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Introduction

Stochastic Optimal Control (SOC) problems.

Stochastic discrete time formulation:
noise, state, control variables, cost function, constraints.

Algebraic point of view:
measurability constraints between random variables.

Variational approach:
necessary optimality conditions “à la Kuhn-Tucker”.

Numerical resolution methods.

 Classical way to solve the optimization problem: min
U∈Uad

J(U)

Another approach for such problems: Dynamic Programming
(functional point of view, sufficient conditions).
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Introduction

Two main paths when solving infinite dimensional problems:

Optimize

Optimize

D
isc

r
e
t
ize

OCorig

OCdisc

Porig

Pdisc

D
isc

r
e
t
ize

Path 2

Path 1

Noncommutative diagram!

1 either obtain a finite dimensional
approximation of the problem
(discretize) and then solve the
associated optimality conditions
(optimize),

2 or compute the optimality
conditions of the problem
(optimize), and then solve them
using a finite dimensional
approximation (discretize).

De Lara’s lecture: Path 1 — Today’s lecture: Path 2
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Introduction

On the agenda.

Obtain tractable optimality conditions for SOC problems:

express the gradient of the criterion w.r.t. control variables
(co-state variables),
Express both the pointwise and the measurability constraints,
the latter corresponding to projections on linear subspaces
(conditional expectation),

 adequate combination of conditions involving gradients and
projections.

Devise algorithms to numerically solve these conditions.
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Lecture outline

1 Formulation of the problem

2 Optimality conditions

3 Application to SOC problems

4 Numerical algorithm and example
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Stochastic optimal control problem
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Overview

Consider a fixed discrete time horizon T .

min
U,X

E
( T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )
)
,

subject to the constraints:

X0 = f-1(W0) ,

Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t = 0, . . . ,T − 1 ,

Ut � Gt , ∀t = 0, . . . ,T − 1 ,

Ut ∈ Ct , ∀t = 0, . . . ,T − 1 .

All variables Ut , Xt and Wt are random variables over (Ω,A,P).
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Stochastic optimal control problem
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Dynamics

The system dynamics follows the equations (P-a.s.):

X0 = f-1(W0) ,

Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t = 0, . . . ,T − 1 .

Wt ∈ Wt = L2(Ω,A,P;Wt) is the noise variable at time t,
a random variable with values in Wt := Rdw ;

Ut ∈ Ut = L2(Ω,A,P;Ut) is the control variable at time t,
a random variable with values in Ut := Rdu ;

Xt ∈ Xt = L2(Ω,A,P;Xt) is the “state” variable at time t,
a random variable with values in Xt := Rdx .

Each function ft is assumed to be continuously differentiable w.r.t. its

first two arguments and to be a normal integrand.
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Cost function

We refer to W = (W0, . . . ,WT ) as the noise stochastic process,
which is an element of the product space W :=W0 × · · · ×WT .

Similar notations apply (among others) to

the control process U = (U0, . . . ,UT−1) and the associated space U ,

the “state” process X = (X0, . . . ,XT ) and the associated space X .

The cost function j̃ involves an integral term Lt and a final term K :

j̃(U,X,W) :=
T−1∑
t=0

Lt(Xt ,Ut ,Wt+1) + K (XT ) ,

and the criterion to be minimized is the expectation:

E
(̃

j(U,X,W)
)
.

Lt is continuously differentiable w.r.t. its first two arguments and is a

normal integrand. K is continuously differentiable.
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Stochastic optimal control problem
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Measurability constraints (1)

Let Ft be the σ-field generated by (W0, . . . ,Wt). Ft represents
the information available at time t when the decision maker has
a complete observation and a full memory of past noises.

Let Gt be a subfield of Ft . We require that the decision variable
Ut is measurable w.r.t. Gt :

Ut � Gt ,

that is, σ(Ut) ⊂ Gt ⊂ Ft = σ(W0, . . . ,Wt).

This constraint defines a linear subspace of Ut denoted Ume
t :

Ume
t = L2(Ω,Gt ,P;Ut) .

