
STOCHASTIC DYNAMIC OPTIMIZATION

APPROACHES AND COMPUTATION 1

Pravin Varaiya and Roger J-B Wets

University of California, Berkeley-Davis

———–
In: Mathematical Programming, Recent Developments and Applications, M. Iri
& K. Tanabe (eds), Kluwer Academic Publisher, 1989. pp. 309-332.

———–

The description of stochastic dynamical optimization models that follows is
intended to exhibit some of the connections between various formulations that
have appeared in the literature, and indicate some of the difficulties that must
be overcome when trying to adapt solution methods that have been successfully
applied to one class of problems to an apparently related but different class of
problems. The emphasis will be on solvable models.

We begin with the least dynamical versions of stochastic optimization models,
one- and two-stage models then consider discrete time models, and conclude with
continuous time models.

1 ONE-STAGE MODELS

We consider the following simple one-stage stochastic optimization problem:

minimize E{h0(z, ξ)}
subject to hi(z) ≤ 0, i = 1, . . . , s,

hi(z) = 0, i = s + 1, . . . , m,

z ∈ Z ⊂ Rn

where ξ is a random vector with support Ξ ⊂ RN and distribution P . We are
looking for a vector z∗ that is feasible, i.e., belongs to

S = {z ∈ Z|hi(z) ≤ 0, i = 1, . . . , s; hi(z) = 0, i = s + 1, . . . , m},

and minimizes E{h0(·, ξ)} on S. Of course, this is just a special instance of a
nonlinear programming problem. Indeed, after integration, the objective can be
rewritten as

minimize Eh0(z),
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where for each z,

Eh0(z) :=
∫
Ξ

h0(z, ξ) dP (ξ).

Such a function is called an expectation functional; the study of its properties is a
major theme of the theory of stochastic programming. However, even this “simple”
stochastic optimization problem cannot be solved by standard nonlinear optimiza-
tion algorithms. The problem is with the evaluation of Eh0 or its (sub)gradient.
There are a few cases that can be managed:

1. when the function h0(z, ·) is separable so that

∫
h0(z, ξ) dP =

N∑
j=1

∫
Ξj

h0j(z, ξj) dPj(ξj)

(with Pj the marginal distribution function),

2. when Ξ = {ξ1, . . . , ξL} is finite and L is not too large, then

∫
h0(z, ξ) dP =

L∑
`=1

p`h0(z, ξ
`)

(where p` = P [ξ = ξ`]),

3. if h0 is convex, sufficiently smooth, easy enough to evaluate and P is a
multidimensional normal, Gamma or Dirichlet distribution function.

The first case simply reflects the fact that univariate calculus, as well as one-
dimensional numerical integration routines, are well developed. That is definitely
not the case for multivariate calculus and multidimensional numerical integration.
In the second case, the evaluation of Eh0, or its gradient, at a point z is reduced
to evaluating h0(z, ξ

l), or its gradient ∇zf0(z, ξ
`), for each ξ` in Ξ. And, in the

third case, there are specific subroutines (developed by Hungarian computer scien-
tists for stochastic programming problems) that combine Monte-Carlo techniques
with some of the specific properties of those distributions. Because sampling is
involved, the evaluation of h0(z, ξ) at any point ξ in Ξ should be “cheap” enough;
unfortunately that is seldom the case in the most important applications.

Because of this state of affairs, the research in stochastic programming has
been concerned with either identifying classes of models that fit in those “solvable”
categories, designing reliable and efficient solutions procedures for such problems,
or developing theories and procedures that would allows us to solve any problem
by solving approximating problems that belongs to the “solvable” categories.
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One version of the one-stage model that has received limited attention in the
literature is the case when the probability distribution of ξ depends on z. In terms
of the essential objective, the problem would take on the following form:

find z∗ that minimizes
∫

h(z, ξ) dP (ξ; z).

Again, this is just a nonlinear optimization problem and an evaluation of the
objective at any point z is not more complicated than it was before. What has
changed are the properties of the function:

z 7→ Eh(z) =
∫

h(z, ξ) dP (ξ; z).

For example, when P does not depend on z, the convexity of Eh follows imme-
diately from the convexity of h(·, ξ) for all ξ. That is no longer the case when P

depends on z. Similarly, the (sub)gradients of Eh can no longer be obtained by
the (relatively) simple formula:

∂Eh =
∫

∂h(·, ξ) dP (ξ).

The stochastic approximation-like techniques, e.g., stochastic quasi-gradient meth-
ods, can no longer be used to find (almost surely) a solution, at least not in the
form in which these techniques have been used up to now. In fact, in this situation,
the properties of Eh may very well have nothing in common with those of h(·, ξ).

The challenge would not be so much to design general solution procedures for
this (richer, but ungainly) class of problems, but to identify those that possess
properties that would still allow us to use “classical” solution procedures. Clearly,
it all has to do with the type of dependence of P on z. For example, if P is
defined on RN , and P (ξ; z) = Q(ξ + Hz), where Q is a probability distribution
function and H is a (given) matrix of the appropriate size, the problem takes on
the following form (after a simple change of variables):

find z∗ that minimizes
∫

h(z, ζ − Hz) dQ(ζ).

