Summer Schools 2012, June 25 to July 6, 2012

STOCHASTIC OPTIMIZATION

Revenue Management Optimization in the Airline Industry

Thierry Vanhaverbeke (thvanhaverbeke@airfrance.fr)
Air France KLM - Operations Research
July 5, 2012

Revenue Management In an Airline

- What is Revenue Management? An introduction to Revenue Management Systems

Optimization in Revenue Management

- The OR techniques behind the screens

Revenue Management In an Airline

- What is revenue management? An introduction to Revenue Management Systems

A first example of Revenue Management

The value of a seat to go from Paris to Rome depends on the departure date

Your departure flight: Paris to Rome

Friday 18 November	Saturday 19 November	Sunday 20 November	Monday 21 November	Tuesday 22 November	Wednesday 23 November	Thursday 24 November
$\begin{aligned} & \text { From } \\ & 283 € \end{aligned}$	From 76 €	From 76 €	$\begin{aligned} & \text { From } \\ & 192 € \end{aligned}$	From 76 €	$\begin{aligned} & \text { From } \\ & 102 € \end{aligned}$	$\begin{aligned} & \text { From } \\ & 102 € \end{aligned}$

Your return flight: Rome to Paris

Sunday 27
November
From
$64 €$

Monday 28
November
From
$90 €$
0

Tuesday 29 November
From
$64 €$
\odot

Saturday 3
December
From
$\mathbf{6 4}$ €
0

$$
\text { Total amount including taxes for } 1 \text { Adult passenger(s) : }
$$

140 €

A second example of Revenue Management

 Even on the same flight prices may differ| Op. Flights | Depart | | Aircraft | Tango Plus | Latitude | $\frac{\text { Esecutive First }}{\text { Lowest }}$ | Executive First Flexible |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Direct Flights | | | | | | | |
| (3) AC871 | 13:25 | 14:50 | 77w | $\bigcirc ¢ 215$ | O€ 1125 | ¢ $£ 1556$ | $\bigcirc ¢ 2677$ |
| Cabin | | | | | | | |
| Any time change fee | | | | will apply | may apply | may apply | free |
| Same day airport change fee | | | | \$100 CAD | free | free | free |
| Miles accumulated | | | | 100\% | 100\% | 125\% | 150\% |
| Priority check-in | | | | | applies | applies | applies |
| Access to airport lounge | | | | \$65 CAD | \$55 CAD | applies | applies |

Products offered by Air Canada to go from Paris to Montreal on November 21 ${ }^{\text {st }}$
Source: Air Canada website, request made on November 11 ${ }^{\text {th }} 2011$

Revenue Management objective and means

Selling the right seat, to the right person at the right moment

Revenue Management determines product availability

- How many seats to protect on each flight, for each product, against what price, at each point in time?

To maximize network-wide revenue

- Protect seats for business passengers who bring high value and book late
- A connecting passenger brings a lower value than two non-stop passengers
- One connecting passenger brings another value than another connecting

Dealing with uncertainty

- Seats correspond to a fixed amount of perishable resources
- Demand is uncertain and each empty seat will be a loss of revenue (spoilage)

Operations Research models are needed to solve this complex problem

Global net profit of commercial airlines, in billions USD, and EBIT margin Source: ICAO data

Price elasticity in demand
By offering only one fare, some revenue potential is lost

AF/ KLim

Segmentation of demand
By offering several fares, revenue can be increased

59 arrivals (medium haul) \& 21 departures (long haul)

$$
I
$$

1319 possible Origin-Destination paths
\Rightarrow To which paths should seats be offered and by which quantity?

