Approximating Stochastic Programs

Roger J-B Wets Mathematics, University of California, Davis

Optimization problem

 $\min f_0(x), x \in S$, $S = \left\{ x \in \mathbb{R}^n \middle| f_i(x) \le 0, \ i = 1 \to s, \ f_i(x) = 0, \ i = s + 1 \to m \right\}$ S

min f on E, $f = f_0 + \iota_S(x)$, ι_S indicator function of S

min f on E, $f = f_0 + \iota_S(x)$, ι_S indicator function of S epi $f = \{(x, \alpha) \in E \times R | f(x) \le \alpha\}$, $\text{lev}_{\alpha} f = \{x \in E | f(x) \le \alpha\}$

dom f

One-sided uniform convergence

variational epiconvergence

Epi-Convergence

 $f^{\nu} \xrightarrow{e} f$ if for all $x \in E$,

- 1. $\forall x^{\nu} \to x$, $\liminf_{\nu} f^{\nu}(x^{\nu}) \geq f(x)$
- 2. $\exists x^{\nu} \to x$, $\limsup_{\nu} f^{\nu}(x^{\nu}) \leq f(x)$

"Geometrically": epi $f^{\nu} \to \text{epi } f$ (later)

Pointwise:

$$\liminf_{\nu} f^{\nu}(x) \ge f(x), \quad \limsup_{\nu} f^{\nu}(x) \le f(x)$$

Continuous:
$$\forall x^{\nu} \to x$$
,

$$\lim \inf_{\nu} f^{\nu}(x^{\nu}) \ge f(x), \quad \lim \sup_{\nu} f^{\nu}(x^{\nu}) \le f(x)$$

Epi-Convergence >

 $A^{\nu} = \arg \min f^{\nu}$, $\varepsilon - A^{\nu}$: $\varepsilon > 0$ approximate minimizers, $A = \arg \min f$ of limit problem, $\varepsilon - A$ approx. minimizers

 A^{ν} v-converges to A, written $A^{\nu} \Rightarrow_{\nu} A$, if

- a) $\overline{x} \in \text{cluster-points}\{x^v \in A^v\} \Rightarrow \overline{x} \in A$
- b) $\overline{x} \in A \Rightarrow \exists \ \varepsilon_v \searrow 0, x^v \in \varepsilon_v A^v \to \overline{x}$

Epi-Convergence >

 $A^{\nu} = \arg \min f^{\nu}$, $\varepsilon - A^{\nu}$: $\varepsilon > 0$ approximate minimizers, $A = \arg \min f$ of limit problem, $\varepsilon - A$ approx. minimizers

 A^{ν} v-converges to A, written $A^{\nu} \Rightarrow_{\nu} A$, if

- a) $\overline{x} \in \text{cluster-points}\{x^{\nu} \in A^{\nu}\} \Rightarrow \overline{x} \in A$
- b) $\bar{x} \in A \Rightarrow \exists \ \varepsilon_v \searrow 0, x^v \in \varepsilon_v A^v \to \bar{x}$

$$f^{\nu} \xrightarrow{e} f$$
 implies $\varepsilon - A^{\nu} \Rightarrow_{v} \varepsilon - A, \forall \varepsilon \geq 0$
A unique minimizer, $\varepsilon^{\nu} - A^{\nu} \Rightarrow A$ as $\varepsilon^{\nu} \searrow 0$.

 $(\inf f > -\infty)$

Expectation Functionals

$$\widehat{Ef} = \mathbb{E}\{f(\boldsymbol{\xi},\cdot)\}$$

 $f:\Xi\times E \longrightarrow \overline{\mathbb{R}}$ random lsc function, $f(\xi,x)=f_0(\xi,x)$ when $x\in C(\xi)$ $E\subset \mathcal{M}(\Xi,\mathcal{A};\mathbb{R}^n): \mathcal{L}^p(\Xi,\mathcal{A},P;\mathbb{R}^n),\ldots$ others: $C\left((\Xi,\tau);\mathbb{R}^n\right)$,Orlicz, Sobolev, lsc-fcns(E)

$$Ef(x) = \int_{\Xi} f(\xi, x(\xi)) P(d\xi) = \mathbb{E} \{ f(\xi, x(\xi)) \}$$
$$= \infty \text{ whenever } \int_{\Xi} f_{+}(\xi, x(\xi)) P(d\xi) = \infty$$

