
Decomposition/coordination overview
Strugarek’s exact decomposition example
Dual approximate dynamic programming

Application to a dam management problem

Summer School CEA-EDF-INRIA 2012
Stochastic Optimization

♦
Information Constraints in Stochastic Control

P. Carpentier — ENSTA ParisTech
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Aim of the lecture

Obtain reasonable strategies on large scale stochastic optimal
control problems, for example the optimal management over a
given time horizon of a system involving a large amount of
production units.

Use Dynamic Programming (or related methods) in order to
obtain the decision strategies:

Markovian case,
curse of dimensionality.

Specify the information patterns so that the optimization
problems can be solved by decomposition/coordination.
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Decomposition and coordination

Unit 1 Unit N

Unit 2 Unit 3

Interconnected units

The system to be optimized consists of
interconnected subsystems: we want to
use this structure in order to formulate
optimization subproblems of reasonable
complexity.

But the presence of interactions requires a
level of coordination.

Coordination must provide a local model
of the interactions to each subproblem: it
is an iterative process.

The ultimate goal is to obtain the solution
of the overall problem by concatenation of
the solutions of subproblems.
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Decomposition and decentralization

In the standard stochastic optimization framework, one considers
that the entire information is in the hand of a single decision
maker. This situation is that of centralized information.

In team problems, several decision makers have their private
information and try to optimize the system in a collaborative
manner. This situation is termed decentralization.

The last situation includes the case of non classical information
patterns. It can be a source of huge difficulties in stochastic
optimal control (dual effect, Witsenhausen counterexample).

In this lecture, we only deal with the centralized case: only the
computations are distributed in the decomposition/coordination
approach.
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Two prototype models

“Flower model”

min
u

N∑
i=1

Ji (ui ) ,

s.t.
N∑

i=1

Θi (ui ) = θ . Unit 2

Unit 1 Unit N

Unit 3

Coupling

constraint

“Cascade model”

min
u,v

N∑
i=1

Ji (ui , vi ) ,

s.t. Hi (ui , vi ) = vi+1 .

Link with the flower model:
Θi  

`
0, . . . ,−vi ,Hi (ui , vi ), . . . , 0

´>
.

Unit 1

Unit 2

Coupling

constraints

Unit N
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General model

Unit 1 Unit N

Unit 3

Unit i

Unit 2

Coupling

constraints

Figure: Units interacting through a network (smartgrid?)
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Price decomposition (flower model)

min
u

N∑
i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

1 Form the Lagrangian of the problem and assume that a saddle
point exists. The initial problem is equivalent to:

max
λ

min
u

N∑
i=1

(
Ji (ui ) +

〈
λ ,Θi (ui )

〉)− 〈λ , θ〉 ,
2 Solve this problem by the Uzawa algorithm:

u
(k+1)
i ∈ arg min

ui

Ji (ui ) +
〈
λ(k) ,Θi (ui )

〉
, ∀i ,

λ(k+1) = λ(k) + ρ

( N∑
i=1

Θi

(
u

(k+1)
i

)
− θ
)
.
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Price decomposition

u
(k)
1

Subproblem 1 Subproblem i Subproblem N

Coordination

min J1(u1) + 〈λ(k), Θ1(u1)〉 min Ji(ui) + 〈λ(k), Θi(ui)〉 min JN(uN) + 〈λ(k), ΘN(uN)〉

λ(k+1 = λ(k) + ρ

( ∑
Θi

(
u
(k+1)
i

) − θ

)

u
(k)
Nλ(k)λ(k)u

(k)
iλ(k)
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Resource allocation (flower model)

min
u

N∑
i=1

Ji (ui ) subject to
N∑

i=1

Θi (ui )− θ = 0 .

1 Form an equivalent problem obtained by introducing new
variables (v1, . . . , vN) (“allocation”) and new constraints:

min
v

N∑
i=1

(
min
ui

Ji (ui ) s.t. Θi (ui )− vi = 0
)

s.t.
N∑

i=1

vi = θ ,

2 Solve this problem by a projected gradient method w.r.t. v :

min
ui

Ji (ui ) s.t. Θi (ui )− v
(k)
i = 0  λ

(k+1)
i , ∀i ,

v
(k+1)
i = v

(k)
i + ρ

(
λ

(k+1)
i − 1

N

N∑
j=1

λ
(k+1)
j

)
.