The properties of Eh will thus depend on the properties of h(z, ξ) viewed as a
function of (z, ξ) jointly.

2 TWO-STAGE MODELS

In addition to a (first stage) decision z1, this model allows for a second stage
or recourse decision z2 that is taken after full or partial information is obtained
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about the values of the random components of the problem. The problem can be
formulated as follows:

minimize f10(z1) + E{f20(z2(ξ), ξ)}
subject to f1i(z1) ≤ 0, for i = 1, . . . , m1,

f2i(z1, z2(ξ), ξ) ≤ 0 a.s., for i = 1, . . . , m2,

where the function z2 can depend (measurably) on ξ in a way that is consistent
with the information that will be available in the second stage, i.e., when taking
the recourse decision. A much more detailed discussion of the the modeling of
the information process will follow; for the time being let us assume that full
information is available before choosing z2.

If we define

f0(z, ξ) := f10(z) + infz2
[f20(z2, ξ)|f2i(z, z2, ξ) ≤ 0, i = 1, . . . , m2],

and
fi(z) := f1i(z) for i = 1, . . . , m1,

we see that, at least from a theoretical viewpoint, the two-stage model can be
analyzed in the framework provided by the one-stage model as long as we allow
for a sufficiently general class of functions f0, viz., infinite-valued (to account for
the cases when for given z1 and some ξ there is no z2 that satisfies the second-stage
constraints) and nondifferentiable (the infimal value of a mathematical program is
seldom a differentiable function). Because, it covers a large number of applications,
and because it is in some sense the first hurdle that must be mastered when
considering dynamical optimization models, much of the algorithmic research in
stochastic programming has been oriented at solving two-stage (recourse) models.

At first sight, the two-stage model may appear very restricted in its dynamical
aspects. However, it is important to keep in mind that “stages” do not necessar-
ily refer to time units. They correspond to stages in the decision process. The
variable z1 refers to all the decisions that must be taken before there will be any
information about the values to be assigned to the random elements of the prob-
lem. The variables z2 model all the decisions that will be made after the available
information about these values will be collected. For example, z1 could represent
a sequence of decisions (control actions) to be made over a given time horizon, say
z11, ..., z1t, ..., z1T , and z2 = (z21, ..., z2t, ..., z2T ), representing a similar sequence of
decisions used to correct the basic trend set by the z1-variables. Each one of the
z2t refers to a decision to be made at time t in response to the situation that would
result from choosing z1 and obtaining information about the random events that
can be observed up to time t. Such models could be called dynamical two-stage
models. As a special case, we could have z1 = z11, ..., z1t, and z2 = z2,t+1, ..., z2T ,
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which would correspond to a mid-course correction. And, of course, there is no
need to restrict oneself to discrete time.

Let us now turn to the case when the recourse decision must be made under
less than full information. Before we start, let us stress the fact that although one
may not observe ξ, there are many cases when the observations made allow us to
recover enough information about the values of ξ that one can still refer to it as
full information. This has sometimes been the source of some confusion between
the “stochastic programming” formulation and the “stochastic optimal control”
formulation. A typical, and simple, example could go as follows: instead of ξ, we
observe the “state” x1 of the system, with the state defined by a relation of the
form:

x1 = ϕ(z1) + ξ.

In such cases, instead of viewing the recourse decision as a function of ξ, we could
equally well think of it as a function of the “state” of the system.

If only partial information will be available, let G be the (sub)field of events
that could be observed before taking the recourse decision; let A be the field of
all events generated by ξ. In these terms, partial information would mean that G
is a proper subcollection of A. Since the recourse decision z2 can only depend on
the information that will become available, it must be G-adapted or, equivalently
G-measurable. Moreover, in evaluating the performance of a particular decision,
only those events that lie in G can be taken into account, thus rather than using
f20(z2, ξ) as the objective function of the recourse problem, we would replace it by

E{f20(z2, .) | G}(ξ).

Also, feasibility of a recourse function z2 can only be checked up to events that
lie in G. Thus, a feasible first stage decision is one that satisfies the first stage
constraints f1i(z1) ≤ 0, i = 1, .., m1 and to which one can associate a G-measurable
function z2 such that almost surely satisfies:

f2i(z1, z2(ξ), ξ) ≤ 0, i = 1, ..., m2.

This latter condition, may or may not impose restrictions on the choice of z1

beyond those already imposed by the first stage constraints. If it does, one refers
to them as induced constraints. Otherwise, the problem is said to have relatively

complete recourse. This can also be expressed in terms of a certain property (G-
nonanticipativity) of the multifunction determined by the constraints; we shall
return to this in the context of the multistage models.