 $Ef: E \to \overline{\mathbb{R}}$ always defined

Regression: (E is not a linear space)

$$\min \left\{ \int_{y \in \mathbb{R}} \int_{x \in [0,1]^n} \phi(y - h(x)) P(dx, dy) \, \middle| \, h \in \text{lsc-fcns}(\mathbb{R}^n) \cap \mathcal{H} \right\}$$

$$\mathcal{H} \text{ shape restrictions (convex, unimodal, ...)}$$

Random Isc functions

 $f:\Xi\times E\to\overline{\mathbb{R}}$ a random lsc function, ξ values in (Ξ,\mathcal{A},P)

- (a) lsc (lower semicontinuous) in x, $(\forall \xi \in \Xi)$; x decision variable
- (b) (ξ, x) -measurable $(\mathcal{A} \times B_E)$ -measurable

recall: $f(\xi, x) = f_0(\xi, x)$ when $x \in C(\xi)$ -- stochastic constraints

$$f^{\nu}(\xi, x) = \begin{cases} \frac{1}{\nu} \sum_{l=1}^{\nu} \left(f(\xi^{l}, x) \text{ if } x \in C(\xi^{l}) \right) \text{ (typically)} \\ \infty \text{ otherwise } (\sim \text{SAA of optimisation problems)} \end{cases}$$

Question: Do the $f^{\nu}(\xi, \cdot)$ epi-converge to $\mathbb{E}\{f(\xi, \cdot)\}$ P-a.s.? does $x^{\nu} \in \arg\min f^{\nu} \Rightarrow_{\nu} x^{*} \in \arg\min \mathbb{E}\{f(\xi, x)\}$ P-a.s.?

Random Isc functions

 $f:\Xi\times E\to\overline{\mathbb{R}}$ a random lsc function, ξ values in (Ξ,\mathcal{A},P)

- (a) lsc (lower semicontinuous) in x, $(\forall \xi \in \Xi)$; x decision variable
- (b) (ξ, x) -measurable $(\mathcal{A} \times B_E)$ -measurable

recall: $f(\xi, x) = f_0(\xi, x)$ when $x \in C(\xi)$ -- stochastic constraints

$$f^{v}(\xi, x) = \begin{cases} \frac{1}{v} \sum_{l=1}^{v} \left(f(\xi^{l}, x) \text{ if } x \in C(\xi^{l}) \right) \text{ (typically)} \\ \infty \text{ otherwise } (\sim \text{SAA of optimisation problems)} \end{cases}$$

Question: Do the $f^{\nu}(\xi, \cdot)$ epi-converge to $\mathbb{E}\{f(\xi, \cdot)\}$ P-a.s.? does $x^{\nu} \in \arg\min f^{\nu} \Rightarrow_{\nu} x^{*} \in \arg\min \mathbb{E}\{f(\xi, x)\}$ P-a.s.?

Law of Large Numbers for random lsc functions \sim LLN for Stochastic Optimization Problems.

Random Isc functions

 $f:\Xi\times E\to\overline{\mathbb{R}}$ a random lsc function, ξ values in (Ξ,\mathcal{A},P)

- (a) lsc (lower semicontinuous) in x, $(\forall \xi \in \Xi)$; x decision variable
- (b) (ξ, x) -measurable $(\mathcal{A} \times B_E)$ -measurable

recall: $f(\xi, x) = f_0(\xi, x)$ when $x \in C(\xi)$ -- stochastic constraints

$$f^{v}(\xi, x) = \begin{cases} \frac{1}{v} \sum_{l=1}^{v} \left(f(\xi^{l}, x) \text{ if } x \in C(\xi^{l}) \right) \text{ (typically)} \\ \infty \text{ otherwise } (\sim \text{SAA of optimisation problems)} \end{cases}$$

Question: Do the $f^{\nu}(\xi, \cdot)$ epi-converge to $\mathbb{E}\{f(\xi, \cdot)\}$ P-a.s.? does $x^{\nu} \in \arg\min f^{\nu} \Rightarrow_{\nu} x^{*} \in \arg\min \mathbb{E}\{f(\xi, x)\}$ P-a.s.?

