

Summer Schools 2012, June 25 to July 6, 2012

STOCHASTIC OPTIMIZATION

Revenue Management Optimization in the Airline Industry

Thierry Vanhaverbeke (thvanhaverbeke@airfrance.fr) Air France KLM - Operations Research July 5, 2012

Revenue Management In an Airline

• What is Revenue Management? An introduction to Revenue Management Systems

Optimization in Revenue Management

• The OR techniques behind the screens

3

Revenue Management In an Airline

• What is revenue management? An introduction to Revenue Management Systems

4

A first example of Revenue Management

The value of a seat to go from Paris to Rome depends on the departure date

A second example of Revenue Management

Even on the same flight prices may differ

5

Op. Flights Direct Flights	Depart	Arrive	Aircraft	<u>Tango Plus</u>	<u>Latitude</u>	<u>Executive First</u> Lowest	Executive First Flexible
AC871	13:25	14:50	<u>77W</u>	() € 215	○ € 1125	() € 1556	0 € 2677
Cabin							
Any time change fee			will apply	may apply	may apply	free	
Same day airport change fee			\$100 CAD	free	free	free	
Miles accumulated			100%	100% 125%		150%	
Priority check-in				applies	applies	applies	
Access to airport lounge			\$65 CAD	\$55 CAD	applies	applies	

Products offered by Air Canada to go from Paris to Montreal on November 21st

Source: Air Canada website, request made on November 11th 2011

Revenue Management objective and means

Selling the right seat, to the right person at the right moment

Revenue Management determines product availability

• How many seats to protect on each flight, for each product, against what price, at each point in time?

To maximize network-wide revenue

- Protect seats for business passengers who bring high value and book late
- A connecting passenger brings a lower value than two non-stop passengers
- One connecting passenger brings another value than another connecting

Dealing with uncertainty

6

- Seats correspond to a fixed amount of perishable resources
- Demand is uncertain and each empty seat will be a loss of revenue (spoilage)

Operations Research models are needed to solve this complex problem

Airline industry has a volatile profitability

In this context optimizing airline revenue is very important

Source: ICAO data

Price elasticity in demand

8

By offering only one fare, some revenue potential is lost

Segmentation of demand

9

By offering several fares, revenue can be increased

Example of a fare grid on a flight to Japan

10

SER SID

Fare restrictions defined by pricing are designed to segment the market

3	***********	-		-		
-	A &	Class	Cabin	One way	Return	Conditions
80	***************	F	First	9 058 €	12 939 €	-
	a b ^{a ba ba} a	J	Business	5 591€	7 986 €	-
		С	Business	2 940 €	5 880 €	-
		С	Business		4 200 €	min stay 3D
		D	Business		3 490 €	min stay 4D, max stay 6M
		Y	Eco	4 413 €	6 303 €	-
		W	Eco	1 360 €	2 720 €	NRF
		Н	Eco	721€	1 442 €	NRF, max stay 3M
		В	Eco		1 280 €	NRF, min stay 3D, max stay 6M
		Н	Eco		1 030€	NRF, min stay 5D, max stay 3M
		К	Eco		910€	NRF, min stay 5D, max stay 3M
		V	Eco		700€	NRF, min stay 7D, max stay 1M

11 The hub-and-spoke organization maximizes connecting trafic...

... which implies more complexity in the network optimization of the revenue

> To which paths should seats be offered and by which quantity?

The bid-price is a financial quantity: it represents the minimum value required to book the next sellable seat on any given flight

Revenue Management in an airline

Revenue Management is one part in the sales process

Network	Deciding airline schedule: destinations, frequencies, timetable
Pricing	Defining fares and restriction
Distribution sales	Developing markets and sales
Revenue Mngt	Optimizing revenue obtained from the seat inventory

14 Reservation and inventory systems

Complex systems are needed to answer customer requests in real-time

Customers book through reservation systems (like www.airfrance.fr)

• These **reservation systems** must offer fares in a split second to every request

A centralized inventory system answers availability requests

15 A Revenue Management System in an airline

A quick overview

Optimization in Revenue Management

• The basic techniques behind the screens

Introduction to optimization for Revenue Management

More revenue is obtained by saving seats for high-value passengers

17

A319 « La Navette » Capacity = 142 seats

Without RM: « 1st come 1st served » Revenue = 10 224 € (142x72)

Simple RM: « Protect 40 Y seats » Revenue = 16 264 € (40x223 + 102x72)

But in real life demand is not deterministic...

Traditional Revenue Management

18

Demand is assumed to be perfectly segmented

Demand distribution can be Poisson or Gaussian...