Although the observations may very well depend on z1, so far, we have only
dealt with the case when the information available about the values taken on by the
random quantities of the problem do not depend on the first stage decision. The
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solution of the two-stage model, defined at the beginning of this section, can be
found by first finding z∗1 the optimal solution of the (finite dimensional) nonlinear
program:

minimize f0(z1) subject to fi(z1) ≤ 0, i = 1, . . . , m1,

with the functions fi, i = 0, . . . , m1, as defined above, and then solving for each ξ

(in the support of the probability measure), the deterministic nonlinear program:

minimize E{f20(z2, ·) | G}(ξ) subject to f2i(z
∗
1 , z2, ξ) ≤ 0, i = 1, . . . , m2.

As long as as there is a consistent rule for choosing the optimal solution when
there are multiple (optimal) solutions, this will define an optimal G-measurable
function z∗2 . In most applications, only the here-and-now decision, i.e., the first
stage decision, is of interest, and then there is no need to explicitly calculate the
optimal z2 function.

In general, all of this is no longer possible if the probability distribution of
the random quantities depends on the first stage decision, or if the information
(derived from the observations) depends on z1.

To indicate that the (sub)field of events depends on z1, let us denote it by
G(z1). The two-stage problem is then to find a pair (z1, z2) in

ZG := {z1 ∈ Rn1 , z2 G(z1)−measurable}

that satisfies the constraints and minimize the objective function as defined above.
The space ZG is no longer a linear space (as was the case when the field of infor-
mation did not depend on z1), in general it is neither convex (not even connected),
nor closed. The nonlinearities introduced by the dependence of the information
field on z1 have changed the essence of the problem, and usually, it is a much more
difficult problem to solve. The solution cannot be found, as before, by solving
(in sequence) finite dimensional optimization problems. The optimal first stage
decision cannot be found without finding an explicit description of the associate
(optimal) second-stage decision function. There are examples in the literature (not
exactly formulated in these terms), beginning with one due to Witsenhausen, that
illustrate all of these difficulties. The fact that the problem becomes so complicated
may suggest that there is a need to consider more carefully its formulation.

We shall return to this in the context of stochastic control models.
For purposes of illustration, let us consider a simple example: let

f20(z2, ξ) = q · z2,

and for i = 1, . . . , m2,

f2i(z1, z2, ξ) = Tiz1 + Wiz2 − hi(ξ),
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where Ti, Wi are (fixed) vectors, and hi is a random variable. Assuming that we
have observed h, to find the optimal recourse decision, the problem that needs to
be solved is a linear program. And, from parametric programming, we know that
there is a piecewise linear function of h − Tz1 that yields the optimal recourse
decision. If we do not observe h, or equivalently the “state” h − Tz1, but instead
information is some (nonlinear) function of h− Tz1, then, in general, we loose the
piecewise linearity of the optimal recourse decision with respect to the state. In
order to be able to deal with such problems, we may very well want to restrict the
class of acceptable second-stage decision functions to those that that depend on a
finite number of parameters.

There is also the question of the dependence of the probability measure on the
first-stage decision. We already discussed this in the framework of the one-stage
model. The situation is not any different here. There are no new conceptual or
theoretical difficulties, beyond those that we mentioned in Section 1, except that
we may have to deal with complications generated by the dependencies of P on z1

and by the restriction of z2 to the class of functions that are G(z1) measurable.

3 MULTISTAGE MODELS

Conceptually, multistage models are straightforward extensions of two-stage mod-
els. There are a few technical details that need to be taken care off, but most
assertions one can make about such models follow from those that have been es-
tablished for two-stage models. However, it does pay to analyze in more detail
the dynamical aspects of the problem. The real challenge comes from having to
deal with what has been called “the curse of dimensionality” in the design of so-
lution procedures. We shall begin with a rather general formulation whose main
virtue is that it is simple from a notational and conceptual viewpoint. As in the
previous section, we start with the case when the information (inferred from the
observations) and the distribution of the random quantities do not depend on past
decisions. Once more, let us stress the fact that we do not exclude the possibility
of having the observation values depend on earlier decisions (controls).

Although stages of a multistage stochastic optimization problem do not nec-
essarily correspond to time periods, let us use t = {1, . . . , T} to denote the
stage-index and refer to it, by abuse of language, as ”time”. Let ξt denote the
random quantities that are observed at stage t before we have to make our deci-
sion, i.e., the t-th stage decision function zt can depend on all past observations
ξt := {ξs, s = 1, . . . , t}.

With T = 2 and ξ1 a degenerate random vector (i.e., whose distribution is
concentrated at one point), we recover the two-stage model; the variables denoted
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ξ then, are now called ξ2. We are now allowing for the possibility that the prob-
lem considered in Section 2, was actually one of a possible collection of problems
obtained after observing ξ1. This slight generalization of the model comes from a
shift in the type of questions that we like to see answered. In the two-stage model,
the emphasis was on calculating an optimal first-stage decision, and this is still
the case for many multistage problems, but for another wide range of models the
accent will be on finding an optimal decision (control) rule that could be applied
at all stages.

