Approximating Stochastic Programs

Roger J-B Wets
Mathematics, University of California, Davis

Preliminaries (unavoidable)

\square

$$
\begin{aligned}
& \min f_{0}(x), x \in S \\
& \quad S=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0, i=1 \rightarrow s, f_{i}(x)=0, i=s+1 \rightarrow m\right\}
\end{aligned}
$$

$\min f$ on $E, \quad f=f_{0}+l_{S}(x), \quad l_{S}$ indicator function of S

$\min f$ on $E, \quad f=f_{0}+v_{S}(x), \quad \imath_{S}$ indicator function of S
epi $f=\{(x, \alpha) \in E \times R \mid f(x) \leq \alpha\}, \quad \operatorname{lev}_{\alpha} f=\{x \in E \mid f(x) \leq \alpha\}$

1. pointwise convergence \nRightarrow convergence of minimizers

$$
f^{\nu} \equiv 1 \text { except } f(1 / \nu)=0, f^{\nu} \vec{p} f \equiv 1
$$

2. uniform convergence implies convergence of minimizers but applies rarely, never when constraints depend on ν

1. pointwise convergence \nRightarrow convergence of minimizers

$$
f^{\nu} \equiv 1 \text { except } f(1 / \nu)=0, f^{\nu} \vec{p} f \equiv 1
$$

2. uniform convergence implies convergence of minimizers but applies rarely, never when constraints depend on ν

1. pointwise convergence \nRightarrow convergence of minimizers

$$
f^{\nu} \equiv 1 \text { except } f(1 / \nu)=0, f^{\nu} \vec{p} f \equiv 1
$$

2. uniform convergence implies convergence of minimizers but applies rarely, never when constraints depend on ν
$\operatorname{dom} f$

1. pointwise convergence \nRightarrow convergence of minimizers

$$
f^{\nu} \equiv 1 \text { except } f(1 / \nu)=0, f^{\nu} \vec{p} f \equiv 1
$$

2. uniform convergence implies convergence of minimizers but applies rarely, never when constraints depend on ν
$\operatorname{dom} f$

Epi-convergence

$f^{\nu} \xrightarrow{e} f$ if for all $x \in E$,

1. $\forall x^{\nu} \rightarrow x, \liminf _{\nu} f^{\nu}\left(x^{\nu}\right) \geq f(x)$
2. $\exists x^{\nu} \rightarrow x, \lim \sup _{\nu} f^{\nu}\left(x^{\nu}\right) \leq f(x)$
"Geometrically": epi $f^{\nu} \rightarrow \operatorname{epi} f$ (later)
Pointwise:
$\liminf _{\nu} f^{\nu}(x) \geq f(x), \quad \lim \sup _{\nu} f^{\nu}(x) \leq f(x)$
Continuous: $\forall x^{\nu} \rightarrow x$,
$\liminf _{\nu} f^{\nu}\left(x^{\nu}\right) \geq f(x), \quad \lim \sup _{\nu} f^{\nu}\left(x^{\nu}\right) \leq f(x)$

Epi-Convergence \Rightarrow

$A^{v}=\arg \min f^{v}, \varepsilon-A^{v}: \varepsilon>0$ approximate minimizers, $A=\arg \min f$ of limit problem, $\quad \varepsilon-A$ approx. minimizers
A^{v} v-converges to A, written $A^{v} \Rightarrow_{v} A$, if
a) $\bar{x} \in$ cluster-points $\left\{x^{v} \in A^{v}\right\} \Rightarrow \bar{x} \in A$
b) $\bar{x} \in A \Rightarrow \exists \varepsilon_{v} \searrow 0, \mathrm{x}^{v} \in \varepsilon_{v}-A^{v} \rightarrow \bar{x}$