The bid-price is a financial quantity: it represents the minimum value required to book the next sellable seat on any given flight

Network	Deciding airline schedule: destinations, frequencies, timetable
Pricing	Defining fares and restriction
Distribution sales	Developing markets and sales
Revenue Mngt	Optimizing revenue obtained from the seat inventory

Reservation and inventory systems

Complex systems are needed to answer customer requests in real-time

Customers book through reservation systems (like www.airfrance.fr)

- These reservation systems must offer fares in a split second to every request

A centralized inventory system answers availability requests

15
 A Revenue Management System in an airline
 A quick overview

Optimization in Revenue Management

- The basic techniques behind the screens

A319 «La Navette»
Capacity $=142$ seats

Without RM: « $1^{\text {st }}$ come $1^{\text {st }}$ served » Revenue = $10224 €(142 \times 72)$

Simple RM: « Protect 40 Y seats »
Revenue $=16264 €(40 \times 223+102 \times 72)$

But in real life demand is not deterministic...

Sensitivity to restrictions:
\rightarrow Advance Purchase
\rightarrow Non Refundable Fare
\rightarrow Week-end Stay...
=> independant demand model

Demand distribution can be Poisson or Gaussian...

Demand unconstraining

Demand observation is incomplete because of class closures

21
 Optimization - static single-resource models

Main assumptions

- Demands for different classes are independent
- Demand for different classes arrives in non-overlapping intervals
- Demand arrives in order of increasing class prices
- Demand for given class does not depend on availability of other classes
- No group bookings

22

Littlewood's model

Optimal solution for two classes

Littlewood hypothesis

- Static single resources hypothesis
- Capacity is C
- There are two products with associated prices $p_{1}>p_{2}$ and demands $D_{1} \& D_{2}$

Littlewood's model

- Expected revenue of seat x if we sell it to class 1 is: $p_{1} . P\left(D_{1} \geq x\right)$
- So the protection level y_{1} for class 1 should be such that:
- $p_{2}<p_{1} \cdot P\left(D_{1} \geq y_{1}\right)$
- $p_{1} \cdot P\left(D_{1} \geq\left(y_{1}+1\right)\right) \leq p_{2}$

EMSRa heuristic

Computing seat protections using Littlewood's model

- Class 1 from class $2\left(\mathrm{~S}_{12}\right)$
- Class 1 from class $3\left(\mathrm{~S}_{13}\right)$ \& class 2 from class $3\left(\mathrm{~S}_{23}\right)$
- Class 1 from class $N\left(S_{1 N}\right) \& \ldots$ \& class $N-1$ from class $N\left(S_{N-1 N}\right)$

Sum protections and deduce booking limits

- $\mathrm{BL}_{1}=$ capacity
- $\mathrm{BL}_{2}=$ capacity $-\mathrm{S}_{12}$
- $\mathrm{BL}_{3}=$ capacity $-\left(\mathrm{S}_{13}+\mathrm{S}_{23}\right)$
- $B L_{N}=$ capacity $-\left(\sum_{(i<N)} S_{i N}\right)$

EMSRa is a heuristic

- It ignores the statistical averaging effect obtained by aggregating demand across classes

Define joint classes

- Class 1 mean m_{1} with standard deviation σ_{1} and fare F_{1}
- Classes 1 to $2 \quad m_{1.2}=m_{1}+m_{2} ; \sigma_{1.2}=\sqrt{ }\left(\sigma^{2}{ }_{1}+\sigma^{2}{ }_{2}\right) ; F_{1.2}=\left(m_{1} F_{1}+m_{2} F_{2}\right) / m_{12}$
- Classes 1 to N-1 $\quad m_{1 . . \mathrm{N}-1}=\sum_{(i<N)} m_{i} ; \sigma_{1 . . \mathrm{N}-1}=\sqrt{ }\left(\sum_{(i<N)} \sigma_{1}^{2}\right) ; F_{1 . . \mathrm{N}-1}=\left(\sum_{(i<N)} m_{i} F_{i}\right) / m_{1 . . \mathrm{N}-1}$