The random quantities of the problem will again be denoted by ξ with ξ =
(ξ1, . . . , ξT ). The dependence of the (recourse) decision on past observations can
be expressed in the following terms: let (Ξ,A, P ) be the underlying probability
space and let Bt be the (σ-)field of events generated by the observations up to
time t; this corresponds to the σ-field generated by the random vector ξt. The
dependence of zt on the past observation can thus be expressed in terms of the
measurability of zt with respect to Bt, in other words, zt must be Bt-adaptable.

The constraints that are explicitly included in the formulation of the problem,
will be represented by a multifunction:

Γ(t, ξ) := {zt = (z1, . . . , zt) that satisfy the t−th stage constraints}.

(We use, somewhat indiscriminately, zt to designate a function from Ξ into the
decision space, say Rnt, and a point in its range.)

Thus the multistage recourse problem, is to find

for t = 1, . . . , T, zt Bt− measurable,
for t = 1, . . . , T, zt ∈ Γ(t, ξ), ,
that minimizes E{h0((z1(ξ), . . . , zT (ξ)), ξ)}.

Most of the theory developed for one- and two-stage models can be applied to the
multistage problem to obtain the basic properties of the deterministic equivalent
problem, a number of useful characterizations of the optimal solutions (linearity,
piecewise linearity, etc.), as well as necessary and sufficient optimality conditions.
However, as already mentioned earlier, one is also interested in the dynamical prop-
erties of the solution, in particular in the role played by the dynamical restrictions
on the zt that comes from the Bt-measurability condition.

Let Z be the space of all (A-measurable) functions z := (z1, . . . , zT ) defined on
Ξ such that for all t, zt is Bt-measurable; such functions will be called nonantici-

pative. It is a linear subspace of the space of A-measurable functions. From this
simple observation follows an important optimality criterion: assuming that the
problem at hand satisfies a “standard” constraint qualification, and the constraint-
multifunction is nonanticipative, a necessary condition for optimality of z∗, that
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is also sufficient in the convex case, is that there exist multipliers p = (p1, . . . , pT )
defined on Ξ, orthogonal to Z, i.e., such that

E{pt(·)|Bt} = 0 a.s., for t = 1, . . . , T,

and for almost all ξ:

z∗(ξ) ∈ argmin{h0(z, ξ) − p(ξ) · z|zt ∈ Γ(t, ·) a.s., for t = 1. . . . , T}.

Knowledge of these multipliers would reduce the problem to one of pointwise
minimization. One can interpret these multipliers as a price system associated
with the nonanticipativity restrictions; a beautiful economic interpretation of these
multipliers in terms of insurance prices has been sketched out by I. Evstigneev from
C.E.M.I.(Moscow).

To state the optimality condition, we mentioned the concept of nonanticipa-

tivity of the constraint multifunction. By this one means the following: at any
time time t there are no constraints induced on zt beyond those already imposed
by Γs, s = 1, . . . , t; i.e., there are no constraints induced by potential future infea-
sibilities. This means: if zt satisfies all the constraints up to time t, there exist
functions zt+1, . . . , zT , such that the resulting z is feasible for the multistage re-
course problem. We referred to this, in Section 2, as relatively complete recourse.
By deriving the induced constraints and including them explicitly in the formula-
tion of the problem, any multistage recourse problem can be reduced to one with
relatively complete recourse. However, deriving the induced constraint is not nec-
essarily an easy task, and thus the general optimality theory must (and does) make
provisions for the case when Γ is not necessarily nonanticipative, and the solution
procedures must (and do) cope with the presence of these induced constraints (by
introducing feasibility cuts).

In the choice of a solution technique, we have at our disposal all the experience
gained from the study of one- and two-stage models, but all the difficulties that we
have encountered so far are compounded by the fact that the number of possible
realizations is exponentially increasing with the number of stages, the so-called
“curse of dimensionality”. The only possible remedy is decomposition. Decompo-
sition not only with respect to possible realizations, but also, whenever possible,
with respect to time (i.e., stages).

We have seen that introducing the multipliers associated with the nonanticipa-
tivity constraints, suggests a potential decomposition with respect to the sample
(realization) space. This and the notion of an average problem have lead to the
aggregation principle which allows us to solve any multistage recourse problem, by
solving (repeatedly) deterministic versions of the original problem for particular
realizations of ξ, sometimes called scenarios. The basic idea is captured in the
hedging algorithm.
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3.1 Partial Information, etc.

If instead of observing, or being able to infer, the values assumed by ξt, the in-
formation to which we have access determines a field Gt, a strict subset of σ-field
Bt of possible events, the (recourse) decision must now be Gt-measurable. Let ZG

be the subspace of Z consisting of all A-measurable functions z so that for all t,
zt is Gt-measurable. This is a linear subspace of Z. The same arguments, and
the same conditions as before, except for Bt-nonanticipativity of the constraint-
multifunction replaced by Gt-nonanticipativity, will yield the following optimal-
ity criterion: if z∗ solves the multistage recourse problem, there exist multipliers
q = (q1, . . . , qT ) defined on Ξ such that

E{qt(·) | Gt} = 0 a.s., for t = 1, . . . , T,

and for almost all ξ:

z∗(ξ) ∈ argmin{h0(z, ξ) − q(ξ) · z|zt ∈ Γ(t, ξ), for t = 1. . . . , T}.