Epi-Convergence \Rightarrow

$A^{v}=\arg \min f^{v}, \varepsilon-A^{v}: \varepsilon>0$ approximate minimizers,
$A=\arg \min f$ of limit problem, $\quad \varepsilon-A$ approx. minimizers
A^{v} v-converges to A, written $A^{v} \Rightarrow_{v} A$, if
a) $\bar{x} \in$ cluster-points $\left\{x^{v} \in A^{v}\right\} \Rightarrow \bar{x} \in A$
b) $\bar{x} \in A \Rightarrow \exists \varepsilon_{v} \searrow 0, \mathrm{x}^{v} \in \varepsilon_{v}-A^{v} \rightarrow \bar{x}$
$f^{\nu} \xrightarrow{e} f$ implies $\varepsilon-A^{\nu} \Rightarrow_{v} \varepsilon-A, \forall \varepsilon \geq 0$ A unique minimizer, $\varepsilon^{\nu}-A^{\nu} \rightrightarrows A$ as $\varepsilon^{\nu} \searrow 0$.

Mathematical Framework: Random Isc functions \&

Expectation Functionals

 $\widehat{E f}=\mathbb{E}\{f(\xi, \cdot)\}$
$f: \Xi \times E \circlearrowleft \overline{\mathbb{R}}$, random 1sc function, $f(\xi, x)=f_{0}(\xi, x)$ when $x \in C(\xi)$
$E \subset \mathcal{M}\left(\Xi, \mathcal{A} ; \mathbb{R}^{n}\right): \mathcal{L}^{p}\left(\Xi, \mathcal{A}, P ; \mathbb{R}^{n}\right), \ldots$
others: $C\left((\Xi, \tau) ; \mathbb{R}^{n}\right)$,Orlicz, Sobolev, 1 sc-fcns (E)

$$
\begin{aligned}
E f(x) & =\int_{\Xi} f(\xi, x(\xi)) P(d \xi)=\mathbb{E}\{f(\xi, x(\xi))\} \\
& =\infty \text { whenever } \int_{\Xi} f_{+}(\xi, x(\xi)) P(d \xi)=\infty
\end{aligned}
$$

$E f: E \rightarrow \overline{\mathbb{R}}$ always defined

Regression: (E is not a linear space)
$\min \left\{\int_{y \in \mathbb{R}} \int_{x \in[0,1]^{n}} \phi(y-h(x)) P(d x, d y) \mid h \in \operatorname{lsc}-\mathrm{fcns}\left(\mathbb{R}^{n}\right) \cap \mathcal{H}\right\}$
\mathcal{H} shape restrictions (convex, unimodal, ...)
$f: \Xi \times E \rightarrow \overline{\mathbb{R}}$ a random lsc function, ξ values in (Ξ, \mathcal{A}, P)
(a) Isc (lower semicontinuous) in $x,(\forall \xi \in \Xi) ; x$ decision variable (b) (ξ, x)-measurable $\quad\left(\mathcal{A} \times B_{E}\right)$-measurable recall: $f(\xi, x)=f_{0}(\xi, x)$ when $x \in C(\xi)$-- stochastic constraints $f^{v}(\xi, x)=\left\{\begin{array}{l}\frac{1}{v} \sum_{l=1}^{v}\left(f\left(\xi^{l}, x\right) \text { if } \mathrm{x} \in C\left(\xi^{l}\right)\right) \quad \text { (typically) } \\ \infty \text { otherwise } \quad(\sim \text { SAA of optimisation problems) }\end{array}\right.$ Question: Do the $f^{\nu}(\xi, \cdot)$ epi-converge to $\mathbb{E}\{f(\xi, \cdot)\} P$-a.s.? does $x^{\nu} \in \arg \min f^{\nu} \Rightarrow_{v} x^{*} \in \arg \min \mathbb{E}\{f(\xi, x)\} P$-a.s.?
$f: \Xi \times E \rightarrow \overline{\mathbb{R}}$ a random lsc function, ξ values in (Ξ, \mathcal{A}, P)
(a) Isc (lower semicontinuous) in $x,(\forall \xi \in \Xi) ; x$ decision variable
(b) (ξ, x)-measurable $\quad\left(\mathcal{A} \times B_{E}\right)$-measurable
recall: $f(\xi, x)=f_{0}(\xi, x)$ when $x \in C(\xi)$-- stochastic constraints
$f^{v}(\xi, x)=\left\{\begin{array}{l}\frac{1}{v} \sum_{l=1}^{v}\left(f\left(\xi^{l}, x\right) \text { if } \mathrm{x} \in C\left(\xi^{l}\right)\right) \quad \text { (typically) } \\ \infty \text { otherwise } \quad(\sim \text { SAA of optimisation problems) }\end{array}\right.$
Question: Do the $f^{v}(\xi, \cdot)$ epi-converge to $\mathbb{E}\{f(\xi, \cdot)\} P$-a.s.? does $x^{\nu} \in \arg \min f^{\nu} \Rightarrow_{v} x^{*} \in \arg \min \mathbb{E}\{f(\xi, x)\} P$-a.s.?