Computing seat protections using Littlewood's model

- Classes 1 to $k-1$ from class $k\left(S_{1 . k-1 / k}\right)$

Deduce booking limits

- $B L_{k}=$ capacity $-S_{1 . . k-1 / k}$

EMSRb is also a heuristic

- The weighted average revenue is an approximation

Optimization - network model

Definition of variables

$X_{j} \quad$ allocation of capacity for O\&D fare class j
$r_{j} \quad$ price for fare class j
$d_{j} \quad$ mean demand for fare class j
$c_{k} \quad$ capacity of leg k
$\partial_{j, k} \quad 1$ if O\&D fare class j uses leg k

Writing down the Linear Program

- Objective: maximize revenue
- Constraints: capacity and demand constraints

$$
\begin{array}{ccl}
\operatorname{Max} & \sum_{j} r_{j} * X_{j} \\
\text { s.t. } & \left\{\begin{array}{ccl}
\sum_{j \in k} \partial_{j, k} X_{j} \leq c_{k}, & \forall k & \begin{array}{l}
\text { The bid-prices are the dual values } \\
\text { corresponding to the capacity contraints }
\end{array} \\
0 \leq X_{j} \leq d_{j}, & \forall j
\end{array}\right.
\end{array}
$$

26

Dynamic Programming models for the single-resource problem
The decision are taken on very small time-frames

Time to departure is divided in many small time-frames

- such that the probability of having more than one request per time frame is negligible

The maximal expected revenue can be computed for each time-frame

- Say $\mathbf{V}_{\mathbf{t}}(\mathbf{x})$ is the maximal revenue the company can expect when there are \mathbf{x} seats remaining in time frame t
- As shown next, if $\mathrm{V}_{\mathrm{t}-1}(\mathrm{x})$ and $\mathrm{V}_{\mathrm{t}-1}(\mathrm{x}-1)$ are known, it is possible to compute $\mathrm{V}_{\mathrm{t}}(\mathrm{x})$. It is therefore possible to recursively compute $V_{t}(x)$ for any given (t, x).

The Bellman equation

Fare Class	P_{j} Prob. of request in $\mathrm{FC} \mathrm{i}, \mathrm{TF} \mathrm{t}$	Revenue if request is accepted
1	$\mathrm{P}_{1, \mathrm{t}}$	$\mathrm{P}_{\mathrm{j}, \mathrm{t}}$
f	$\mathrm{P}_{\mathrm{f}, \mathrm{t}}$	$\mathrm{P}_{0, \mathrm{t}}$
0	$V_{t}(x)=\sum_{f=1}^{N} p_{f, t} \max \left\{V_{t-1}(x-1)+r_{f} ; V_{t-1}(x)\right\}+p_{0, t} V_{t-1}(x)$	

$$
V_{t}(x)=\sum_{f=1}^{N} p_{f, t}{\max \left\{V_{t-1}(x-1)+r_{f} ; V_{t-1}(x)\right\}+p_{0, t} V_{t-1}(x)}_{\substack{\text { Probability of request } \\ \text { \& no arri } \\ \text { in class } f \text { at time } t}}^{\longrightarrow \text { Revenue for class } f}
$$

30
 Dynamic Programming models for the network problem The curse of dimensionality

Exact problems are hard to solve at network level...

$$
\begin{aligned}
& V(X, t)=\sum_{f=1}^{N} p_{f, t} \max \left\{V\left(X-A_{f}, t-1\right)+r_{f} ; V(X, t-1)\right\}+p_{0, t} V(X, t-1) \\
& \begin{array}{c}
\text { Vector of remaining } \\
\text { capacities on each } \\
\text { flight leg }
\end{array}
\end{aligned} \longrightarrow \begin{gathered}
\text { Flight leg utilization } \\
\text { of O\&D product } f
\end{gathered}
$$

...so decomposition heuristics are used instead.

1200 aircraft movements / day (2000 cabins) 300 seats per cabin 500 timeframes Problem size $=500$ * 300^{2000} states

Thank you for your attention

Thierry Vanhaverbeke
thvanhaverbeke@airfrance.fr

