f ν (ξ, ·) epi-converge to E f (ξ,i ){ }  P-a.s.?

                 does xν ∈argmin f ν ⇒v x
* ∈arg min E f (ξ, x){ } P-a.s.?

Random lsc functions

Eνf →e Ef a.s., Eνf(x) = 1
ν

�ν
l=1 f(ξ

l, x)
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LLN Theorem
f : Ξ× E → , locally inf-integrable random lsc function�
ξ, ξ1, . . . ,

�
are iid Ξ-valued random variables. Then,

Eνf = ν{f(ξ, · ) = 1
ν

�ν
l=1 f(ξ

l, · ) →e Ef = {f(ξ, · }

which means ε-argminEνf ⇒v ε-argminEf , ∀ ε ≥ 0

Ef unique minimizer, εν-argminEνf →→ argminEf as εν �0.

SAA-applies without ‘any’ restrictions

loc.inf-integrable:
�
inf{f(ξ, ·)

�� (x, δ)} > −∞ for some δ > 0,

irrelevant in applications
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Ergodic Theorem

beyond LLN

(E, d) Polish, (Ξ,A, P ) & A P -complete
f : Ξ× E → a random lsc function, locally inf-integrable
ϕ : Ξ → Ξ ergodic measure preserving transformation. Then,

1
ν

�ν
l=1 f

�
ϕl(ξ, · )

�
→e Ef a.s.

allows for stationary rather than iid samples.

Application: “samples” coming from dynamical systems,
time series, SDE, etc.
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Wood Prices Chile 
Building Scenario Tree
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Lumber & Pulp Prices
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Volume: Lumber Prices
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Volume: Lumber Prices
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Modeling the price process
~ geometric Brownian motion

dp(t) = µ(υ − p(t))dt +σ dw(t)p(t), p(0) = p0 , t ≥ 0,
mean reversion 

p(t) = p0 exp[−(µ + 1
2 σ

2)t +σw(t)]+ µυ er(t ,s )

0

t

∫ ds

with

r(t, s) = −[µ + 1
2 σ

2](t − s) +σ(w(t) − w(s))
Approximation:       E µ er(t ,s )

0

t

∫ ds{ } = 1− e−µt (small)

p(t) = υ(1− e−µt)+ p0 exp[(−µ − 1
2 σ

2 )t +σw(t)], t ≥ 0
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Estimating: coefficients
lumber and pulp prices

use only data info 1988-2009(7), price 
at time 0: now

mean reversion: υ=average 1988-now, 
µ=drift: 45 years

estimating variance: σ, based on 
deviation from the historical data from 
“expected (solution) path”
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Lumber Price Process
E{p(t)} = υ + (p0 −υ)e−µt ,  Var{p(t)} = (p0e

−µt)2(eσ 2 t −1).
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Lumber Price Process
E{p(t)} = υ + (p0 −υ)e−µt ,  Var{p(t)} = (p0e

−µt)2(eσ 2 t −1).
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Distribution of p(t)
Since 

p(t) is “displaced” log-gaussian,  
displacement:

       

E{p(t)} = υ + (p0 −υ)e−µt ,  Var{p(t)} = (p0e
−µt)2(eσ 2 t −1)

υ(1− e−µt )

p(t) = Zt +υ(1− e−µt)
dZt (s) = (sτ 2π )−1e−(ln s−θ )2 /2τ 2 , s ∈(0,∞),

θ = ln p0 − µt, τ = σ t .
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Density p(t), t = 1,...,20
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Density p(t), t = 1,...,20
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Cumulative p(t) - lumber
numerical integration
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Building Scenario Tree
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Building Scenario Tree

1.154

0.95 1.02 1.07 1.15 1.23 1.35

0.05 0.1 0.15 0.3 0.25 0.15
probabilities

Breakpoints:  [0   0.05   0.15   0.3   0.6   0.85   1]

time = 0 (now)

time = 1

Wednesday, July 4, 2012



from Stage 1 to Stage 2

leading dynamics (solution of SDE equation)       

 