Note that the projection onto Ume
t is a linear operator.
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Measurability constraints (2)

The subfield Gt may be generated by an observation variable Yt :

1 Yt = (W0, . . . ,Wt) (full noise observation),

2 Yt = (X0, . . . ,Xt) (full state observation),

3 Yt = Xt (last state observation).

What is important to stress in the framework considered in this
lecture is that Yt or Gt should not depend upon past decisions.
This restriction is essential to be able to use differential calculus.
This assumption holds true only for the first example here above
(in the last two examples, Xt depends on (U0, . . . ,Ut−1)).

We shall model measurability constraints using conditional expectations

E(· | Gt). Removing this assumption would imply that one knows how to

differentiate w.r.t. Yt . . .
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Stochastic optimal control problem
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Pointwise constraints

Consider, for every t, a set-valued mapping Ct : Ω⇒ Ut . We
require that Ut is subject to the almost sure constraint:

Ut(ω) ∈ Ct(ω) P-a.s. .

This constraint defines a subset of Ut denoted Uas
t .

The set-valued random mapping Ct assumes nonempty, closed,
convex values P-a.s.. Then, Uas

t is a closed convex subset of Ut .
We moreover assume that Ct is Gt-measurable for all t.

Assume that Gt is generated by Yt . For any pair (ω, ω′) s.t. Yt(ω) = Yt(ω
′),

we have Ut(ω) = Ut(ω
′) (measurability constraint). But at the same time, if

Ct(ω) ∩ Ct(ω
′) = ∅, then the pointwise and the measurability constraints are

incompatible. This is prevented by the measurability assumption on Ct :

Yt(ω) = Yt(ω
′)⇒ Ct(ω) = Ct(ω

′) .
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To sum up

min
U,X

E
( T−1∑

t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )︸ ︷︷ ︸
j̃(U,X,W)

)
, (1a)

subject to the constraints:

X=F (U,W) :

{
X0 = f-1(W0) ,
Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t = 0, . . . ,T − 1 ,

(1b)

U∈ Ume : Ut � Gt , ∀t = 0, . . . ,T − 1 , (1c)

U∈ Uas : Ut(ω) ∈ Ct(ω) P-a.s. , ∀t = 0, . . . ,T − 1 . (1d)
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A compact formulation

The state X is just an intermediate stochastic process completely
determined by U and W through (1b). Let j(U,W) be the value
of the cost j̃(U,X,W) when replacing X by F (U,W), and

J(U) := E
(
j(U,W)

)
.

Using (1c)—(1d), the SOC problem (1) boils down to

min
U ∈ U

J(U) subject to U ∈ Ume ∩ Uas . (2)

Optimality conditions for Problem (2) express that the gradient of J
at a solution U] belongs to the cone orthogonal to the constraints.

How to operate a projection onto the intersection Ume ∩ Uas?

How to compute the gradient ∇J(U) of J (defined implicitly)?
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About the notation

Forget for a while the variable W.

The notation j(U) is used to represent the cost function under
the integral sign. In this situation, j(U) is a random variable
obtained by the function composition j ◦U:

j(U) : Ω → U → R
ω 7→ U(ω) 7→ j

(
U(ω)

)
.

We use the notation J(U) to represent the expected cost:

J : U → R
U 7→ E

(
j(U,W)

)
.

In this situation, J(U) is the value taken by J at point U,
and by no means the composite function J ◦U.

 Notational ambiguity, lifted by the context.
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Projection on Ume and Uas

Recall that Ut is the Hilbert space L2(Ω,A,P;Ut), and that

Ume
t = {Ut ∈ Ut |Ut � Gt } ,
Uas
t = {Ut ∈ Ut |Ut(ω) ∈ Ct(ω) P-a.s.} .

1 projUme
t

(Ut) is the conditional expectation E(Ut | Gt).

E(· | Gt) is by definition the orthogonal projection on L2(Ω,Gt ,P;Ut).