$$E^{\nu} f \xrightarrow{e} Ef \ a.s., \quad E^{\nu} f(x) = \frac{1}{\nu} \sum_{l=1}^{\nu} f(\xi^{l}, x)$$

LLN Theorem

 $f:\Xi\times E\to\overline{\mathbb{R}}$, locally inf-integrable random lsc function $\{\boldsymbol{\xi},\boldsymbol{\xi}^1,\ldots,\}$ are iid Ξ -valued random variables. Then,

$$E^{\nu}f = \mathbb{E}^{\nu}\{f(\boldsymbol{\xi}, \cdot) = \frac{1}{\nu} \sum_{l=1}^{\nu} f(\boldsymbol{\xi}^{l}, \cdot) \xrightarrow{e} Ef = \mathbb{E}\{f(\boldsymbol{\xi}, \cdot)\}$$

which means ε -argmin $E^{\nu}f \Rightarrow_{v} \varepsilon$ -argmin Ef, $\forall \varepsilon \geq 0$

Ef unique minimizer, ε^{ν} -argmin $E^{\nu}f \Rightarrow \operatorname{argmin} Ef$ as $\varepsilon^{\nu} \searrow 0$.

SAA-applies without 'any' restrictions

loc.inf-integrable: $\int \inf\{f(\xi,\cdot) \mid \mathbb{B}(x,\delta)\} > -\infty$ for some $\delta > 0$, irrelevant in applications

Ergodic Theorem

(E, d) Polish, (Ξ, A, P) & A P-complete $f: \Xi \times E \to \overline{\mathbb{R}}$ a random lsc function, locally inf-integrable $\varphi: \Xi \to \Xi$ ergodic measure preserving transformation. Then,

$$\frac{1}{\nu} \sum_{l=1}^{\nu} f(\varphi^{l}(\boldsymbol{\xi}, \cdot)) \stackrel{e}{\to} Ef \quad a.s.$$

allows for stationary rather than iid samples.

Application: "samples" coming from dynamical systems, time series, SDE, etc.

beyond LLN

Lumber & Pulp Prices

Volume: Lumber Prices

Volume: Lumber Prices

Modeling the price process

~ geometric Brownian motion

$$dp(t) = \mu(v - p(t))dt + \sigma dw(t)p(t), \quad p(0) = p_0, \quad t \ge 0,$$

mean reversion

$$p(t) = p_0 \exp\left[-\left(\mu + \frac{1}{2}\sigma^2\right)t + \sigma w(t)\right] + \mu v \int_0^t e^{r(t,s)} ds$$

with

$$r(t,s) = -\left[\mu + \frac{1}{2}\sigma^2\right](t-s) + \sigma\left(w(t) - w(s)\right)$$

Approximation: $E\left\{\mu\int_0^t e^{r(t,s)} ds\right\} = 1 - e^{-\mu t}$ (small)

$$p(t) = v(1 - e^{-\mu t}) + p_0 \exp[(-\mu - \frac{1}{2}\sigma^2)t + \sigma w(t)], \ t \ge 0$$

Estimating: coefficients lumber and pulp prices

- use only data info 1988-2009(7), price at time 0: now
- mean reversion: υ=average 1988-now,
 μ=drift: 45 years
- estimating variance: σ, based on deviation from the historical data from "expected (solution) path"

Lumber Price Process

$$E\{p(t)\} = v + (p^0 - v)e^{-\mu t}, \quad Var\{p(t)\} = (p_0 e^{-\mu t})^2 (e^{\sigma^2 t} - 1).$$

Lumber Price Process

$$E\{p(t)\} = \upsilon + (p^0 - \upsilon)e^{-\mu t}, \qquad Var\{p(t)\} = (p_0 e^{-\mu t})^2 (e^{\sigma^2 t} - 1).$$

Distribution of p(t)

- □ Since $E\{p(t)\} = v + (p^0 v)e^{-\mu t}$, $Var\{p(t)\} = (p_0e^{-\mu t})^2(e^{\sigma^2 t} 1)$
- p(t) is "displaced" log-gaussian, displacement: $v(1-e^{-\mu t})$
- $p(t) = Z_t + v(1 e^{-\mu t})$ $d_{Z_t}(s) = (s\tau\sqrt{2\pi})^{-1}e^{-(\ln s \theta)^2/2\tau^2}, \quad s \in (0, \infty),$ $\theta = \ln p_0 \mu t, \quad \tau = \sigma\sqrt{t}.$