These conditions are of the same nature as those we already know for the full infor-
mation case, the only differences are the stronger constraint qualification (nonan-
ticipativity of Γ(t, ·)) with respect to Gt, and the fact that now conditional expec-
tation of qt is taken with respect to a coarser σ-field. Again there is a rich economic
interpretation that can be attached to these multipliers. If p corresponds to the
multipliers associated with full information, then q − p yields a price system that
could be used to determine if it would be desirable or not, to seek full information;
one could think of these multipliers as an information price-system.

As for the two-stage model, it is not always possible to express the information
collected (from observations) independently of past decisions. We need to consider
also the case when the information fields Gt depend on zt−1 = (z1, . . . , zT ); we then
write Gt(z

t−1). And all the difficulties mentioned in connections with the two-stage
model are still all present, except more so. The mathematical complexity generated
by asking even the simplest of questions about such models is mind-boggling.

Because the search for an optimal solution will necessarily require, at each
iteration a total description of ξ 7→ zt(ξ) for all t, the challenge created by this

formulation of the multistage recourse model may be, for ever, beyond our compu-
tational capabilities, unless one replaces the decision space and the sample space
by a discrete set. In this discrete case, finding the optimal solution becomes a
question of enumerating all possibilities, and this can be organized via dynamic
programming techniques. And even that is only possible if the number of decisions
in each time step (stage) is rather limited. One other approach is to replace the
search for an optimal z∗ with the search for the best z in a given class. We return
to this in the context of the the stochastic optimal control model.
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Finally, we could also have to deal with the dependency of the probability
distribution on past decisions zt−1. The added complexity is a function of the
form of the relationship between P and z and the properties of h0 and Γ, when
viewed as functions of (z, ξ), just like for the one-stage model.

3.2 Stochastic Optimal Control Models

As we shall see, the formulation of the discrete-time stochastic optimal control
model is very similar in nature to that of the multistage recourse models. However,
the relationship between these models has not always been very well understood.
The basic reason is motivation: the concept of solution is somewhat different in
both models. The multistage recourse model is, in many cases, only concerned
with z1, the other decisions are of little interest. The stages 2 to T are only in-
cluded in the problem to help evaluate the costs that may result from a particular
choice of z1. To the contrary, most of the motivation for the research on stochastic
control problems comes from a class of applications where it is the decision rule

(to be used in all time periods) that is of interest, i.e., the rule that will allow
us to pass from observations to decisions. Hence, the insistence of finding a rule
that depends on the observed (or estimated) state and not on the information
we may infer about the underlying stochastic phenomena. This is only possible
if there is a certain similarity between the stages. From a theoretical viewpoint,
neither the multistage recourse model nor the stochastic optimal control model is
a special case of the other, but there are fundamental differences when it comes to
what practitioners will identify as “solvable” problems. Algorithmic research on
multistage recourse models is oriented towards mathematical programming tech-
niques, whereas the solution technique favored in the stochastic control literature
is dynamic programming. This places natural limitations on the type of problems
that can be approached in either way.

We consider the following formulation of a discrete time, finite horizon, sto-

chastic optimal control problem:

xt = ft(xt−1, ut, ζ
1

t ), t = 1, . . . , T

with initial state x0 about which we may only have probabilistic information.
The variables xt denotes the state of the system, ut is the control, and ζ1

t models
the system’s disturbances (with given probability distribution). The observations

yt = (y1, . . . yt) that are available to the controller at time t are related to the state
of the system by:

yt = kt(xt−1, ζ
2

t ), t = 1, . . . , T

where ζ2
t are disturbances that affect the observations (again with known proba-

bility distribution). The choice of a control law is subject to system constraints
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(state-space constraints and control constraints):

xt ∈ Xt, ut ∈ Ut, t = 1, . . . , T,

and information constraints:

for t = 1, . . . T, ut is Yt− measurable,

where Yt is the σ-field generated by the observations, i.e., Yt = σ{ys | s ≤ t}.

x0 x1 xt-1 xt xT

ζ2
1

ζ2

ζ1
1

ζ1 ζ1
Τ

t

t

k1 kt

g g g1 t T

u u u1 Tt

y

y y

yT
y1

1 1

t

f f f1 Tt

Figure 1: A controlled stochastic system

The choice of the control ut must be a (measurable) function of the observa-
tions, let us denote it gt,

ut := gt(y
t) = gt(y1, . . . , yt) ∈ Ut.

