

Unit commitment

Progressive Hedging: dealing with binary variables \& Chance Constraints

Roger J-B Wets
Mathematics, University of California, Davis

FERC

Federal Energy Regulatory Commission

RTO

In the US is an organization that is responsible for moving electricity over large interstate areas; coordinates, controls and monitors an electricity transmission grid that is larger with much higher voltages than the typical power company's distribution grid.

Is an organization formed at the direction or recommendation of the FERC, in the areas where an ISO is established, it coordinates, controls and monitors the operation of the electrical power system, usually within a single US State, but sometimes encompassing multiple states.

ISO New England Inc. (ISO-NE) is an independent, non-profit RTO, serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont. Its Board of Directors and its over 400 employees have no financial interest or ties to any company doing business in the region's wholesale electricity marketplace.

- nuclear energy
- hydro-power
- thermal plants (coal, oil, shale oil, bio, rubish, ...)
- gas turbines (natural gas, from "cracking')
- renewables (wind, solar, ..., ocean waves)

different characteristics

Uncertainties

- WEATHER: demand \& supply (especially renewables)
- industrial-commercial environment (demand)
- seasonal, day of the week, time of the day
- contingencies: transmission lines, generators

Merket tine ine

Day ahead:

Prepare and submit DA bids

1100

Clear DA market

 using SCUC/SCEDRebidding
for RAC

Short history of ISO-management techniques

- RT: deterministic optimization with LMP (dual variables associated with demand(8) constraints).
- SCUC/SCED: Lagrangian relaxation with conservative reliability constraints
- SCUC/SCED: deterministic MIP with conservative RUT
- ARPA-"E (project): "take into account uncertainty"

A collection of sto-programs

- DA-SCUC/SCED unit commitment bínaríes
- DA-RAC rebidding assessment bidding (binaríes)
- DA-RUT - reliability commitments (spinning, N-1)
- RT - 3 min (real time adjustments) LMP's
- SCED2-3 or 4 hours schedule to foresee ramp ups/down, etc.
$D A=$ day ahead

Team composition:

SCUC/SCED model desigwers + optim. implementation: UCD (Woodruff + , Wets), sandia National Labs (Watson, silvia, sírola, Ross + sandia Livermore).

- Uncertainty description: UCD (Wets), lowa State (Ryan, Tesfatsion, Alipantis +)

Software prototype: Alstom (Kwok cheung +)
1SO-mentor: NE-ISO (Eugene Lítvinov + ...)
Market modifications: Iowa state (Tesfatsion, Alipantis + all)

Ref: Xingwang Ma, Haili Song, Mingguo Hong, Jie Wan, Yonghong Chen, Eugene Zak, "The Security-constrained Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized Energy and Ancillary Service Market,"
Proc. of the 2009 IEEE PES General Meeting.

Ref: Xingwang Ma, Haili Song, Mingguo Hong, Jie Wan, Yonghong Chen, Eugene Zak, "The Security-constrained Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized Energy and Ancillary Service Market,"
Proc. of the 2009 IEEE PES General Meeting.

Abstract Unit Commitment
production cost startup cost shutdown cost

$$
\text { Minimize } \sum_{k \in K} \sum_{j \in J} c_{j}^{P}(k)+c_{j}^{u}(k)+c_{j}^{d}(k) \quad \text { with }
$$

K time periods J generating units

$$
\begin{array}{r}
\text { power output } \sum_{j \in J} p_{j}(k)=\stackrel{\text { demand }}{D(k), \quad \forall k \in K} \\
\text { max power output } \sum_{j \in J} \bar{p}_{j}(k) \geq D(k)+R(k), \quad \forall k \in K \\
p_{j}(k), \bar{p}_{j}(k) \in \Pi, \quad \forall j \in J, \quad \forall k \in K
\end{array}
$$

$\underline{\Pi}$ region of feasible production, all generating units, all time periods. The specific nature of Π is model-dependent.