P. Carpentier & SOWG Information Constraints in Stochastic Control Summer 2012 13 / 56



Decomposition/coordination overview
Strugarek’s exact decomposition example
Dual approximate dynamic programming

Application to a dam management problem

Background in decomposition
Deterministic case
Stochastic case
Summary

Resource allocation

v
(k)
1

Subproblem i

Coordination

min Ji(ui) s.t. Θi(ui)− v
(k)
i = 0

Subproblem 1

min J1(u1) s.t. Θ1(u1)− v
(k)
1 = 0

Subproblem N

v
(k+1)
i = v

(k)
i + ρ

(
λ
(k+1)
i − 1

N
∑

λ
(k+1)
j

)

min JN(uN) s.t. ΘN(uN)−v
(k)
N =0

v
(k)
N λ

(k)
Nλ

(k)
1 v

(k)
iλ

(k)
i
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Deterministic case
Stochastic case
Summary

Prediction (cascade model)

min
u,v

N∑
i=1

Ji (ui , vi ) subject to vi+1 − Hi (ui , vi ) = 0 .

At iteration k, the interaction variable vi+1 is predicted to

subproblem i , hence the constraint: v
(k)
i+1 − Hi

(
ui , vi

)
= 0,

and the optimal multiplier λ
(k)
i of this constraint is used to

add the term
〈
λ

(k)
i , vi+1

〉
in the cost of subproblem i +1.

The i-th subproblem at iteration k reads

min
ui ,vi

Ji (ui , vi ) +
〈
λ

(k)
i−1 , vi

〉
s.t. v

(k)
i+1 − Hi (ui , vi ) = 0 ,

and the set of primal-dual solutions
(
u

(k+1)
i , v

(k+1)
i , λ

(k+1)
i

)
is used

to formulate the subproblems at the next iteration.
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Prediction

λ
(k)
i

Subproblem i

Subproblem i−1 Subproblem i+1

λ
(k)
i−1

v
(k)
i v

(k)
i+1
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Auxiliary Problem Principle
The three decomposition schemes we have presented, which seem
to crucially depend on the additive structure of the problems under
consideration, can actually be generalized to problems of the form:

min
u

J(u1, . . . , uN) subject to Θ(u1, . . . , uN) = 0 .

This generalization is achieved by the Auxiliary Problem Principle
(APP), which consists in linearizing J and Θ around a point u(k):

J(u) 
N∑

i=1

〈∇ui J(u(k)) , ui

〉
, Θ(u) 

N∑
i=1

(
Θ′ui

(u(k))
)> · ui ,

in order to obtain again an additive structure.

For further readings on decomposition/coordination and APP, see:

G. Cohen, “Auxiliary Problem Principle and Decomposition of Optimization
Problems”, Journal of Optimization Theory and Applications, 32, 1980.

G. Cohen, “Optimisation des grands systèmes”, Cours du DEA
Modélisation et Méthodes Mathématiques en Économie, 2004.
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General remark about decomposition

Whatever the decomposition/coordination scheme used (price,
allocation, prediction, APP), we have observed that new variables,
namely primal variables u(k) and/or dual variables λ(k), appear in
the subproblems arising at iteration k of the optimization process.

All these new variables are considered as fixed when solving the
subproblems (they only depend on the iteration index k). They are
nothing but constants, and therefore do not cause any difficulty in
the deterministic case.
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Stochastic optimal control problems

We consider a SOC problem in the following form:

min
U,X

E
( T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )
)
, (1a)

subject to the constraints:

X0 = f-1(W0) , (1b)

Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t = 0, . . . ,T − 1 , (1c)

Ut � Ft := σ(W0, . . . ,Wt) , ∀t = 0, . . . ,T − 1 , (1d)

Ut ∈ Ct , ∀t = 0, . . . ,T − 1 , (1e)

with Ut =
(
U1

t , . . . ,U
N
t

)
and Xt =

(
X1

t , . . . ,X
N
t

)
, with N large.
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Approximation schemes for SOC problems

Optimize

Optimize

D
isc

r
e
t
ize

OCorig

OCdisc

Porig

Pdisc

D
isc

r
e
t
ize

Path 2

Path 1

1 Following Path 1 (discretize, then
optimize), we solve a deterministic
approximation of Problem (1). All
decomposition methods are thus
available, and some of them are
more specifically well-suited for an
implementation in this context
(progressive hedging).