The vector-valued function
g = {g1, . . . , gT}

is called the feedback law. Given g, we can define stochastic processes {xg
t }, {y

g
t },

{ug
t} with

x
g
t = ft(x

g
t−1, u

g
t , ζ

1),

y
g
t = kt(x

g
t−1, ζ

2

t ),

u
g
t = gt(y

g
1 , . . . , y

g
t ).
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In the ensuing development, we usually drop the reference to g when referring
to u, x or y but it is implicitly always there. Figure 1 gives a block diagram
representation of the dynamics of the system.

The objective is to choose a feedback control law g∗ that minimizes costs (or
maximize performance):

J(g) := Eg{
T∑

t=1

ct(xt−1, ut, ζ
t
1) + Φ(xT )} := E{

T∑
t=1

ct(x
g
t−1, u

g
t , ζ

1

t ) + Φ(xT )}.

The function Φ plays the role of a terminal condition.
The relation between this model and the multistage recourse model is imme-

diate. Indeed, simply set zt := (xt, ut), ξt := (ζ1
t , ζ

2
t ), ξ0 := x0, ξ := (ξ0, . . . , ξT ),

Zt = Xt × Ut,
Γ(t, ξ) := {zt ∈ Zt | xt = ft(xt−1, ut, ζ

1

t )},

and

h0(z, ξ) :=
T∑

t=1

ct(xt−1, ut, ζ
1

t ) + Φ(xT ).

The information constraint, which in the case of the stochastic optimal control
model is explicitly included in the model in terms of a feedback law, would in the
case of the multistage recourse model take the form: zt must be Bt(z

t)-measurable,
where Bt(z

t) := Yt.

There are thus no significant differences between these two models, at least as
far as formulation goes. Certainly, any general theoretical result known about any
one of these models, has a counterpart for the other one. To cite just a couple of
examples, the optimality conditions mentioned earlier can easily be reformulated
so that they apply to the stochastic control model. Similarly, qualitative results
obtained about the value function of stochastic control problems could be applied
to the corresponding class of multistage recourse problems. There are a few results
that admit easy translation, whereas others are not so readily adaptable. There are
two major features of stochastic control models that are not explicitly included in
the recourse models. However, the differences are more a matter of perception (and
formulation) than factual. First, the stochastic control model includes an explicit
expression for the observation process, and second we are to use a feedback law
based directly on the actual observations (rather than on the information gathered
about “nature”: ξ).

As for multistage recourse problems, the major classifications for stochastic
control models is based on the type of feedback that will be called for, or/and the
level of information that will be available to the controller.

OPEN LOOP : No information is collected that would enable us to adjust ear-
lier decisions. This corresponds to having yt ≡ ht ≡ 0 for t = 1, . . . , T . The
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selection of ut, can as well be made from the very outset. We could extend
this model to include those cases that allow for ”local” adjustments, i.e.,
adjustment that are made at time t that do not affect the selected trajectory
but try to remedy local deviations from a desired state. This latter case is
then of the same nature as the dynamical two-stage model mentioned in Sec-
tion 2. Such models are sometimes used with a rolling horizon, however the
use of such an approach cannot always be recommended, since it arbitrarily
ignores feedback (or recourse) possibilities that are inherent to all stochastic
optimization problems. One further restriction would be to insist on myopic

controls.

COMPLETE INFORMATION : Full information is available about the state,
i.e.

yt = kt(xt−1, ζ
2

t ) = xt−1;

we refer to this case as full state-information. This should not be confused
with what we have called full information in the framework of the multistage
recourse model. In fact, full state-information, may or may not correspond
to the full information case. A nice case when one can identify full state-
information with full information, is when (ζ1 and ζ2 are strongly correlated):

yt = kt(xt−1, ζ
2

t ) = ζ1

t ,

xt = ft(xt−1, ut) + ζ1

t .

If in addition, the random variables ζt are time-independent, then dynamic
programming techniques can be used as a solution technique. This is the
first time that we encounter in our discussion, this independence condition.
This is not a modeling choice, but one dictated by the solution technique;
more about this later.

PARTIAL INFORMATION : This is the general case. Let us stress once
more that this does not correspond to what we have been calling partial
information in the context of the multistage recourse model; to make sure
that this distinction is not lost, we shall refer to this case as partial state-

information. Here again is it is possible to appeal to dynamic programming
techniques for finding the optimal feedback law. Instead of using the state of
the system we rely on on an extended notion of state, viz., conditional distri-
butions (on the state-space) will play the role of the state. These conditional
distributions are sometimes called hyperstates or information states.

FEEDFORWARD : In this case the information available at time t, is either
ζ1
t or a function of ζ1

t , in other words the information is a random variable
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strongly correlated with ζ1
t . If we take ζ2

t to be such a variable, then in terms
of the stochastic optimal control problem, we could think of it as the case
when

yt = ζ2

t .

We receive direct information about the underlying stochastic phenomena.
Without any need to adjust the information collected, we are in the frame-
work of the multistage recourse model with full or partial information.