Abstract Unit Commitment
min. expectation (actually: risk measure) with penalties Minimize $\sum_{k \in K} \sum_{j \in J} c_{j}^{P}(k)+c_{j}^{u}(k)+c_{j}^{d}(k)^{k}$ K time periods J generating units

$$
\begin{array}{r}
\text { power output } \sum_{j \in J} p_{j}(k)=\stackrel{\text { demand }}{D(k), \quad \forall k \in K} \\
\text { max power output } \sum_{j \in J} \bar{p}_{j}(k) \geq D(k)+\begin{array}{r}
\text { spinning reserve } \\
\hline
\end{array}(k), \quad \forall k \in K \\
\\
p_{j}(k), \bar{p}_{j}(k) \in \underset{\sim}{\Pi}, \quad \forall j \in J, \quad \forall k \in K
\end{array}
$$

adjust node
balance eq'ns
$\underline{\Pi}$ region of feasible production, all generating units, all time periods. The specific nature of Π is model-dependent.
"Stochastic Version"
between a rock and a hard place

CPLEX-MIP: can handle a few scenarios
PH : not designed for binary vairables
0. w_{ξ}^{0} such that $\mathbb{E}\left\{w_{\xi}^{0}\right\}=0, v=0$. Pick $\rho>0$

Review

1. for all ξ :

$$
\begin{aligned}
&\left(x_{\xi}^{1, v}, x_{\xi}^{2, v}\right) \in \arg \min f\left(\xi ; x^{1}, x^{2}\right)+\left\langle w_{\xi}^{v}, x^{1}\right\rangle+\frac{\rho}{2}\left|x^{1}-\bar{x}^{1, v-1}\right|^{2} \\
& x^{1} \in C^{1} \subset \mathbb{R}^{n_{1}}, x^{2} \in C^{2}\left(\xi, x^{1}\right) \subset \mathbb{R}^{n_{2}} \\
& \text { 2. } \bar{x}^{1, v}= \mathbb{E}\left\{x_{\xi}^{1, v}\right\} . \text { Stop if }\left|x_{\xi}^{1, v}-\bar{x}^{1, v}\right|=0 \text { (approx.) } \\
& \text { otherwise } w_{\xi}^{v+1}=w_{\xi}^{v}+\rho\left[x_{\xi}^{1, v}-\bar{x}^{1, v}\right] \text {, return to 1. with } v=v+1
\end{aligned}
$$

Implementation: bundling, $\rho \rightarrow \rho_{s}, \ldots$
Watson \& Woodruff (Hart, Siirola, ...)
Chile: Sistemas Complejos de Ingeneria (L.F. Solari, ...)
\& Centro de Modelamiento Matematico
Carl Laird (Texas A\& M), Ryan Sarah (Iowa), ...

$\min \langle c, x\rangle+\sum_{\xi \in \Xi} p_{\xi}\left\langle q_{\xi}, y_{\xi}\right\rangle$ such that
$x \in C_{1}, y_{\xi} \in C_{2}(\xi, x) \forall \xi \in \Xi$
binary (integer) variables: some x 's, some y_{ξ} 's.

PH: binary variables

$\min \langle c, x\rangle+\sum_{\xi \in \Xi} p_{\xi}\left\langle q_{\xi}, y_{\xi}\right\rangle$ such that
$x \in C_{1}, y_{\xi} \in C_{2}(\xi, x) \forall \xi \in \Xi$
binary (integer) variables: some x 's, some y_{ξ} 's.
Choice of $\rho \rightarrow \rho_{j}$ depending on $c_{j},\left|x_{j}\right|, \ldots$
Variable Fixing, in particular binaries, $x_{j}(s)=$ constant (k iterations)
Variable Slamming: aggressive variable fixing $x_{j}(s) \approx \operatorname{constant}\left(\& c_{j} x_{j}(s)\right)$ "Sufficient" variable convergence \sim for small values of $c_{j} x_{j}(s)$

Termination criterion: variable slamming when $x_{j}^{\nu}(\xi)-x_{j}^{\nu+1}(\xi)$ small
Detecting cycling behavior: (simple) hashing scheme

PH: binary variables

$\min \langle c, x\rangle+\sum_{\xi \in \Xi} p_{\xi}\left\langle q_{\xi}, y_{\xi}\right\rangle$ such that
$x \in C_{1}, y_{\xi} \in C_{2}(\xi, x) \forall \xi \in \Xi$
binary (integer) variables: some x 's, some y_{ξ} 's.
Choice of $\rho \rightarrow \rho_{j}$ depending on $c_{j},\left|x_{j}\right|, \ldots$
Variable Fixing, in particular binaries, $x_{j}(s)=$ constant (k iterations)
Variable Slamming: aggressive variable fixing $x_{j}(s) \approx \operatorname{constant}\left(\& c_{j} x_{j}(s)\right)$ "Sufficient" variable convergence \sim for small values of $c_{j} x_{j}(s)$