2 Following Path 2 (optimize, then
discretize) we directly make use
of a decomposition/coordination
method on Problem (1) and then
discretize the subproblems.
 Today’s lecture.
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Dynamic Programming yields centralized controls

Remember that we want to solve Problem (1) either by variational
approaches or by Dynamic Programming (and related methods,
e.g. SDDP). For the sake of simplicity, we assume that we are in
the Markovian setting and restrict ourselves to the DP approach.

The system is made of N interconnected subsystems. We denote
by Ui

t and Xi
t the command and state of subsystem i at time t.

We know that the optimal control of subsystem i is a function of
the whole system state, that is, a centralized feedback:

Ui
t = γ i

t

(
X1

t , . . . ,X
N
t

)
,

whereas any decentralized feedback, that is, a control such as

Ui
t = γ̂ i

t(Xi
t)

will be, in most cases, far from being optimal. . .
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Straightforward decomposition of Dynamic Programming?

The crucial point is that the optimal feedback of a subsystem a
priori depends on the state of all other subsystems, so that using a
decomposition scheme by subsystems is far from being obvious. . .

As far as we have to deal with Dynamic Programming, the central
concern for decomposition/coordination purpose is resumed as:

?

?

?

?

??

how to decompose a feedback γt w.r.t.
its domain Xt rather than its range Ut?

And the answer is:

impossible in the general case!

In the deterministic case, there is no reason to search for feedbacks and

the optimal controls correspond to values rather than functions.
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Decomposition/coordination in the stochastic case

Apply a decomposition/coordination scheme, for example the
price decomposition, to a SOC problem subject to coupling
constraints (theory available in general Hilbert spaces).

As pointed out in the deterministic case, new variables, that

is, dual multipliers Λ
(k)
t , appear in the subproblems arising at

iteration k : these variables, given at this stage of calculation,
corresponds to random variables.

The process Λ(k) acts as an additional input (data) in the
subproblems, but the structure of this process is a priori
unknown: it may be correlated in time, so that the white
noise assumption, crucial for Dynamic Programming, has no
reason to be fulfilled in that context!
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Summary

On the one hand, it seems that Dynamic Programming
cannot be decomposed in a straightforward manner.

On the other hand, applying a decomposition scheme to a
SOC problem introduces coordination instruments in the

subproblems, that is, multipliers Λ
(k)
t in the case of price

decomposition, which correspond to additional fixed random
variables whose structure is unknown.

Question: how to handle these coordination instruments in order
to obtain (an approximation of) the overall optimum of the
problem?
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Simplified energy management problem

min
U,X

E

(
N∑

i=1

( T−1∑
t=0

c i

2
(Ui

t)2 +
d i

2
(Xi

T − x i
f )2

))
,

subject to:

Xi
t+1 = Xi

t −Ui
t + Ai

t+1 ,

Dt −
N∑

i=1

Ui
t = 0 ,

Dt −
N∑

i=1

Ui
t = 0 ,

Ui
t � σ

(
A0, . . . ,At ,D0, . . . ,Dt

)
,

with At = (A1
t , . . . ,A

N
t ).

The multiplier associated to the coupling constraint is denoted Λt .P. Carpentier & SOWG Information Constraints in Stochastic Control Summer 2012 27 / 56
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Price decomposition

Consider the subproblem i obtained by price decomposition:

min
Ui ,Xi

E
( T−1∑

t=0

(c i

2
(Ui

t)2−Λt ·Ui
t

)
+

d i

2
(Xi

T − x i
f )2

)
,

subject to:

Xi
t+1 = Xi

t −Ui
t + Ai

t+1 ,

Ui
t � σ

(
A0, . . . ,At ,D0, . . . ,Dt

)
,

It incorporates the stochastic process (Λ0, . . . ,ΛT−1), so that
Dynamic Programming cannot be applied considering only the
“state” variable Xi

t .

The notation Λt ·Ui
t is used to represent the standard product of the values

taken by the two random variables, namely Λt(ω)Ui
t(ω). The scalar product

(in L2) of these variables is:
˙
Λt ,U

i
t

¸
= E

`
Λt ·Ui

t

´
=
R

Ω
Λt(ω)Ui

t(ω) dP(ω).
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Dynamics of the multipliers

Proposition 1 (Strugarek)

Assume that the random variables Wt = (At ,Dt) are independent
over time (white noise). Let β =

∑N
i=1 1/c i and assume that

∃α > 0 , c i = αd i , ∀i = 1, . . . ,N ,

Then the optimal multiplier process Λ] is such that

Λ]0 =
1

β

(
(1− α)D0 − α

T−1∑
τ=1

E
(
Dτ

)− α T∑
τ=1

E
(
Aτ

))
,

Λ]t+1 = Λ]t +
1

β

(
(1 + α)Dt+1 −Dt − αE

(
Dt+1

)
− α

(
At+1 − E

(
At+1

)))
.