Law of Large Numbers for random lsc functions \sim LLN for Stochastic Optimization Problems.
$f: \Xi \times E \rightarrow \overline{\mathbb{R}}$ a random lsc function, ξ values in (Ξ, \mathcal{A}, P)
(a) Isc (lower semicontinuous) in $x,(\forall \xi \in \Xi) ; x$ decision variable (b) (ξ, x)-measurable $\quad\left(\mathcal{A} \times B_{E}\right)$-measurable recall: $f(\xi, x)=f_{0}(\xi, x)$ when $x \in C(\xi)$-- stochastic constraints $f^{v}(\xi, x)=\left\{\begin{array}{l}\frac{1}{v} \sum_{l=1}^{v}\left(f\left(\xi^{l}, x\right) \text { if } \mathrm{x} \in C\left(\xi^{l}\right)\right) \quad \text { (typically) } \\ \infty \text { otherwise } \quad(\sim \text { SAA of optimisation problems) }\end{array}\right.$ Question: Do the $f^{\nu}(\xi, \cdot)$ epi-converge to $\mathbb{E}\{f(\xi, \cdot)\} P$-a.s.? does $x^{\nu} \in \arg \min f^{\nu} \Rightarrow_{v} x^{*} \in \arg \min \mathbb{E}\{f(\xi, x)\} P$-a.s.?

$$
E^{\nu} f \xrightarrow{e} E f \text { a.s., } \quad E^{\nu} f(x)=\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\boldsymbol{\xi}^{l}, x\right)
$$

LLN Theorem

$f: \Xi \times E \rightarrow \overline{\mathbb{R}}$, locally inf-integrable random lsc function $\left\{\boldsymbol{\xi}, \boldsymbol{\xi}^{1}, \ldots,\right\}$ are iid Ξ-valued random variables. Then,

$$
E^{\nu} f=\mathbb{E}^{\nu}\left\{f(\boldsymbol{\xi}, \cdot)=\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\boldsymbol{\xi}^{l}, \cdot\right) \xrightarrow{e} E f=\mathbb{E}\{f(\boldsymbol{\xi}, \cdot\}\right.
$$

which means ε-argmin $E^{\nu} f \Rightarrow_{v} \varepsilon$-argmin $E f, \forall \varepsilon \geq 0$
$E f$ unique minimizer, $\varepsilon^{\nu}-\operatorname{argmin} E^{\nu} f \rightrightarrows \operatorname{argmin} E f$ as $\varepsilon^{\nu} \searrow 0$.

SAA-applies without 'any' restrictions

loc.inf-integrable: $\int \inf \{f(\xi, \cdot) \mid \mathbb{B}(x, \delta)\}>-\infty$ for some $\delta>0$, irrelevant in applications

Ergodic Theorem

(E, d) Polish, $(\Xi, \mathcal{A}, P) \& \mathcal{A} P$-complete
$f: \Xi \times E \rightarrow \overline{\mathbb{R}}$ a random lsc function, locally inf-integrable
$\varphi: \Xi \rightarrow \Xi$ ergodic measure preserving transformation. Then,

$$
\frac{1}{\nu} \sum_{l=1}^{\nu} f\left(\varphi^{l}(\boldsymbol{\xi}, \cdot)\right) \xrightarrow{e} E f \quad \text { a.s. }
$$

allows for stationary rather than iid samples.
Application: "samples" coming from dynamical systems, time series, SDE, etc.