2 projUas
t

(Ut) is the random variable: ω 7→ projCt(ω) (Ut(ω)).

projUas
t

(Ut) = arg min
V∈Ut

(
‖V −Ut‖2

Ut + χUas
t

(V)
)

= arg min
V∈Ut

∫
Ω

(
‖V(ω)−Ut(ω)‖2

Ut
+ χ

Ct (ω)

(
V(ω)

))
dP(ω) ,

since χUas
t

(V) =
∫

Ω
χ

Ct (ω)

(
V(ω)

)
dP(ω).

Otherwise stated, projUas
t

operates “ω per ω” (pointwise).
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Projection on Ume ∩ Uas

Proposition 1

Assume that Ct is Gt-measurable, closed convex valued. Then

projUas
t ∩ Ume

t
= projUas

t
◦projUme

t
.

Note first that the pointwise projection of a Gt -measurable function is also a
Gt-measurable function:

projUas
t

(Ume
t ) ⊂ Ume

t .

Then, the projection U\
t of Ut ∈ Ut on Ume ∩ Uas is characterized by

〈Ut −U\
t ,V −U\

t 〉 ≤ 0 , ∀ V ∈ Ume ∩ Uas .

But U[
t := projUas

t
◦projUme

t
(Ut) is such that

〈Ut −U[
t ,V −U[

t 〉 ≤ 〈Ut − projUme
t

(Ut) ,V −U[
t 〉 = 0 .

P. Carpentier & SOWG Information Constraints in Stochastic Control Summer 2012 19 / 51



Formulation of the problem
Optimality conditions

Application to SOC problems
Numerical algorithm and example

Projection on Ume ∩ Uas

Stationarity conditions
Computation of the cost gradient

1 Formulation of the problem
Stochastic optimal control problem
Compact formulation

2 Optimality conditions
Projection on Ume ∩ Uas

Stationarity conditions
Computation of the cost gradient

3 Application to SOC problems
First set of optimality conditions
Adapted optimality conditions
Markovian case

4 Numerical algorithm and example
The particle method
A simple benchmark problem
Results and comments

P. Carpentier & SOWG Information Constraints in Stochastic Control Summer 2012 20 / 51



Formulation of the problem
Optimality conditions

Application to SOC problems
Numerical algorithm and example

Projection on Ume ∩ Uas

Stationarity conditions
Computation of the cost gradient

Stationary conditions in the general case

Let J : U → R be a differentiable function over a closed convex
subset Uad of a Hilbert space U . Consider the problem:

min
U∈Uad

J(U) .

The following statements are three equivalent necessary conditions
for U] ∈ Uad to be optimal:

∀U ∈ Uad ,
〈
∇J(U]) ,U−U]

〉
≥ 0 , (3a)

∇J(U]) ∈ −∂χ
Uad

(U]) , (3b)

∀ε > 0 , U] = projUad

(
U] − ε∇J(U])

)
. (3c)

Equivalence (3a)—(3b) stems from the fact that the subdifferential ∂χ
Uad (U)

of the characteristic function χ
Uad is the normal cone to Uad at point U. The

equivalence (3a)—(3c) is immediate.
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Stationary conditions: case Uad = Ume ∩ Uas

Proposition 2

Assume that Uad = Ume ∩ Uas and that Proposition 1 applies.
Then a necessary condition for U] ∈ Uad to be optimal is:

projUme

(
∇J(U])

)
∈ −∂χUas (U]) . (4)

Condition (3c) writes:

∀ε > 0 , U] = projUas∩Ume

(
U] − ε∇J(U])

)
,

= projUas ◦projUme

(
U] − ε∇J(U])

)
,

= projUas

(
U] − εprojUme

(
∇J(U])

))
,

(projUme is a linear operator), hence the result thanks to Condition (3b).
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Stationarity conditions: application to Problem (1)

Condition (4) has to be written at each time t. As already seen,
projUme

t
(·) = E(· | Gt), so that the stationarity conditions can be

more explicitly written, that is, for t = 0, . . . ,T − 1:

E
(
∇Ut J(U])

∣∣ Gt

)
∈ −∂χUast (U]

t) . (5)

Note that the expression of the gradient E
(
∇Ut J(U)

∣∣ Gt

)
can be

used inside a gradient-like algorithm in order to obtain the optimal
solution U]

t :

U
(k+1)
t = projUas

t

(
U

(k)
t − εE

(
∇ut J(U(k))

∣∣ Gt

))
.
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Computation of the cost gradient (1)

A classical way to obtain the gradient of J(U) = E
(
j(U,W)

)
(obtained by replacing X with F (U,W)) is to introduce the
so-called co-state variables λt . The method is the following.