Termination criterion: variable slamming when $x_{j}^{\nu}(\xi)-x_{j}^{\nu+1}(\xi)$ small
Detecting cycling behavior: (simple) hashing scheme
Enough variables fixed \Rightarrow clean up with CPLEX-MIP

Large Scale Chance-Constraints

$\min \langle c, x\rangle+\sum_{\xi \in \Xi} d_{\xi} p_{\xi}\left\langle q_{\xi}, y_{\xi}\right\rangle$
such that $\left(x, y_{\xi}\right) \in C_{\xi}, \quad \forall \xi \in\left[\mathcal{S}: d_{\xi}=1\right]$

$$
\sum_{\xi \in \mathcal{S}} p_{\xi} d_{\xi} \geq 1-\alpha, d_{\xi} \in\{0,1\}, \xi \in \mathcal{S}
$$

Aircraft sustainability problem: $\min \langle c, x\rangle$ such that

$$
\begin{array}{ll}
A_{\xi} s \geq b_{\xi} d_{\xi}, \quad \forall \xi \in \mathcal{S}, & x \in \mathbb{R}_{+} \\
d_{\xi} \in\{0,1\}, \forall \xi \in \mathcal{S}, \quad \sum_{\xi \in \mathcal{S}} d_{\xi} \geq(1-\alpha)|\mathcal{S}|
\end{array}
$$

x : inventory policy, resource levels, time-index variables $\left(>10^{6}\right)$ A_{ξ}, b_{ξ} discrete event simulation of operation sustainability $|\Xi| \approx 5 \cdot 10^{6}, \quad \alpha \sim 0.04$.

Relaxation:
$\min \langle c, x\rangle+\sum_{\xi \in \Xi} d_{\xi} p_{\xi}\left\langle q_{\xi}, y_{\xi}\right\rangle-\lambda\left(\sum_{\xi \in \mathcal{S}} p_{\xi} d_{\xi}-(1-\alpha)\right)$
such that $\left(x, y_{\xi}\right) \in C_{\xi}, \quad \forall \xi \in\left[\mathcal{S}: d_{\xi}=1\right]$

$$
d_{\xi} \in\{0,1\}, \xi \in \mathcal{S}
$$

for all $\lambda \geq 0$ yields a lower bound for the generalized C.C. problem

Relaxation:
$\min \langle c, x\rangle+\sum_{\xi \in \Xi} d_{\xi} p_{\xi}\left\langle q_{\xi}, y_{\xi}\right\rangle-\lambda\left(\sum_{\xi \in \mathcal{S}} p_{\xi} d_{\xi}-(1-\alpha)\right)$
such that $\left(x, y_{\xi}\right) \in C_{\xi}, \quad \forall \xi \in\left[\mathcal{S}: d_{\xi}=1\right]$

$$
d_{\xi} \in\{0,1\}, \xi \in \mathcal{S}
$$

for all $\lambda \geq 0$ yields a lower bound for the generalized C.C. problem
Ignoring coupling C.C., for $\xi \in \mathcal{S}$: let
$\left(\bar{x}_{\xi}, y_{\xi}\right) \in \operatorname{argmin}\langle c, x\rangle+\left\langle q_{\xi}, y\right\rangle$
such that $(x, y) \in C_{\xi}$

Relaxation:
$\min \langle c, x\rangle+\sum_{\xi \in \Xi} d_{\xi} p_{\xi}\left\langle q_{\xi}, y_{\xi}\right\rangle-\lambda\left(\sum_{\xi \in \mathcal{S}} p_{\xi} d_{\xi}-(1-\alpha)\right)$
such that $\left(x, y_{\xi}\right) \in C_{\xi}, \quad \forall \xi \in\left[\mathcal{S}: d_{\xi}=1\right]$

$$
d_{\xi} \in\{0,1\}, \xi \in \mathcal{S}
$$

for all $\lambda \geq 0$ yields a lower bound for the generalized C.C. problem
Ignoring coupling C.C., for $\xi \in \mathcal{S}$: let
$\left(\bar{x}_{\xi}, y_{\xi}\right) \in \operatorname{argmin}\langle c, x\rangle+\left\langle q_{\xi}, y\right\rangle$
such that $(x, y) \in C_{\xi}$
"Decomposed" calculation of d_{ξ} :
$\min \left\langle c, \bar{x}_{\xi}\right\rangle-\lambda d_{\xi}$
such that $\left(\bar{x}_{\xi}, y_{\xi}\right) \in C_{\xi}, \quad d_{\xi} \in\{0,1\}$