P. Carpentier & SOWG Information Constraints in Stochastic Control Summer 2012 29 / 56



Decomposition/coordination overview
Strugarek’s exact decomposition example
Dual approximate dynamic programming

Application to a dam management problem

Price decomposition and Dynamic Programming

Thanks to Proposition 1, each subproblem i can be solved using
Dynamic Programming provided we take into account both the
dynamics of Λ]t and the dynamical effect induced by Dt .

This leads to use the 3-dimensional state variable (Xi
t ,Λt ,Ξt):

Xi
t+1 = Xi

t −Ui
t + Ai

t+1 ,

Λt+1 = Λt +
1

β

(
(1 + α)Dt+1 − Ξt − αE

(
Dt+1

)− α(At+1 − E
(
At+1

)))
,

Ξt+1 = Dt+1 .

The optimal solution of the N-dimensional state initial problem is
obtained by solving N subproblems with state dimension equal to 3.

The optimal control is of the form: Ui
t
]

= γ i
t
](

Xi
t ,Λt ,Dt

)
.
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What can be drawn from this example

Although the multiplier Λt a priori depends on
(
X1

t , . . . ,X
N
t ,Dt

)
in

the Markovian case,1 we saw in our example that Λt may depend
only on a reduced subset of variables. So we were able to break the
curse of dimensionality and to implement Dynamic Programming.

In the sequel, we will try to identify a reduced subset of variables
which “explains” the multiplier Λt in order to efficiently solve the
subproblems which arise in price decomposition. Usually, such an
identification will be done only approximately: indeed, the very
specific situation of Strugarek’s example (which led to an exact
multiplier dynamics) can not be extended to the general case.

Identifying directly a dynamics for the multiplier (e.g. using ARMA models) is

not satisfactory: thus, the subset of AR(1) processes is not convex!

1and on the past noises
`
A0, . . . ,At ,D0, . . . ,Dt

´
in the general case
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Optimization problem

The problem is a “flower model” stochastic optimization problem:

min
U,X

E
( N∑

i=1

( T−1∑
t=0

Li
t(Xi

t ,U
i
t ,Wt+1) + K i (Xi

T )
))

,

subject to dynamics constraints:

Xi
0 = f i

-1(W0) ,

Xi
t+1 = f i

t (Xi
t ,U

i
t ,Wt+1) ,

to measurability constraints:

Ui
t � σ(W0, . . . ,Wt ,Wt+1) , Hazard-Decision setting

and to instantaneous coupling constraints

N∑
i=1

g i
t (Xi

t ,U
i
t ,Wt+1) = 0 . Feasible constraints
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Problem formulation and price decomposition
Subproblems resolution and coordination
What have we really done?

Optimization problem

The problem is a “flower model” stochastic optimization problem:

min
U,X

E
( N∑

i=1

( T−1∑
t=0

Li
t(Xi

t ,U
i
t ,Wt) + K i (Xi

T )
))

, (2a)

subject to dynamics constraints:

Xi
0 = f i

-1(W-1) , (2b)

Xi
t+1 = f i

t (Xi
t ,U

i
t ,Wt) , (2c)

to measurability constraints:

Ui
t � σ(W-1, . . . ,Wt) , (2d)

and to instantaneous coupling constraints

N∑
i=1

g i
t (Xi

t ,U
i
t ,Wt) = 0 . (2e)
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Problem formulation and price decomposition
Subproblems resolution and coordination
What have we really done?

Decomposable problem setting

The considered system consists of N subsystems, whose dynamics
and costs functions are independent one from another. The state
and the control of the global system write

Xt =
(
X1

t , . . . ,X
N
t

)
,

Ut =
(
U1

t , . . . ,U
N
t

)
,

and all the random variables belong to Hilbert spaces:
Xi

t ∈ L2
(
Ω,A,P; Rni

)
, Ui

t ∈ L2
(
Ω,A,P; Rmi

)
, Wt ∈ L2

(
Ω,A,P; Rp

)
.