Form the “pseudo-Lagrangian” L:

L(X,U,λ) = E
(
λ>0
(
f-1(W0)− X0

)
+

T−1∑
t=0

λ>t+1

(
ft(Xt ,Ut ,Wt+1)− Xt+1

)
+

T−1∑
t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )

)
,

(λt is a random variable which belongs to L2(Ω,A,P;Xt)).
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Projection on Ume ∩ Uas
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Computation of the cost gradient (2)

Draw X from ∇λL(X,U,λ) = 0 (forward dynamics):

X0 = f-1(W0) ,

Xt+1 = ft(Xt ,Ut ,Wt+1) , .

Draw λ from ∇XL(X,U,λ) = 0 (backward dynamics):

λT = ∇K (XT ) ,

λt = ∇xLt(Xt ,Ut ,Wt+1) +∇x ft(Xt ,Ut ,Wt+1)λt+1 .

Obtain the gradient ∇J(U) from ∇UL(X,U,λ):

∇Ut J(U) = ∇uLt(Xt ,Ut ,Wt+1) +∇uft(Xt ,Ut ,Wt+1)λt+1 .
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Initial formulation of the optimality conditions (1)

Gathering the results obtained at the previous section, that is, the
computation of the cost gradient and the stationarity condition (5),
we deduce a first set of optimality conditions for Problem (1).

If U] is a solution of Problem (1), there exist X] and λ] such that

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) ,

λ]
T = ∇K (X]

T ) ,

λ]
t = ∇xLt(X]

t ,U
]
t ,Wt+1) +∇x ft(X]

t ,U
]
t ,W

]
t+1)λ]

t+1 ,

E
(
∇uLt(X]

t ,U
]
t ,Wt+1) +∇uft(X]

t ,U
]
t ,Wt+1)λ]

t+1

∣∣∣ Gt

)
∈ −∂χUast (U]

t) .
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Initial formulation of the optimality conditions (2)

Note that the co-state random variable λt is not Ft-adapted (the
dynamics of λt propagates in backward time). It would however be
normal to be because λt corresponds to the multiplier associated
to the Ft-adapted constraint ft−1(Xt−1,Ut−1,Wt)− Xt = 0.

Decompose λt into its Ft-measurable component, namely

Λt = E(λt | Ft) ,

on the one hand, and its orthogonal complement λt − Λt on the
other hand. Only the former component contributes to the duality
product E

(
λt ·

(
ft−1(Xt−1,Ut−1,Wt)− Xt

))
. Hence it should be

possible to get optimality conditions involving only Λt , that is, an
adapted co-state process. . .
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Optimality conditions with adapted co-states (1)

Starting from the previous set of optimality conditions involving the
non Ft-adapted co-state variables λt , and taking the conditional
expectation w.r.t. Ft of the co-state equations, we obtain:

If U] is a solution of Problem (1), there exist X] and λ] such that

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) ,

Λ]
T = ∇K (X]

T ) ,

Λ]
t = E

(
∇xLt(X]

t ,U
]
t ,Wt+1) +∇x ft(X]

t ,U
]
t ,Wt+1)λ]

t+1

∣∣∣ Ft

)
,

E
(
∇uLt(X]

t ,U
]
t ,Wt+1) +∇uft(X]

t ,U
]
t ,Wt+1)λ]

t+1

∣∣∣ Gt

)
∈ −∂χUast (U]

t) .
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Optimality conditions with adapted co-states (2)

From the general property G ⊂ F ⇒ E(· | G) = E
(
E(· | F)