Relaxation:
$\min \langle c, x\rangle+\sum_{\xi \in \Xi} d_{\xi} p_{\xi}\left\langle q_{\xi}, y_{\xi}\right\rangle-\lambda\left(\sum_{\xi \in \mathcal{S}} p_{\xi} d_{\xi}-(1-\alpha)\right)$
such that $\left(x, y_{\xi}\right) \in C_{\xi}, \quad \forall \xi \in\left[\mathcal{S}: d_{\xi}=1\right]$

$$
d_{\xi} \in\{0,1\}, \xi \in \mathcal{S}
$$

for all $\lambda \geq 0$ yields a lower bound for the generalized C.C. problem
Ignoring coupling C.C., for $\xi \in \mathcal{S}$: let

$$
\left(\bar{x}_{\xi}, y_{\xi}\right) \in \operatorname{argmin}\langle c, x\rangle+\left\langle q_{\xi}, y\right\rangle
$$

such that $(x, y) \in C_{\xi}$
"Decomposed" calculation of d_{ξ} : $\min \left\langle c, \bar{x}_{\xi}\right\rangle-\lambda d_{\xi}$ such that $\left(\bar{x}_{\xi}, y_{\xi}\right) \in C_{\xi}, \quad d_{\xi} \in\{0,1\}$

Solution: let
$d_{\xi}=1$ when $\left\langle c, x_{\xi}\right\rangle+\left\langle q_{\xi}, y_{\xi}\right\rangle \leq \lambda$ otherwise $d_{\xi}=0$
assuming λ given
0. w_{ξ}^{0} such that $\mathbb{E}\left\{w_{\xi}^{0}\right\}=0, v=0$. Pick $\rho>0$

1. for all $\xi \in S$:

$$
\left(x_{\xi}^{v}, y_{\xi}^{v}\right) \in \arg \min \langle c, x\rangle+\langle q, y\rangle+\left\langle w_{\xi}^{v}, x\right\rangle+\frac{\rho}{2}\left|x^{1}-\bar{x}^{1, v-1}\right|^{2}, \quad(x, y) \in C_{\xi}
$$

2. if $\left\langle c, x_{\xi}^{v}\right\rangle+\left\langle q, y_{\xi}^{v}\right\rangle \leq \lambda$, set $d_{\xi}=1 \quad$ otherwise $d_{\xi}=0$
3. $\bar{x}^{v}=\left(\sum_{\xi \in S} p_{\xi} d_{\xi} x_{\xi}^{v}\right) /\left(\sum_{\xi \in S} p_{\xi} d_{\xi}\right)$ and

$$
w_{\xi}^{v+1}=w_{\xi}^{v}+\rho\left[x_{\xi}^{1, v}-\bar{x}^{1, v}\right]
$$

4. if $\left(1 / \sum_{\xi \in S} p_{\xi} d_{\xi}\right) \sum_{\xi \in S} p_{\xi} d_{\xi}\left|x_{\xi}^{v}-\bar{x}^{v}\right|>\varepsilon$; return to 1 . with $v=v+1$ otherwise Stop

Strategy: $\mathrm{PH} \rightarrow x_{\xi}^{*}, \lambda_{\max } \searrow \lambda^{*}$:
augmentation function (minimization of discontinuous functions):
limit function: $\quad \tau=\left\langle c, x_{\xi}\right\rangle+\left\langle q_{\xi}, y_{\xi}\right\rangle$

$$
\psi\left(\tau, \lambda, \lambda_{\max }\right)= \begin{cases}1 & \text { when } 0 \leq \tau \leq \lambda \\ 0 & \text { for } \lambda<\tau \leq \lambda_{\max }\end{cases}
$$

mollifiers: Beta densities on $[0, \Delta], \Delta \searrow 0$ as PH converges (gap)

$$
\varphi(\Delta ; z)= \begin{cases}\frac{1 / \Delta}{B(7,1.75)}(z / \Delta)^{6}(1-z / \Delta)^{0.75} & \text { when } z \in[0, \Delta] \\ 0 & \text { elsewhere }\end{cases}
$$

Beta function $B(a, b)=\int_{0}^{1} z^{a-1}(1-z)^{b-1} d z$
0. w_{ξ}^{0} such that $\mathbb{E}\left\{w_{\xi}^{0}\right\}=0, v=0$. Pick $\rho>0, \varepsilon>0, \Delta=1$