Note that there are three types of coupling in the problem:

1 temporal coupling induced by the state dynamics,

2 informational coupling induced by nonanticipativity,

3 spatial coupling induced by the instantaneous constraint.
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Assumptions

Assumption 1 (White noise)

Noises W-1, . . . ,WT−1 are independent over time.

Remember that we have also assumed that we are in the case of
full noise observation:

Ui
t � σ(W-1, . . . ,Wt) .

We thus are in the Markovian case , so that DP applies.

Notice that, in our Hazard–Decision framework, the decision maker at time t

observes the current noise value Wt before choosing the control Ut . In such a

setting, the optimal decision at time t depends on both the state variable Xt

and the noise variable Wt (whereas the Bellman function only depends on the

state variable Xt).
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Lagrangian formulation

We dualize the coupling constraint and obtain the Lagrangian:

L(X,U,Λ) = E

(
N∑

i=1

( T−1∑
t=0

Li
t(Xi

t ,U
i
t ,Wt) + K i (Xi

T )

+
T−1∑
t=0

Λt · g i
t (Xi

t ,U
i
t ,Wt)

))
,

where Λt is a σ(W-1, . . . ,Wt)-measurable random variable.

Under standard assumptions, a saddle point of L exists, and

min
U,X

max
Λ
L(X,U,Λ) = max

Λ
min
U,X
L(X,U,Λ) .
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Uzawa algorithm

At iteration k of the algorithm,
1 Solve subproblem i , i = 1, . . . ,N, with Λ(k) fixed:

min
Ui ,Xi

E
( T−1∑

t=0

(
Li

t(Xi
t ,U

i
t ,Wt) + Λ

(k)
t · g i

t (Xi
t ,U

i
t ,Wt)

)
+ K i (Xi

T )

)
,

(3a)
subject to

Xi
t+1 = f i

t (Xi
t ,U

i
t ,Wt) , (3b)

Ui
t � σ(W-1, . . . ,Wt) , (3c)

whose solution is denoted
(
Ui ,(k),Xi ,(k)

)
.

2 Update the multipliers Λt :

Λ
(k+1)
t = Λ

(k)
t + ρt

( N∑
i=1

g i
t

(
X

i,(k)
t ,U

i,(k)
t ,Wt

))
. (4)
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Main idea of DADP

As already pointed out, Λ
(k)
t depends on (W-1, . . . ,Wt), so that

solving a subproblem is as complex as solving the original problem.

In order to overcome the difficulty, let us choose at each time t a
random variable Yi

t which is measurable w.r.t. the past noises(
W-1, . . . ,Wt

)
. We call Yi =

(
Yi

0, . . . ,Y
i
T−1

)
the information

process for subsystem i .

The core idea is to replace the multiplier Λ
(k)
t at iteration k by its

conditional expectation w.r.t. Yi
t , namely E(Λ

(k)
t | Yi

t). Making
this change is of interest if the following two conditions are met:

1 Yi
t is (strongly) correlated to the random variable Λt ,

2 Yi is a short memory process.

Note that we require that the information process is not influenced by controls.
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Subproblem approximation

Following this idea, we replace Subproblem (3) by:

min
Ui ,Xi

E
( T−1∑

t=0

(
Li

t(Xi
t ,U

i
t ,Wt)+E(Λ

(k)
t | Yi

t)·g i
t (Xi

t ,U
i
t ,Wt)

)
+K i (Xi

T )

)
,

subject to

Xi
t+1 = f i

t (Xi
t ,U

i
t ,Wt) ,

Ui
t � σ(W-1, . . . ,Wt) .

The conditional expectation E(Λ
(k)
t | Yi

t) corresponds to a given
function of the variable Yi

t , so that the Subproblem (3) involves
the two exogenous random processes W and Yi . If Yi exhibits a
dynamics of small size, the subproblem can be solved by DP.
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Possible choices for the information process

1 Perfect memory: Yi
t =

(
W-1, . . . ,Wt

)
.

E(Λ
(k)
t | Yi

t) = Λ
(k)
t : no approximation!

The state size of the subproblem increases with time. . .

2 Minimal information: Yi
t ≡ cste.

Λ
(k)
t is approximated by its expectation E(Λ

(k)
t ).

The information variable is summarized by a constant value.

3 Static information: Yi
t = hi

t

(
Wt

)
.