RESTRICTED FEEDBACK : Rather than allowing for g to be just any mea-
surable function of the observations, we may want to restrict the class of
admissible feedback laws to a particular (parametrized) class of functions.
We already discussed this option in the context of the multistage recourse
model. From a computational view point, this looks very attractive. But,
before we really can use this approach, there are many unresolved theoret-
ical questions that deserve serious investigation. More precisely, we need
to characterize, as well as possible, the properties of optimal feedback and
obtain error bounds when restrictions are placed on the class of admissi-
ble controls. Note that there are some models for which the optimal law is
known and can be characterized in terms of a finite number of parameters,
e.g., (s, S)-policies, impulse controls, certain bang-bang situations, etc..

The stochastic optimal control model may also include a filtering equation, i.e.
a process used to analyze the observations in order to obtain an estimate of the
state of the system. Instead of using the data that comes from the observations,
we are to use the filtered data. If the filter is known a priori, then our formulation
already allows for such a possibility, we simply define kt appropriately and take yt

to be the filtered data. If, we are allowed to choose both an optimal control and
an optimal filter, the problem is not so simple. In a few cases, one can appeal to
the Separation Lemma which allows us to first calculate an optimal filter, and use
it (redefining kt) to calculate the optimal feedback law. In general, the situation is
unfortunately much more complex. Although this is an important issue, we shall
not be concerned with it here; we implicitly assume that we are using raw data
(observations) or if it is filtered data (state estimates) the function kt has been
defined so as to include the filtering process.

There is a substantial literature devoted to the characterization of optimality
centered around the Hamilton-Jacobi-Bellman equation (discrete or continuous
time versions). The suggested solution methods for stochastic control problems
are mostly based on solving that equation. They range from discretization (of
state-space, controls and possible realizations) to Monte-Carlo simulations passing
through finite element approximations of the Hamilton-Jacobi-Bellman equation.
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We shall only discuss the “discrete” case, and this in the setting of full or partial
state-information; for simplicity’s sake, we also assume that there no state-space
constraints, i.e., no constraints of the type xt ∈ Xt.

This approach relies on a crucial assumption that has not been needed up to
now:

Assumption: The random variables x0, ζ
1
t , ζ2

t , . . . , ζ
1
T , ζ2

T are mutually inde-

pendent.
This has the following implication: for all g,

P g{xt ∈ D | xt−1, . . . , x0, ut, . . . , u1},

= P{xt ∈ D |xt−1, ut} independent of g,

= P{ζ1
t ∈ Q(xt−1, ut)}

where
Q(xt−1, ut) := {ζ | ft(xt−1, ut, ζ) ∈ D}.

We can reformulate the problem in terms of the following equivalent Markov De-

cision Problem: given the “controlled transition probabilities”

P (d xt−1 | xt−1, ut)

and the observation channel transition probabilities,

P (d yt | xt−1),

find g = (g1, . . . , gT ), that minimizes

Eg
T∑

t=1

ĉt(xt−1, ut),

where
ĉt(x, u) :=

∫
ct(x, u, ζ1

t )P (d ζ1

t ).

3.2.1 Full state-information

Now, if for all t = 1, . . . , T , full state-information is available, i.e., yt ≡ xt, we
define recursively the real-valued functions:

VT (xT ), . . . , V0(x0),
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by

VT (xT ) := Φ(xT ),
...

Vt(xt) := min
u∈Ut

{ĉt(xt, u) +
∫

Vt+1(xt+1)P (d xt+1 | xt, u)}

with ĉ0 ≡ 0. Then

Vt(x) = min
g
{Eg

T∑
s=t

ĉs(xs.us) |xt = x}.

If
g∗

t (x) ∈ argmin
u∈Ut

{ĉt(x, u) +
∫

Vt+1(xt+1)P (d xt+1 |x, u)},

then
ut = g∗

t (xt−t), for t = 1, . . . , T.

is the optimal feedback law. In particular, note that ut is Markovian, in that it
only depends on xt−1 = yt and not on earlier observations yt−1, . . . , y1.

3.2.2 Partial state-information

When only partial information is available, i.e., yt 6= xt−1, let

vt := (yt, ut−1),

denote the information available when choosing ut. Fix the feedback law g, and
define

π
g
t (d x | vt) := P{xg

t ∈ d x | vt}.

A fact which is of crucial importance to the development that follows is that π
g
t

does not depend on g. It can be shown that there exists an operator St, sometimes
called a ’filter’, such that for t = 1, . . . , T ,

πt+1(· | v
t+1) = St[πt(· | v

t), yt+1, ut]

and
π1(d x | v1) = P{x0 ∈ d x | y1}.

Let Π be the space of all probability distributions on the state-space. For
example, if xt ∈ {1, . . . , I}, then

Π = {π1, . . . , πI |
I∑
1

πi = 1, πi ≥ 0}.
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In a manner similar to that used in the full state-information case, we define
real-valued functions, but on Π, the hyperstate-space:.

VT (π) := E{Φ(x) |πT (· | vT ) = π},
...

Vt(π) = min
u∈Ut

E{ĉt(x, u) + Vt+1(St[π, yt+1, u]) |πt(· | v
t) = π}.