∣∣ G),
we deduce that this set of optimality conditions only depends on
Λt = E(λt | Ft), hence a second set of optimality conditions:

If U] is a solution of Problem (1), there exist X] and Λ] such that

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) ,

Λ]
T = ∇K (X]

T ) ,

Λ]
t = E

(
∇xLt(X]

t ,U
]
t ,Wt+1) +∇x ft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ Ft

)
,

E
(
∇uLt(X]

t ,U
]
t ,Wt+1) +∇uft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ Gt

)
∈ −∂χUast (U]

t) .
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Markovian setting and assumptions

Two kinds of assumptions:

on the one hand, the noise process W should forget the past,

on the other hand, constraints on the decision process U
should not reintroduce past observations.

Assumption 1 (White noise)

The random variables W0, . . . ,WT are independent over time.

Assumption 2 (Decision constraints)

1 Gt = Ft .

2 The set-valued mappings Ct involved in the pointwise
constraints are constant (deterministic) and denoted Ct .
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Optimality conditions (1)

We start from the second set of optimality conditions, that is, the
conditions involving adapted co-state variables Λt = E(λt | Ft).

If U] is a solution of Problem (1), there exist X] and Λ] such that

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) ,

Λ]
T = ∇K (X]

T ) ,

Λ]
t = E

(
∇xLt(X]

t ,U
]
t ,Wt+1) +∇x ft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ Ft

)
,

E
(
∇uLt(X]

t ,U
]
t ,Wt+1) +∇uft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ Ft

)
∈ −∂χUast (U]

t) .
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Optimality conditions (2)

Using implicit measurable selection theorems, we can prove the
following property by induction (under Assumptions 1 and 2).

If U] is a solution of Problem (1), there exist X] and Λ] such that

X]
0 = f-1(W0) ,

X]
t+1 = ft(X]

t ,U
]
t ,Wt+1) ,

Λ]
T = ∇K (X]

T ) ,

Λ]
t = E

(
∇xLt(X]

t ,U
]
t ,Wt+1) +∇x ft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ X]
t

)
,

E
(
∇uLt(X]

t ,U
]
t ,Wt+1) +∇uft(X]

t ,U
]
t ,Wt+1)Λ]

t+1

∣∣∣ X]
t

)
∈ −∂χUast (U]

t) .

Moreover, we have that U]
t is X]

t-measurable: U]
t � X]

t .
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Remarks about the Markovian case

The new optimality conditions involve conditional expectations
w.r.t. the state X]

t , that is, a conditioning term of fixed size.

The random variables U]
t and Λ]

t involved in the optimality
conditions are X]

t-measurable. Note that the property
U]

t � X]
t instead of U]

t � Gt is a valuable result, strongly
related to Dynamic Programming.

These new optimality conditions have been derived from the
adapted optimality conditions, in the Markovian case. We
could have started from the constraint Ut � Xt and have
attempted to directly obtain optimality conditions. This would
have been a difficult challenge because the feasible set Ume

t

would have depend on the past decision variables through the
state Xt . The indirect path we followed has been a way
to circumvent this difficulty.
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Optimality conditions from a functional point of view (1)

Since U]
t and Λ]

t are both X]
t-measurable, there exist measurable

mappings γ]t : Xt → Ut and Λ]
t : Xt → Xt such that U]

t = γ]t (X]
t)

and Λ]
t = Λ]

t(X]
t). Then, the last two optimality conditions write:

Λ]
t(X]

t) = E
(
∇xLt

(
X]

t , γ
]
t (X]

t),Wt+1

)
+∇x ft

(
X]

t , γ
]
t (X]

t),Wt+1

)
Λ]
t+1

(
ft(X]

t , γ
]
t (X]

t),Wt+1)
) ∣∣∣ X]

t

)
,

E
(
∇uLt

(
X]

t , γ
]
t (X]

t),Wt+1

)
+∇uft

(
X]

t , γ
]
t (X]

t),Wt+1

)
Λ]
t+1

(
ft(X]

t , γ
]
t (X]

t),Wt+1)
) ∣∣∣ X]

t

)
∈ −∂χUas

t

(
γ]t (X]

t)
)
.