                                      and fix percentiles 
breaks for the cumulative distribution of                                                                                                                

for example, [0  0.1  0.25  0.8  1] ⇒              

4 scenarios points

p(t) = υ(1− e−µ(t− ti ))+ p(ti )exp[(−µ − 1
2 σ

2 )(t − ti ) +σw(t − ti )], t ≥ ti
where ti  = time at stage 1,    p(ti ) =  price at one of the (stage 1)-nodes

te =  time at stage 2 (end point)
p(te )
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Scenario tree: Extended
time = 0 time = 1 time = 2
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Scenario tree: Extended
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Scenario tree: Extended
time = 0 time = 1 time = 2
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Duality Theory
Stochastic Programs
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Linear ... with Recourse

min �c, x�+
�

ξ∈Ξ�pξ, yξ�
KKT-mutipliers: u and ṽξ, ∀ξ ∈ Ξ (finite number)

.

Recourse: Two-stage, random RHS

min �c, x�+ {�q, yξ�}
such that Ax = b

Tx + Wyξ = dξ, ∀ ξ ∈ Ξ

x ≥ 0, yξ ≥ 0, ∀ ξ ∈ Ξ

KKT-mutipliers: u and ṽξ, ∀ξ ∈ Ξ
Discrete case: |Ξ| finite, (large scale) linear program

.
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A b

c

T

T

T
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p q p q p q p q

d

d

d
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1

1

1

1W

1

2 2

2 L

L LL

Discrete distribution
Extensive Formulation
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Dual Recourse Problem
discrete distribution

Dual I: Two-stage, random RHS

max �b, u�+
�

ξ∈Ξ
�dξ, ṽξ�

such that A�u+
�

ξ∈Ξ
T�ṽξ ≤ c

W�ṽξ ≤ q, ∀ ξ ∈ Ξ

Dual II: Two-stage, random RHS program

“normalization” of dual variables: ṽξ = pξvξ
d = (dξ, ξ ∈ Ξ), v = (vξ, ξ ∈ Ξ)

max �b, u�+ {�d,v�}
such that A�u+T� {v} ≤ c

W�v ≤ q

.
Wednesday, July 4, 2012



Duality: Arbitrary Distribution 
just RHSGuessing ... intelligently(?)

d = (dξ, ξ ∈ Ξ), v = (vξ, ξ ∈ Ξ)

max �b, u�+ {�d,v�}
such that A�u+T� {v} ≤ c

W�v ≤ q (∼ W�vξ ≤ q, ∀ ξ ∈ Ξ)

.
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Duality: Arbitrary Distribution 
just RHSGuessing ... intelligently(?)

d = (dξ, ξ ∈ Ξ), v = (vξ, ξ ∈ Ξ)

max �b, u�+ {�d,v�}
such that A�u+T� {v} ≤ c

W�v ≤ q (∼ W�vξ ≤ q, ∀ ξ ∈ Ξ)

.
If correct, approximation via discretization,

yields approximation solution, epi-convergence?
yields (approximating) multipliers → correct multipliers.

.

Wednesday, July 4, 2012



A simple example
minx such that x ≥ 1

x− yξ ≥ ξ, yξ ≥ 0, ξ uniform on [1, 2]

Approximation of ξ: split [0, 1] in ν intervals, length 1/ν
and pick in each interval the mid point (= conditional expectation)
with probability 1/ν = pνk for ξk = 1 + (2k − 1)/2ν

Approximating l.p.: minx such that x ≥ 1, yk ≥ 0, ∀ k
x− yk ≥ ξk, k = 1, . . . , ν

.

Dual Variables:
u∗ = 0, (vνk)

∗ = 0, k = 1, . . . , ν − 1, (vνν )
∗ = ν

.
Optimal Solution: x∗ = 2− 1/ν =⇒ infeasible!
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Refined discretization:
associated KKT-multipliers
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Duality Scheme(s)!
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Convex duality scheme
min f, f : E →

embeded in a family of perturbed problems:

�
minx F (u, x), u ∈ U

�
with F (0, x) = f(x)

Example: f = {f0(ξ, x, yξ)}
such that f1i(x) ≤ u1i, f2i(ξ, x, yξ) ≤ u2i(ξ), i ∈ I1 ∪ I2

1. u1i ∈ , u2i ∈ =⇒ distribution contamination

2. u1i ∈ , u2i ∈ L∞(Ξ,A, P ), bounded fcns

3. u1i ∈ , u2i ∈ D(Ξ), space of “distributions”