Such a choice is guided by the intuition that a part of Wt

mostly “explains” the optimal multiplier.

4 Dynamic information: Yi
t = hi

t−1

(
Yi

t−1,Wt

)
.

In the Dynamic Programming equation, the state vector is
augmented by embedding Yi

t , that is, the necessary memory
to compute the information variable at the next time step.
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Dynamic Programming equation

In the last case (dynamic information), the DP equation writes:

V i
T (x , y) = K i (x) ,

V i
t (x , y) = E

(
min

u

(
Li

t(x , u,Wt)

+ E(Λ
(k)
t | Yi

t) · g i
t (x , u,Wt)

+ V i
t+1

(
Xi

t+1,Y
i
t

)))
,

with Xi
t+1 = f i

t (x , u,Wt) and Yi
t = hi

t−1

(
y ,Wt

)
.

The index gap between the information variable and and the stock variable

comes from our (bad) notations in the hazard-decision setting: the information

used at time t to take decisions is the conjunction of the information kept in

memory (that has index t − 1) and of the noise Wt .
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About the coordination

The task of coordination is performed in a scenario-wise manner.

A bunch of noise scenarios is given once for all, and the
trajectories of the information process Yi are simulated along
these scenarios.

At iteration k, the optimal trajectories of both the state
process Xi ,(k) and the control process Ui ,(k) are simulated
along the noise scenarios for all the subsystems.
The dual multipliers are updated along the noise scenarios
according to the formula:

Λ(k+1)
t = Λ(k)

t + ρt

„ NX
i=1

g i
t

`
Xi,(k)

t ,Ui,(k)
t ,Wt

´«
.

The conditional expectations E(Λ
(k+1)
t | Yi

t) are obtained by

regression of the trajectories of Λ
(k+1)
t on those of Yi

t .
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DADP algorithm

The algorithm, called Dual Approximate Dynamic Programming,
(DADP) is summarized as follows.

Λ
(k+1)
t = Λ

(k)
t + ρt

( ∑
gi

t

(
X

i,(k)
t , U

i,(k)
t ,W t

))

( X
i,
(k

) ,
U

i,
(k

))
( X

1,
(k

) ,U
1,
(k

)
)

Scenario-wise coordination

Subproblem 1

and solve subproblem

Subproblem i

and solve subproblem

Subproblem N

and solve subproblem

(
X

N
,(k),U

N
,(k) )Λ(k)Λ(k)

Λ(k)

Compute E
(
Λ

(k)
t | Y N

t

)
Compute E

(
Λ

(k)
t | Y i

t

)
Compute E

(
Λ

(k)
t | Y 1

t

)
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Interpretation of DADP (1)

The approximation made on the dual process gives us a tractable
way of computing strategies for the subsystems. Let us examine
precisely the consequences in terms of constraints.

From now on, assume that the information variable Yt is the same
for all subsystems. We consider a new problem derived from (2):

min
U,X

E
( N∑

i=1

( T−1∑
t=0

Li
t(Xi

t ,U
i
t ,Wt) + K i (Xi

T )
))

, (5a)

subject to the modified coupling constraints:

E
( N∑

i=1

g i
t (Xi

t ,U
i
t ,Wt)

∣∣∣ Yt

)
= 0 . (5b)
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Interpretation of DADP (2)

Proposition 2

Suppose the Lagrangian associated with Problem (5) has a saddle
point. Then the DADP algorithm can be interpreted as the Uzawa
algorithm applied to Problem (5).

Proof. Since the term
˙
E(Λ(k)

t | Yt) , g
i
t (Xi

t ,U
i
t ,Wt)

¸
which appears in the cost

function of subproblem i in DADP can be written:˙
E(Λ(k)

t | Yt) , g
i
t (Xi

t ,U
i
t ,Wt)

¸
=
˙
Λ(k)

t ,E(g i
t (Xi

t ,U
i
t ,Wt) | Yt)

¸
,

the global constraint really handled by DADP is:

E
“ NX

i=1

g i
t (Xi

t ,U
i
t ,Wt)