beyond LLN

Wood Prices Chile Building Scenario Tree

Chilean UF: Timber Prices

Volume: Lumber Prices

Trozas Aserrable- Volume

$$
\begin{aligned}
& d p(t)=\mu(v-p(t)) d t+\sigma d w(t) p(t), \quad p(0)=p_{0}, \quad t \geq 0, \\
& \quad \text { mean reversion }
\end{aligned}
$$

$p(t)=p_{0} \exp \left[-\left(\mu+\frac{1}{2} \sigma^{2}\right) t+\sigma w(t)\right]+\mu v \int_{0}^{t} e^{r(t, s)} d s$
with
$r(t, s)=-\left[\mu+\frac{1}{2} \sigma^{2}\right](t-s)+\sigma(w(t)-w(s))$
Approximation: $\quad E\left\{\mu \int_{0}^{t} e^{r(t, s)} d s\right\}=1-e^{-\mu t}$ (small)
$p(t)=v\left(1-e^{-\mu t}\right)+p_{0} \exp \left[\left(-\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma w(t)\right], t \geq 0$

- use only data info 1988-2009(7), price at time 0: now
- mean reversion: $u=$ average 1988-now, $\mu=$ drift: 45 years

ㅁ estimating variance: σ, based on deviation from the historical data from "expected (solution) path"

Wednesday, July 4, 2012

$$
E\{p(t)\}=v+\left(p^{0}-v\right) e^{-\mu t}, \quad \operatorname{Var}\{p(t)\}=\left(p_{0} e^{-\mu t}\right)^{2}\left(e^{\sigma^{2} t}-1\right)
$$

Distribution of $p(t)$

ㅁ Since $E\{p(t)\}=v+\left(p^{0}-v\right) e^{-\mu t}, \operatorname{Var}\{p(t)\}=\left(p_{0} e^{-\mu t}\right)^{2}\left(e^{\sigma^{2} t}-1\right)$

- $\mathrm{p}(\mathrm{t})$ is "displaced" log-gaussian, displacement: $v\left(1-e^{-\mu}\right)$
$\square p(t)=Z_{t}+v\left(1-e^{-\mu t}\right)$

$$
\begin{aligned}
& d_{Z_{t}}(s)=(s \tau \sqrt{2 \pi})^{-1} e^{-(\ln s-\theta)^{2} / 2 \tau^{2}}, \quad s \in(0, \infty), \\
& \theta=\ln p_{0}-\mu t, \quad \tau=\sigma \sqrt{t}
\end{aligned}
$$

Wednesday, July 4, 2012

Cumulative $p(t)$ - lumber numerical inteqration

Percentíles: $0,0.05,0.15,0.3,0.6,0.85,1$

- leading dynamics (solution of SDE equation)

口 $p(t)=v\left(1-e^{-\mu\left(t-t_{i}\right)}\right)+p\left(t_{i}\right) \exp \left[\left(-\mu-\frac{1}{2} \sigma^{2}\right)\left(t-t_{i}\right)+\sigma w\left(t-t_{i}\right)\right], t \geq t_{i}$ where $t_{i}=$ time at stage $1, \quad p\left(t_{i}\right)=$ price at one of the (stage 1)-nodes

- $t_{e}=$ time at stage 2 (end point) and fix percentiles breaks for the cumulative distribution of $p\left(t_{e}\right)$
- for example, $\left[\begin{array}{lllll}0 & 0.1 & 0.25 & 0.8 & 1\end{array}\right] \Rightarrow$

4 scenarios points

Scenario tree: Extended
time $=0$
time $=1$
time $=2$

Wednesday, July 4, 2012

Scenario tree: Extended

time $=2$

Wednesday, July 4, 2012

WMMMMWMWMMMHMMM
Scenario tree: Extended

$$
\text { time }=0
$$

time $=1$
time $=2$

Wednesday, July 4, 2012

Duality Theory Stochastic Programs

Recourse: Two-stage, random RHS

$$
\begin{aligned}
& \min \langle c, x\rangle+\mathbb{E}\left\{\left\langle q, y_{\xi}\right\rangle\right\} \\
& \text { such that } \\
& \quad A x=b \\
& \quad T x+W y_{\xi}=d_{\xi}, \quad \forall \xi \in \Xi \\
& x \geq 0, \quad y_{\xi} \geq 0, \quad \forall \xi \in \Xi
\end{aligned}
$$