Lagrangian: L
�
(x, y), (u1, u2)

�
=�

f0(ξ, x, yξ) +
�

i∈I1
u1ifi(x) +

�
i∈I2

�u2i(ξ), f2i(ξ, x, yξ)�
�
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Constraint Nonanticipativity

K2 =
�
x
�� ∀ ξ ∈ Ξ, ∃ yξ such that f2i(ξ, x, yξ) ≤ 0, i ∈ I2

�

relatively complete recourse: K2 ⊃ K1 =
�
x
�� f1i(x) ≤ 0, i ∈ I1

�

u1i ∈ , uti ∈ L∞(Ξ,A, P ), bounded At-measurable fcns
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Constraint Nonanticipativity

K2 =
�
x
�� ∀ ξ ∈ Ξ, ∃ yξ such that f2i(ξ, x, yξ) ≤ 0, i ∈ I2

�

relatively complete recourse: K2 ⊃ K1 =
�
x
�� f1i(x) ≤ 0, i ∈ I1

�

filtration
�
At

�T

t=1
(T -stage program)

ξ �→ K(ξ) =
�
x = (x1, . . . , xT )

�� fti(ξ, x) ≤ 0, i ∈ It, t = 1, . . . , T
�

Nonanticipativity feasibility: for all t,

ξ �→ Kt(ξ) =
� →

x t
�� ∃x = (

→
x t, xt+1, . . . , xT ) ∈ K(ξ)

�
is At-measurable

u1i ∈ , uti ∈ L∞(Ξ,A, P ), bounded At-measurable fcns
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Constraint Nonanticipativity

K2 =
�
x
�� ∀ ξ ∈ Ξ, ∃ yξ such that f2i(ξ, x, yξ) ≤ 0, i ∈ I2

�

relatively complete recourse: K2 ⊃ K1 =
�
x
�� f1i(x) ≤ 0, i ∈ I1

�

filtration
�
At

�T

t=1
(T -stage program)

ξ �→ K(ξ) =
�
x = (x1, . . . , xT )

�� fti(ξ, x) ≤ 0, i ∈ It, t = 1, . . . , T
�

Nonanticipativity feasibility: for all t,

ξ �→ Kt(ξ) =
� →

x t
�� ∃x = (

→
x t, xt+1, . . . , xT ) ∈ K(ξ)

�
is At-measurable

two-stage: ∀ ξ ∈ Ξ, ∀x ∈ K1,
∃ yξ such that f2,i(ξ, x, yξ) ≤ 0, i ∈ I2
K1(ξ) = K1 is A0 = {0,Ξ}-measurable.

u1i ∈ , uti ∈ L∞(Ξ,A, P ), bounded At-measurable fcns
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Duality Theorem
minEf(x) = {f(ξ, x)}, x ∈ Na =

�
x
��xt : ξ → ny , At-measurable

�
,

f : Ξ× N → , N = n1 + · · ·+ nT , random convex lsc function

Theorem. Under ‘classical’ . . and nonanticipative feasibility, there ex-
ist multipliers w ∈ L1(Ξ,A, P ; N ) with {wt

��At} = 0 for all t such that x∗

is optimal ⇐⇒
P -almost surely x∗(ξ) ∈ argminx f(ξ, x)
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Duality Theorem
minEf(x) = {f(ξ, x)}, x ∈ Na =

�
x
��xt : ξ → ny , At-measurable

�
,

f : Ξ× N → , N = n1 + · · ·+ nT , random convex lsc function

Theorem. Under ‘classical’ . . and nonanticipative feasibility, there ex-
ist multipliers w ∈ L1(Ξ,A, P ; N ) with {wt

��At} = 0 for all t such that x∗

is optimal ⇐⇒
P -almost surely x∗(ξ) ∈ argminx f(ξ, x)

Theorem 2. Under ‘classical’ . . there exist multipliers
w ∈ L1(Ξ,A, P ; N )⊗ S(Ξ,A, P ; N ) with “ ”{wt

��At} = 0 for all t
such that x∗ is optimal ⇐⇒ P -almost surely x∗(ξ) ∈ argminx f(ξ, x)

induced constraints
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