˛̨̨
Yt

”
= 0 . 2

DADP thus consists in replacing an almost-sure constraint by
its conditional expectation w.r.t. the information variable Yt .
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Operating scheme

x3
t

Dam 1

Dam 2

Dam 3

a1
t

x1
t

u1
t a2

t

u2
tx2

t a3
t

u3
t

ai
t : water inflow at dam i at time t,

x i
t : water volume of dam i at time t,

ui
t : water turbinated by dam i at time t,

pi
t : water price at dam i at time t,

w i
t = (ai

t , p
i
t) and wt = (w 1

t , . . . ,w
N
t ).
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Dynamics and costs

zit

Dam i

xi
t

sit

ai
t

ui
t

Dam dynamics:

x i
t+1 = f i

t (x i
t , u

i
t ,w

i
t , z

i
t) ,

= x i
t−ui

t+ai
t+z i

t−s i
t .

with

z i
t = g i−1

t (x i−1
t , ui−1

t ,w i−1
t , z i−1

t ) ,

= ui−1
t + max

{
0,x i−1

t −ui−1
t +ai−1

t +z i−1
t −x i−1

}︸ ︷︷ ︸
s i−1
t

.

We assume the Hazard-Decision information structure (ui
t is chosen

once w i
t is observed), so that ui ≤ ui

t ≤ min
{

ui , x i
t + ai

t + z i
t − x i

}
.

Cost at time t < T : Li
t(x i

t , u
i
t ,w

i
t , z

i
t) = −pi

tu
i
t+ε(ui

t)2.

Final cost at time T : K i
(
x i
T

)
= κi min{0,x i

T−bx i}2.
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Stochastic optimization problem

The global optimization problem reads:

min
(X,U,Z)

E
( N∑

i=1

( T−1∑
t=0

Li
t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

)
+ K i

(
Xi

T

)))
, (6a)

subject to:

Xi
t+1 = f i

t (Xi
t ,U

i
t ,W

i
t ,Z

i
t) , ∀i , ∀t , (6b)

Zi+1
t = g i

t (Xi
t ,U

i
t ,W

i
t ,Z

i
t) , ∀i , ∀t , (6c)

as well as measurability constraints:

Ui
t � σ

(
W0, . . . ,Wt

)
, ∀i , ∀t . (6d)

 “Cascade model” stochastic optimisation problem.
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Price decomposition and DADP algorithm

Our aim is to dualize Constraint (6c) and to solve Problem (6) by
using DADP algorithm: at iteration k , the multiplier associated to

(6c) is a fixed random variable Λ
i+1,(k)
t , and the term (under the

expectation) induced by duality in the cost function is

E
(
Λ

i+1,(k)
t

∣∣ Yi
t

) · (Zi+1
t − g i

t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

))
.

It can be decomposed as the sum of two terms

E
(
Λ

i+1,(k)
t

∣∣ Yi
t

) · Zi+1
t , pertaining to dam i +1, and

−E
(
Λ

i+1,(k)
t

∣∣ Yi
t

) · g i
t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

)
, pertaining to dam i .
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Subproblems and information variables

The expression of Subproblem i is:

min
Ui ,Zi ,Xi

E
( T−1∑

t=0

(
Li

t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

)
+ E

(
Λ

i ,(k)
t

∣∣ Yi−1
t

) · Zi
t

− E
(
Λ

i+1,(k)
t

∣∣ Yi
t

) · g i
t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

))
+ K i

(
Xi

T

))
.

Possible choices for Yi
t are:2

1 Yi
t ≡ cste: we deal with the constraint in expectation,

2 Yi
t = Wi−1

t : we incorporate the noise Wi−1
t in Subproblem i ,

3 Yi
t = f̃ i−1

t

(
Yi

t−1,W
i−1
t

)
: we mimic the dynamics of Xi−1

t .

2Remember that Yi
t is related to a constraint involving both Wi−1

t and Xi−1
t .
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The particular case Yi
t ≡ cste

1 The multipliers Λ
i ,(k)
t appear only in the subproblems by

means of their expectations E
(
Λ

i ,(k)
t

)
, so that each

subproblem involves a 1-dimensional state variable.
2 The coordination task reduces to:

E
(
Λ

i,(k+1)
t

)
= E

(
Λ

i,(k)
t

)
+ ρtE

(
Z

i+1,(k)
t − g i

t

(
X

i,(k)
t ,U

i,(k)
t ,Wi

t ,Z
i,(k)
t

))
.

3 The constraints taken into account by DADP are in fact the
expected ones:

E
(

Zi+1
t − g i

t

(
Xi

t ,U
i
t ,W

i
t ,Z

i
t

))
= 0 ,

so that the solutions given by DADP do not satisfy the
inter-dam constraints.
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To be continued
during

the practical works.
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