KKT-mutipliers: u and $\tilde{v}_{\xi}, \forall \xi \in \Xi$
Discrete case: $|\Xi|$ finite, (large scale) linear program
$\min \langle c, x\rangle+\sum_{\xi \in \Xi}\left\langle p_{\xi}, y_{\xi}\right\rangle$
KKT-mutipliers: u and $\tilde{v}_{\xi}, \forall \xi \in \Xi$ (finite number)

c	p, q	$\mathrm{p} \mathrm{p}_{2} \mathrm{q}$	\square	\square	pq

A

$\begin{aligned} & \text { Discrete distribution } \\ & \text { Extensive Formulation }\end{aligned}$
a_{1}
d_{2}

Dual I: Two-stage, random RHS

$$
\begin{gathered}
\max \langle b, u\rangle+\sum_{\xi \in \Xi}\left\langle d_{\xi}, \tilde{v}_{\xi}\right\rangle \\
\text { such that } A^{\top} u+\sum_{\xi \in \Xi} T^{\top} \tilde{v}_{\xi} \leq c \\
W^{\top} \tilde{v}_{\xi} \leq q, \quad \forall \xi \in \Xi
\end{gathered}
$$

Dual II: Two-stage, random RHS program
"normalization" of dual variables: $\tilde{v}_{\xi}=p_{\xi} v_{\xi}$

$$
\boldsymbol{d}=\left(d_{\xi}, \xi \in \Xi\right), \quad \boldsymbol{v}=\left(v_{\xi}, \xi \in \Xi\right)
$$

$$
\max \langle b, u\rangle+\mathbb{E}\{\langle\boldsymbol{d}, \boldsymbol{v}\rangle\}
$$

such that $A^{\top} u+T^{\top} \mathbb{E}\{\boldsymbol{v}\} \leq c$

$$
W^{\top} \boldsymbol{v} \leq q
$$

Duality: Arbitrary Distribution
 Guessing ... intelligently(?)

$$
\boldsymbol{d}=\left(d_{\xi}, \xi \in \Xi\right), \quad \boldsymbol{v}=\left(v_{\xi}, \xi \in \Xi\right)
$$

$\max \langle b, u\rangle+\mathbb{E}\{\langle\boldsymbol{d}, \boldsymbol{v}\rangle\}$
such that $A^{\top} u+T^{\top} \mathbb{E}\{\boldsymbol{v}\} \leq c$

$$
W^{\top} \boldsymbol{v} \leq q \quad\left(\sim W^{\top} v_{\xi} \leq q, \forall \xi \in \Xi\right)
$$

$$
\boldsymbol{d}=\left(d_{\xi}, \xi \in \Xi\right), \quad \boldsymbol{v}=\left(v_{\xi}, \xi \in \Xi\right)
$$

$\max \langle b, u\rangle+\mathbb{E}\{\langle\boldsymbol{d}, \boldsymbol{v}\rangle\}$
such that $A^{\top} u+T^{\top} \mathbb{E}\{\boldsymbol{v}\} \leq c$

$$
W^{\top} \boldsymbol{v} \leq q\left(\sim W^{\top} v_{\xi} \leq q, \forall \xi \in \Xi\right)
$$

If correct, approximation via discretization, yields approximation solution, epi-convergence? yields (approximating) multipliers \rightarrow correct multipliers.