Demand unconstraining

19

Demand observation is incomplete because of class closures

20 **Demand forecast** Forecasts rely on past observations and bookings

Optimization - static single-resource models

Main assumptions

- Demands for different classes are independent
- Demand for different classes arrives in non-overlapping intervals
- Demand arrives in order of increasing class prices
- Demand for given class does not depend on availability of other classes
- No group bookings

22 Littlewood's model Optimal solution for two classes

Littlewood hypothesis

- Static single resources hypothesis
- Capacity is C
- There are two products with associated prices $p_1 > p_2$ and demands $D_1 \& D_2$

Littlewood's model

- Expected revenue of seat x if we sell it to class 1 is: $p_1 \cdot P(D_1 \ge x)$
- So the protection level y_1 for class 1 should be such that:
 - $p_2 < p_1 . P(D_1 \ge y_1)$
 - $p_1 \cdot P(D_1 \ge (y_1 + 1)) \le p_2$

23 EMSRa heuristic

Computing seat protections using Littlewood's model

- Class 1 from class 2 (S₁₂)
- Class 1 from class 3 (S₁₃) & class 2 from class 3 (S₂₃)
- Class 1 from class N (S_{1N}) & ... & class N-1 from class N (S_{N-1N})

Sum protections and deduce booking limits

- $BL_1 = capacity$
- $BL_2 = capacity S_{12}$
- $BL_3 = capacity (S_{13}+S_{23})$
- $BL_N = capacity (\sum_{(i < N)} S_{iN})$

EMSRa is a heuristic

• It ignores the statistical averaging effect obtained by aggregating demand across classes

EMSRb Heuristic 24

Define joint classes

- Class 1 mean m_1 with standard deviation σ_1 and fare F_1 •
- $m_{1,2} = m_1 + m_2; \sigma_{1,2} = \sqrt{(\sigma_1^2 + \sigma_2^2)}; F_{1,2} = (m_1 F_1 + m_2 F_2)/m_{12}$ Classes 1 to 2
- Classes 1 to N-1 $m_{1.N-1} = \sum_{(i \le N)} m_i; \sigma_{1.N-1} = \sqrt{(\sum_{(i \le N)} \sigma_1^2)}; F_{1.N-1} = (\sum_{(i \le N)} m_i F_i) / m_{1.N-1}$ ۲

Computing seat protections using Littlewood's model

Classes 1 to k-1 from class k $(S_{1..k-1/k})$ •

Deduce booking limits

• $BL_k = capacity - S_{1..k-1/k}$

EMSRb is also a heuristic

The weighted average revenue is an approximation ۲

Belobaba, Application of a Probabilistic Decision Model To Airline Seat Inventory Control, Operations Research, Vol. 37, 1989

25 **Optimization - network model** Deterministic LP Formulation

Definition of variables

X _j	allocation of capacity for O&D fare class j
r _j	price for fare class j
d _j	mean demand for fare class j
C _k	capacity of leg k
∂ _{j,k}	1 if O&D fare class j uses leg k

Writing down the Linear Program

- Objective: maximize revenue
- Constraints: capacity and demand constraints

Max
$$\sum_{j} r_{j} * X_{j}$$

s.t.
$$\begin{cases} \sum_{j \in k} \partial_{j,k} X_{j} \leq c_{k}, & \forall k \\ 0 \leq X_{j} \leq d_{j}, & \forall j \end{cases}$$

The bid-prices are the dual values corresponding to the capacity contraints

AF/ KL

BPs can be used as control or to decompose the problem at leg level

Williamson, Airline Network Seat Inventory Control: Methodologies and Revenue Impacts, MIT. PhD thesis, 1992

Time to departure is divided in many small time-frames

• such that the probability of having more than one request per time frame is negligible

The maximal expected revenue can be computed for each time-frame

- Say V_t(x) is the maximal revenue the company can expect when there are x seats remaining in time frame t
- As shown next, if $V_{t-1}(x)$ and $V_{t-1}(x-1)$ are known, it is possible to compute $V_t(x)$. It is therefore possible to recursively compute $V_t(x)$ for any given (t,x).

Subramanian, Stidham and Lautenbacher, Airline Yield Mgmt with Ovbkg, Cancellations, and No-Shows, Transportation Science, Vol. 33, 1999

Dynamic Programming models for the single-resource problem *Optimal decision at time t can be obtained based on future optimal decisions*

The Bellman equation

Dynamic Programming models for the single-resource problem

A bid-price can be computed for each remaining capacity and time

Dynamic Programming models for the single-resource problem

The obtained bid-price map can be used to decide on class availability

30 **Dynamic Programming models for the network problem** *The curse of dimensionality*

Exact problems are hard to solve at network level...

$$V(X,t) = \sum_{f=1}^{N} p_{f,t} \max\{V(X - A_f, t - 1) + r_f; V(X,t - 1)\} + p_{0,t}V(X,t - 1)$$

$$Vector of remaining capacities on each flight leg
Flight leg utilization of O&D product f$$

...so decomposition heuristics are used instead.

Thank you for your attention

Thierry Vanhaverbeke thvanhaverbeke@airfrance.fr