1. for all $\xi \in S:\left(v=0\right.$ ignore the proximal term, fix $\lambda_{\text {max }}$ an upper bound on cost fcn $)$

$$
\left(x_{\xi}^{v}, y_{\xi}^{v}\right) \in \arg \min \langle c, x\rangle+\langle q, y\rangle+\left\langle w_{\xi}^{v}, x\right\rangle+\frac{\rho}{2}\left|x^{1}-\bar{x}^{1, v-1}\right|^{2}, \quad(x, y) \in C_{\xi}
$$

2. $(\lambda, d)=\arg \min _{\lambda \leq \lambda_{\max }} \lambda$ such that for all $\xi \in S$,

$$
d_{\xi}=m\left(\Delta, \lambda_{\max } ;\left\langle c, x_{\xi}^{\nu-1}\right\rangle+\left\langle q_{\xi}, y_{\xi}\right\rangle, \lambda\right) \& \sum_{\xi \in S} p_{\xi} d_{\xi} \geq 1-\alpha
$$

3. $\bar{x}^{v}=\left(\sum_{\xi \in S} p_{\xi} d_{\xi} x_{\xi}^{v}\right) /\left(\sum_{\xi \in S} p_{\xi} d_{\xi}\right)$ and

$$
w_{\xi}^{v+1}=w_{\xi}^{v}+\rho\left[x_{\xi}^{1, v}-\bar{x}^{1, v}\right]
$$

4. if $\left(1 / \sum_{\xi \in S} p_{\xi} d_{\xi}\right) \sum_{\xi \in S} p_{\xi} d_{\xi}\left|x_{\xi}^{v}-\bar{x}^{v}\right|>\varepsilon$; return to 1 . with $v=v+1$ otherwise Stop

Unit Commitment Modeling Load

HOW to model stochastic processes? Example: load in Connecticut zone of ISO-NE

- Data from ISO-NE: For each of 8 load zones,
- Date
- Hour: 1-24
- Temperature: Dry bulb in deg. F
- Dew Point: Dew point temperature in deg. F
- Demand
- CT accounts for 27.7\% of electricity sales
- Consider data since 2006 after major market changes implemented by ISO-NE in 2005

Load Modeling Process

Example: load in Connecticut zone of ISO-NE

- Exploratory data analysis to determine major influences
- Data segmentation (excruciating data analysis)
- Multiple linear regression (MLR) within data segments to determine relationships
- Also experimented with:
- Time series transfer functions within data segments
- Semi-parametric time series approach
- Multiple linear regression on whole data set with dummy variables for hour, day-type and month

$\mathbb{N M U M N M U N U}$
 oad exploratory process

Hourly Load in A Week

Seasonal Trend of Hourly Load in Days

Weekly Pattern by Month, CT 2011

CT load vs. weather variables
Load vs. temperature (TMP) and
dew point temperature (DPT)

Load vs. TMP (DPT=19)

Load vs. DPT in Jan

Load vs. TMP in Mar

$6 / 12 / 2012$

Load vs. TMP in Jul

ARPA-e Project Review

Load vs. TMP (DPT=52)

- Data segmented by season, day-type and hour
- For each segment, fit MLR model on 2006-2010 training data set

$$
\begin{aligned}
L(k)= & \beta_{0}+\beta_{1} T M P(k)+\beta_{2} T M P(k)^{2}+\beta_{3} T M P(k)^{3}+\beta_{4} D P T(k)+\beta_{5} D P T(k)^{2}+\beta_{6} D P T(k)^{3} \\
& +\beta_{7} T M P(k-1)+\beta_{8} T M P(k-2)+\cdots+\beta_{14} T M P(k-8)+\beta_{15} 5 M P(k-24)+\beta_{16} T M P(k-168) \\
& +\beta_{17} D P T(k-1)+\beta_{18} D P T(k-2)+\cdots+\beta_{24} \operatorname{DPT}(k-8)+\beta_{25} D P T(k-24)+\beta_{26} D P T(k-168) \\
& +\varepsilon(k)
\end{aligned}
$$

- Average relative error on training set ~3\%
- Mean absolute percent error (MAPE) on 2011 test data ~6\%
- To do: replace $T M P(k-m), D P T(k-m)$ terms with $L(k-m)$; consider interactions $T M P(k)^{*} D P T(k)$
\Rightarrow Generating scenarios