A simple example

$\min x$ such that $x \geq 1$

$$
x-y_{\xi} \geq \xi, y_{\xi} \geq 0, \quad \boldsymbol{\xi} \text { uniform on }[1,2]
$$

Approximation of $\boldsymbol{\xi}$: split $[0,1]$ in ν intervals, length $1 / \nu$ and pick in each interval the mid point ($=$ conditional expectation) with probability $1 / \nu=p_{k}^{\nu}$ for $\xi_{k}=1+(2 k-1) / 2 \nu$

Approximating l.p.: $\min x$ such that $x \geq 1, y_{k} \geq 0, \forall k$

$$
x-y_{k} \geq \xi_{k}, k=1, \ldots, \nu
$$

Dual Variables:

$$
u^{*}=0, \quad\left(v_{k}^{\nu}\right)^{*}=0, k=1, \ldots, \nu-1, \quad\left(v_{\nu}^{\nu}\right)^{*}=\nu
$$

Optimal Solution: $\quad x *=2-1 / \nu \quad \Longrightarrow \quad$ infeasible!

Refined discretization: associated KKT-multipliers

Duality Scheme(s)!

$\min f, \quad f: E \rightarrow \overline{\mathbb{R}}$
embeded in a family of perturbed problems:
$\left\{\min _{x} F(u, x), u \in U\right\}$ with $F(0, x)=f(x)$
Example: $f=\mathbb{E}\left\{f_{0}\left(\boldsymbol{\xi}, x, y_{\boldsymbol{\xi}}\right)\right\}$ such that $f_{1 i}(x) \leq u_{1 i}, f_{2 i}\left(\boldsymbol{\xi}, x, y_{\xi}\right) \leq u_{2 i}(\boldsymbol{\xi}), \quad i \in I_{1} \cup I_{2}$

1. $u_{1 i} \in \mathbb{R}, u_{2 i} \in \mathbb{R} \Longrightarrow$ distribution contamination
2. $u_{1 i} \in \mathbb{R}, u_{2 i} \in \mathcal{L}^{\infty}(\Xi, \mathcal{A}, P)$, bounded fcns
3. $u_{1 i} \in \mathbb{R}, u_{2 i} \in \mathcal{D}(\Xi)$, space of "distributions"

Lagrangian: $\quad L\left((x, y),\left(u_{1}, u_{2}\right)\right)=$
$\mathbb{E}\left\{f_{0}\left(\boldsymbol{\xi}, x, y_{\boldsymbol{\xi}}\right)+\sum_{i \in I_{1}} u_{1 i} f_{i}(x)+\sum_{i \in I_{2}}\left\langle u_{2 i}(\boldsymbol{\xi}), f_{2 i}\left(\boldsymbol{\xi}, x, y_{\boldsymbol{\xi}}\right)\right\rangle\right\}$
$u_{1 i} \in \mathbb{R}, u_{t i} \in \mathcal{L}^{\infty}(\Xi, \mathcal{A}, P)$, bounded \mathcal{A}_{t}-measurable fcns
$K_{2}=\left\{x \mid \forall \xi \in \Xi, \exists y_{\xi}\right.$ such that $\left.f_{2 i}\left(\xi, x, y_{\xi}\right) \leq 0, i \in I_{2}\right\}$
relatively complete recourse: $K_{2} \supset K_{1}=\left\{x \mid f_{1 i}(x) \leq 0, i \in I_{1}\right\}$
filtration $\left\{\mathcal{A}_{t}\right\}_{t=1}^{T}(T$-stage program $)$

$$
\xi \mapsto K(\xi)=\left\{x=\left(x_{1}, \ldots, x_{T}\right) \mid f_{t i}(\xi, x) \leq 0, i \in I_{t}, t=1, \ldots, T\right\}
$$

Nonanticipativity feasibility: for all t,

$$
\xi \mapsto K_{t}(\xi)=\left\{\vec{x}^{t} \mid \exists x=\left(\vec{x}^{t}, x_{t+1}, \ldots, x_{T}\right) \in K(\xi)\right\} \text { is } \mathcal{A}_{t} \text {-measurable }
$$