Then, for all g,

Vt(πt(· | v
t)) ≤ Eg{

T∑
s=t

cs(xs−1, us) | (y
t, ut−1)},

and
ut = g∗

t (πt(· | v
t))

is the optimal feedback law, where g∗
t is the argument that yields the minimum in

the expression that defines Vt.

3.2.3 Computational implications

We have given a rather detailed description of the theoretical underpinnings of
the methods used in practice to solve discrete-time stochastic optimal control
problems. The reason is that we want to stress the differences between this ap-
proach and that favored for multistage recourse models. In both cases, full or
partial state-information, the strategy has been to reduce the control problem to
a Markov decision problem. To achieve this and to be able to solve the problem,
we had to impose two unwelcome restrictions:

1. time-independence of the random variables plus independence between the
disturbances that affect state and observations (althought this latter restric-
tion is inessential),

2. finite state-space, which in turn implies finitely distributed random variables
and discrete control space.

These limitations are not always easy to justify in applications. At our present
stage of development, that seems to be the price that needs to be paid to build a
feedback control law based on information obtained about the state of the system
rather than information about the underlying stochastic process.

Unless the state-space is actually discrete and the underlying stochastic process
{ζt}

T
t=1 consists of independent random variables, the solution obtained by solving

the Markov decision model is, at best, an approximation of the problem at hand.
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4 CONTINUOUS-TIME MODELS

We shall be very brief: there is not much to report from a (practical) computa-
tional viewpoint. Although the discrete time model did allow for a wide variety of
stochastic disturbances, the only case that has really been studied in continuous-
time is when the disturbances can be modeled by white noise (although, now, there
are also martingale techniques). Defining the variables as the obvious continuous-
time analogues of those of the discrete-time models, the continuous-time recourse
model takes the form:

minimize E{
∫

h0(zt(ξ), ξt)dt}

subject to zt ∈ Γ(t, ξ) for all t,

zt Bt− measurable for all t,

where ξ = (ξt) is a (continuous-time) stochastic process, Bt is a σ-field generated
by earlier observations that may or may not depend on past decisions. Again
the question of the nonanticipativity of the constraint-multifunction needs to be
broached, and it plays a role in the type of conditions that can be used to charac-
terize optimal solutions, etc..

The continuous-time version of the stochastic control problem that has received
most of the attention in the literature is:

minimize E{
∫

ct(xt, ut, ζ
1
t )dt}

such that d xt = ft(xt, ut)dt + σ1(xt)d ζ1
t , for t ∈ [0, T ],

d yt = kt(xt)dt + σ2(xt)d ζ2
t ,

where ζ1
t and ζ2

t are Wiener processes (or more generally semi-martingales) that
model disturbances that affect system and observations. The variable ut is the
control that is subject to the information constraint:

ut is Yt− measurable,

with Yt, as before, the σ-field generated by the observations {ys | s ≤ t}. There
are some technical difficulties with giving a precise meaning to this constraint. To
do so, one usually relies on a measure transformation (Girsanov’s Lemma).

The continuous-time versions of the multistage recourse model as well as the
stochastic optimal control model are (mathematical) analyst’s delight. As soon as
one goes beyond the quadratic regulator problem (a linear-quadratic model), there
are essentially no closed-form solutions and most of the theory has been oriented
at finding qualitative characterizations of optimal solutions. One could consult
the work of Back and Pliska for the continuous-time recourse model, and that of
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Krasovskii, Fleming, Rishel, Kushner, Varaiya, Bensoussan, Evans, Lions (père &
fils), Davis, Krylov and many others, for the continuous-time stochastic control
model. The most computationally oriented work is probably that of Haussmann
(Univ. British Columbia), beginning with his work on the stochastic maximum
principle. However, very little success can be reported about the passage from
theory to computationally implementable techniques; we exclude here, for obvious
reasons, methods based on Monte-Carlo simulations and stochastic approximation
techniques (that have a limited range of applicability).

Certain continuous time models have equivalent discrete-time (or discrete state-
space) formulation, and sometime this can be exploited to solve (by successive
approximations) more complicated problems. Let us give two examples. If the
dynamics of the system are described by a continuous-time Markov chain (finite
state-space), i.e.,

P{xt+dt = j |xt = i, ut = u} = pij(u)dt,

it is usually possible to convert to problem to one in discrete time by a technique
know as uniformization. The second example is a little bit more involved. It is a
class of problems studied first by Vermes (Hungary), and at present, under further
investigation by Davis (Imperial College). The state at any time t is the sum of a
jump process (Markov jumps that occur at random times) and a dynamical system
described by an ordinary differential equation that can be controlled. Certain
maintenance problems and capacity expansion problems are easy to cast in this
mold. Problems of this type can be converted to multistage recourse problems
(possibly with an infinite number of stages), where each stage corresponds to the
evolution that takes places between jumps and the (recourse) costs are random
variables whose values depend on the length of time between jumps.
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