Density p(t), t = 1,...,20

Density p(t), t = 1,...,20

Cumulative p(t) - lumber numerical integration

Building Scenario Tree

Percentiles: 0, 0.05, 0.15, 0.3, 0.6, 0.85, 1

Building Scenario Tree

Breakpoints: [0 0.05 0.15 0.3 0.6 0.85 1]

from Stage 1 to Stage 2

- leading dynamics (solution of SDE equation)
- $p(t) = v \left(1 e^{-\mu(t t_i)} \right) + p(t_i) \exp \left[\left(-\mu \frac{1}{2}\sigma^2 \right)(t t_i) + \sigma w(t t_i) \right], \ t \ge t_i$ where t_i = time at stage 1, $p(t_i)$ = price at one of the (stage 1)-nodes
- t_e = time at stage 2 (end point) and fix percentiles breaks for the cumulative distribution of $p(t_e)$
- □ for example, $[0\ 0.1\ 0.25\ 0.8\ 1] \Rightarrow$ 4 scenarios points

Scenario tree: Extended

$$time = 1$$

$$time = 2$$

Scenario tree: Extended

Scenario tree: Extended

Linear ... with Recourse

Recourse: Two-stage, random RHS

$$\min \langle c, x \rangle + \mathbb{E}\{\langle q, y_{\xi} \rangle\}$$
such that $Ax = b$

$$Tx + Wy_{\xi} = d_{\xi}, \ \forall \xi \in \Xi$$

$$x \ge 0, \ y_{\xi} \ge 0, \ \forall \xi \in \Xi$$

KKT-mutipliers: u and \tilde{v}_{ξ} , $\forall \xi \in \Xi$ Discrete case: $|\Xi|$ finite, (large scale) linear program

min
$$\langle c, x \rangle + \sum_{\xi \in \Xi} \langle p_{\xi}, y_{\xi} \rangle$$

KKT-mutipliers: u and \tilde{v}_{ξ} , $\forall \xi \in \Xi$ (finite number)

Dual Recourse Problem

discrete distribution

Dual I: Two-stage, random RHS

$$\max \langle b, u \rangle + \sum_{\xi \in \Xi} \langle d_{\xi}, \tilde{v}_{\xi} \rangle$$
 such that $A^{\top}u + \sum_{\xi \in \Xi} T^{\top}\tilde{v}_{\xi} \leq c$
$$W^{\top}\tilde{v}_{\xi} \leq q, \ \forall \, \xi \in \Xi$$

Dual II: Two-stage, random RHS program

"normalization" of dual variables:
$$\tilde{v}_{\xi} = p_{\xi}v_{\xi}$$

 $\mathbf{d} = (d_{\xi}, \xi \in \Xi), \quad \mathbf{v} = (v_{\xi}, \xi \in \Xi)$

$$\max \langle b, u \rangle + \mathbb{E} \{ \langle \boldsymbol{d}, \boldsymbol{v} \rangle \}$$

such that $A^{\top}u + T^{\top}\mathbb{E} \{ \boldsymbol{v} \} \leq c$
$$W^{\top}\boldsymbol{v} \leq q$$

Duality: Arbitrary Distribution just RHS

Guessing ... intelligently(?)

$$d = (d_{\xi}, \xi \in \Xi), \quad v = (v_{\xi}, \xi \in \Xi)$$

$$\max \langle b, u \rangle + \mathbb{E} \{ \langle \boldsymbol{d}, \boldsymbol{v} \rangle \}$$

such that
$$A^{\top}u + T^{\top}\mathbb{E}\{\boldsymbol{v}\} \leq c$$

$$W^{\top} \boldsymbol{v} \le q \ (\sim W^{\top} v_{\xi} \le q, \ \forall \, \xi \in \Xi)$$

Duality: Arbitrary Distribution just RHS

Guessing ... intelligently(?)

$$d = (d_{\xi}, \xi \in \Xi), \quad v = (v_{\xi}, \xi \in \Xi)$$

$$\max \langle b, u \rangle + \mathbb{E} \{ \langle \boldsymbol{d}, \boldsymbol{v} \rangle \}$$

such that
$$A^{\top}u + T^{\top}\mathbb{E}\{\boldsymbol{v}\} \leq c$$

$$W^{\top} \boldsymbol{v} \leq q \ (\sim W^{\top} v_{\xi} \leq q, \ \forall \, \xi \in \Xi)$$

If correct, approximation via discretization, yields approximation solution, epi-convergence? yields (approximating) multipliers \rightarrow correct multipliers.