$u_{1 i} \in \mathbb{R}, u_{t i} \in \mathcal{L}^{\infty}(\Xi, \mathcal{A}, P)$, bounded \mathcal{A}_{t}-measurable fcns
$K_{2}=\left\{x \mid \forall \xi \in \Xi, \exists y_{\xi}\right.$ such that $\left.f_{2 i}\left(\xi, x, y_{\xi}\right) \leq 0, i \in I_{2}\right\}$
relatively complete recourse: $K_{2} \supset K_{1}=\left\{x \mid f_{1 i}(x) \leq 0, i \in I_{1}\right\}$
filtration $\left\{\mathcal{A}_{t}\right\}_{t=1}^{T}(T$-stage program $)$

$$
\xi \mapsto K(\xi)=\left\{x=\left(x_{1}, \ldots, x_{T}\right) \mid f_{t i}(\xi, x) \leq 0, i \in I_{t}, t=1, \ldots, T\right\}
$$

Nonanticipativity feasibility: for all t,

$$
\xi \mapsto K_{t}(\xi)=\left\{\vec{x}^{t} \mid \exists x=\left(\vec{x}^{t}, x_{t+1}, \ldots, x_{T}\right) \in K(\xi)\right\} \text { is } \mathcal{A}_{t} \text {-measurable }
$$

two-stage: $\forall \xi \in \Xi, \forall x \in K_{1}$,
$\exists y_{\xi}$ such that $f_{2, i}\left(\xi, x, y_{\xi}\right) \leq 0, i \in I_{2}$ $K_{1}(\xi)=K_{1}$ is $\mathcal{A}_{0}=\{0, \Xi\}$-measurable.
$\min E f(x)=\mathbb{E}\{f(\xi, x)\}, x \in \mathcal{N}_{a}=\left\{x \mid x_{t}: \xi \rightarrow \mathbb{R}^{n_{y}}, \mathcal{A}_{t}\right.$-measurable $\}$,

$$
f: \Xi \times \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}, N=n_{1}+\cdots+n_{T}, \text { random convex lsc function }
$$

Theorem. Under 'classical' $\mathbb{C} . \mathbb{Q}$. and nonanticipative feasibility, there exist multipliers $w \in \mathcal{L}^{1}\left(\Xi, \mathcal{A}, P ; \mathbb{R}^{N}\right)$ with $\mathbb{E}\left\{w_{t} \mid \mathcal{A}_{t}\right\}=0$ for all t such that x^{*} is optimal \Longleftrightarrow

$$
P \text {-almost surely } x^{*}(\boldsymbol{\xi}) \in \operatorname{argmin}_{x} f(\boldsymbol{\xi}, x)
$$

$\min E f(x)=\mathbb{E}\{f(\xi, x)\}, x \in \mathcal{N}_{a}=\left\{x \mid x_{t}: \xi \rightarrow \mathbb{R}^{n_{y}}, \mathcal{A}_{t}\right.$-measurable $\}$,

$$
f: \Xi \times \mathbb{R}^{N} \rightarrow \overline{\mathbb{R}}, N=n_{1}+\cdots+n_{T}, \text { random convex lsc function }
$$

Theorem. Under 'classical' $\mathbb{C} . \mathbb{Q}$. and nonanticipative feasibility, there exist multipliers $w \in \mathcal{L}^{1}\left(\Xi, \mathcal{A}, P ; \mathbb{R}^{N}\right)$ with $\mathbb{E}\left\{w_{t} \mid \mathcal{A}_{t}\right\}=0$ for all t such that x^{*} is optimal \Longleftrightarrow

$$
P \text {-almost surely } x^{*}(\boldsymbol{\xi}) \in \operatorname{argmin}_{x} f(\boldsymbol{\xi}, x)
$$

Theorem 2. Under 'classical' $\mathbb{C} . \mathbb{Q}$. there exist multipliers $w \in \mathcal{L}^{1}\left(\Xi, \mathcal{A}, P ; \mathbb{R}^{N}\right) \otimes \mathcal{S}\left(\Xi, \mathcal{A}, P ; \mathbb{R}^{N}\right)$ with " $\mathbb{E} "\left\{w_{t} \mid \mathcal{A}_{t}\right\}=0$ for all t such that x^{*} is optimal $\Longleftrightarrow P$-almost surely $x^{*}(\boldsymbol{\xi}) \in \operatorname{argmin}_{x} f(\boldsymbol{\xi}, x)$ induced constraints