A simple example

min x such that $x \ge 1$ $x - y_{\xi} \ge \xi$, $y_{\xi} \ge 0$, ξ uniform on [1, 2]

Approximation of $\boldsymbol{\xi}$: split [0,1] in ν intervals, length $1/\nu$ and pick in each interval the mid point (= conditional expectation) with probability $1/\nu = p_k^{\nu}$ for $\xi_k = 1 + (2k-1)/2\nu$

Approximating l.p.: $\min x$ such that $x \ge 1, \ y_k \ge 0, \forall k$ $x - y_k \ge \xi_k, \ k = 1, \dots, \nu$

Dual Variables:

$$u^* = 0, \quad (v_k^{\nu})^* = 0, \ k = 1, \dots, \nu - 1, \quad (v_{\nu}^{\nu})^* = \nu$$

Optimal Solution: $x* = 2 - 1/\nu \implies \text{infeasible!}$

Refined discretization: associated KKT-multipliers

Convex duality scheme

 $\min f, \ f: E \to \overline{\mathbb{R}}$ embedded in a family of perturbed problems:

$$\{ \min_x F(u, x), u \in U \}$$
 with $F(0, x) = f(x)$

Example: $f = \mathbb{E}\{f_0(\boldsymbol{\xi}, x, y_{\boldsymbol{\xi}})\}$ such that $f_{1i}(x) \leq u_{1i}, \ f_{2i}(\boldsymbol{\xi}, x, y_{\boldsymbol{\xi}}) \leq u_{2i}(\boldsymbol{\xi}), \ i \in I_1 \cup I_2$

- 1. $u_{1i} \in \mathbb{R}, u_{2i} \in \mathbb{R} \implies \text{distribution contamination}$
- 2. $u_{1i} \in \mathbb{R}, u_{2i} \in \mathcal{L}^{\infty}(\Xi, \mathcal{A}, P)$, bounded fcns
- 3. $u_{1i} \in \mathbb{R}$, $u_{2i} \in \mathcal{D}(\Xi)$, space of "distributions"

Lagrangian:
$$L((x,y),(u_1,u_2)) = \mathbb{E}\left\{f_0(\boldsymbol{\xi},x,y_{\boldsymbol{\xi}}) + \sum_{i\in I_1} u_{1i} f_i(x) + \sum_{i\in I_2} \langle u_{2i}(\boldsymbol{\xi}), f_{2i}(\boldsymbol{\xi},x,y_{\boldsymbol{\xi}})\rangle\right\}$$

Constraint Nonanticipativity

 $u_{1i} \in \mathbb{R}, u_{ti} \in \mathcal{L}^{\infty}(\Xi, \mathcal{A}, P), \text{ bounded } \mathcal{A}_t\text{-measurable fcns}$

$$K_2 = \{x \mid \forall \xi \in \Xi, \exists y_{\xi} \text{ such that } f_{2i}(\xi, x, y_{\xi}) \leq 0, i \in I_2\}$$

relatively complete recourse: $K_2 \supset K_1 = \{x \mid f_{1i}(x) \leq 0, i \in I_1\}$

Constraint Nonanticipativity

 $u_{1i} \in \mathbb{R}, u_{ti} \in \mathcal{L}^{\infty}(\Xi, \mathcal{A}, P), \text{ bounded } \mathcal{A}_t\text{-measurable fcns}$

$$K_2 = \{x \mid \forall \xi \in \Xi, \exists y_{\xi} \text{ such that } f_{2i}(\xi, x, y_{\xi}) \leq 0, i \in I_2\}$$

relatively complete recourse: $K_2 \supset K_1 = \{x \mid f_{1i}(x) \leq 0, i \in I_1\}$

filtration $\{A_t\}_{t=1}^T$ (*T*-stage program) $\xi \mapsto K(\xi) = \{x = (x_1, \dots, x_T) \mid f_{ti}(\xi, x) \leq 0, i \in I_t, t = 1, \dots, T\}$ Nonanticipativity feasibility: for all t, $\xi \mapsto K_t(\xi) = \{ \vec{x}^t \mid \exists x = (\vec{x}^t, x_{t+1}, \dots, x_T) \in K(\xi) \}$ is \mathcal{A}_t -measurable

Constraint Nonanticipativity

 $u_{1i} \in \mathbb{R}, u_{ti} \in \mathcal{L}^{\infty}(\Xi, \mathcal{A}, P), \text{ bounded } \mathcal{A}_t\text{-measurable fcns}$

$$K_2 = \{x \mid \forall \xi \in \Xi, \exists y_{\xi} \text{ such that } f_{2i}(\xi, x, y_{\xi}) \leq 0, i \in I_2\}$$

relatively complete recourse: $K_2 \supset K_1 = \{x \mid f_{1i}(x) \leq 0, i \in I_1\}$

filtration
$$\{A_t\}_{t=1}^T$$
 (*T*-stage program)
 $\xi \mapsto K(\xi) = \{x = (x_1, \dots, x_T) \mid f_{ti}(\xi, x) \leq 0, i \in I_t, t = 1, \dots, T\}$
Nonanticipativity feasibility: for all t ,
 $\xi \mapsto K_t(\xi) = \{ \overrightarrow{x}^t \mid \exists x = (\overrightarrow{x}^t, x_{t+1}, \dots, x_T) \in K(\xi) \}$ is \mathcal{A}_t -measurable

two-stage:
$$\forall \xi \in \Xi, \forall x \in K_1$$
,
 $\exists y_{\xi} \text{ such that } f_{2,i}(\xi, x, y_{\xi}) \leq 0, i \in I_2$
 $K_1(\xi) = K_1 \text{ is } \mathcal{A}_0 = \{0, \Xi\}\text{-measurable.}$

Duality Theorem

min $Ef(x) = \mathbb{E}\{f(\xi, x)\}, x \in \mathcal{N}_a = \{x \mid x_t : \xi \to \mathbb{R}^{n_y}, \mathcal{A}_t\text{-measurable }\},$ $f: \Xi \times \mathbb{R}^N \to \overline{\mathbb{R}}, N = n_1 + \dots + n_T, \text{ random convex lsc function}$

Theorem. Under 'classical' $\mathbb{C}.\mathbb{Q}$. and nonanticipative feasibility, there exist multipliers $w \in \mathcal{L}^1(\Xi, \mathcal{A}, P; \mathbb{R}^N)$ with $\mathbb{E}\{w_t \mid \mathcal{A}_t\} = 0$ for all t such that x^* is optimal \iff

P-almost surely $x^*(\boldsymbol{\xi}) \in \operatorname{argmin}_x f(\boldsymbol{\xi}, x)$

Duality Theorem

min
$$Ef(x) = \mathbb{E}\{f(\xi, x)\}, x \in \mathcal{N}_a = \{x \mid x_t : \xi \to \mathbb{R}^{n_y}, \mathcal{A}_t\text{-measurable }\},$$

 $f: \Xi \times \mathbb{R}^N \to \overline{\mathbb{R}}, N = n_1 + \dots + n_T, \text{ random convex lsc function}$

Theorem. Under 'classical' $\mathbb{C}.\mathbb{Q}$. and nonanticipative feasibility, there exist multipliers $w \in \mathcal{L}^1(\Xi, \mathcal{A}, P; \mathbb{R}^N)$ with $\mathbb{E}\{w_t \mid \mathcal{A}_t\} = 0$ for all t such that x^* is optimal \iff

P-almost surely $x^*(\xi) \in \operatorname{argmin}_x f(\xi, x)$

Theorem 2. Under 'classical' $\mathbb{C}.\mathbb{Q}$. there exist multipliers $w \in \mathcal{L}^1(\Xi, \mathcal{A}, P; \mathbb{R}^N) \otimes \mathcal{S}(\Xi, \mathcal{A}, P; \mathbb{R}^N)$ with " \mathbb{E} " $\{w_t \mid \mathcal{A}_t\} = 0$ for all t such that x^* is optimal \iff P-almost surely $x^*(\xi) \in \operatorname{argmin}_x f(\xi, x)$

induced constraints