Apart from X]
t , these expressions only involve Wt+1, which is

independent of X]
t . Therefore, the conditional expectation w.r.t.

X]
t reduces to a simple expectation over the distribution of Wt+1.
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Optimality conditions from a functional point of view (2)

We obtain optimality conditions which involve only expectations.

Λ]
T (·) = ∇K (·) ,

Λ]
t(·) = E

(
∇xLt

(
·, γ]t (·),Wt+1

)
+∇x ft

(
·, γ]t (·),Wt+1

)
Λ]
t+1

(
ft(·, γ]t (·),Wt+1)

))
,

E
(
∇uLt

(
·, γ]t (·),Wt+1

)
+∇uft

(
·, γ]t (·),Wt+1

)
Λ]
t+1

(
ft(·, γ]t (·),Wt+1)

))
∈ −∂χUast

(
γ]t (·)

)
.

In the present Markovian case, the optimal solution can also be obtained by the
Dynamic Programming equation:

VT (·) = K(·) , Vt(·) = min
u∈Ct

E
(

Lt

(
·, u,Wt+1

)
+ Vt+1

(
ft(·, u,Wt+1)

))
,

and it can be proved (by induction) that: Λ]
t = ∇Vt .

P. Carpentier & SOWG Information Constraints in Stochastic Control Summer 2012 38 / 51



Formulation of the problem
Optimality conditions

Application to SOC problems
Numerical algorithm and example

The particle method
A simple benchmark problem
Results and comments

1 Formulation of the problem

2 Optimality conditions

3 Application to SOC problems

4 Numerical algorithm and example
The particle method
A simple benchmark problem
Results and comments

P. Carpentier & SOWG Information Constraints in Stochastic Control Summer 2012 39 / 51



Formulation of the problem
Optimality conditions

Application to SOC problems
Numerical algorithm and example

The particle method
A simple benchmark problem
Results and comments

Implementation

We now consider the numerical implementation of the (functional)
optimality conditions obtained in the Markovian case:

Λ]
t(·) = E

(
∇xLt

(
·, γ]t (·),Wt+1

)
+∇x ft

(
·, γ]t (·),Wt+1

)
Λ]
t+1

(
ft(·, γ]t (·),Wt+1)

))
, (6)

E
(
∇uLt

(
·, γ]t (·),Wt+1

)
+∇uft

(
·, γ]t (·),Wt+1

)
Λ]
t+1

(
ft(·, γ]t (·),Wt+1)

))
∈ −∂χUas

t

(
γ]t (·)

)
. (7)

We face two concerns:

expectations must be evaluated:
 Monte Carlo,

discrete representation of functions must be obtained:
 interpolation-regression.
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Interpolation-regression

Consider an unknown function γt : Xt → Ut and two known grids:

xt =
(
x1
t , . . . , x

N
t

)
: grid of N points of Xt ,

ut =
(
u1
t , . . . , u

N
t

)
: grid of N points of Ut ,

such that
ui
t = γt(x i

t) .

In order to evaluate the function at points outside of the grid, we
introduce an interpolation-regression operator:

RUt : XN
t × UN

t → UXt
t ,

so that γ̃t = RUt (xt ,ut) is an approximation of γt .

There are various ways to define this operator (polynomial and
spline interpolation, kernel regression, closest neighbor. . . ).
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Algorithm (1)

Initialization

Obtain a set of N realizations
{

(w i
0, . . . ,w

i
T )
}
i=1,...,N

of the
noise process W.

Obtain grids u
(0)
t =

(
u

1,(0)
t , . . . , u

N,(0)
t

)
, t = 0, . . . ,T−1, for

the control process U.

Iteration (k) (beginning)

Using the control grids u
(k)
t , compute the state values x

i ,(k)
t :

x
i ,(k)
0 = f-1(w i

0) ,

x
i ,(k)
t+1 = ft

(
x
i ,(k)
t , u

i ,(k)
t ,w i

t+1

)
.

which yields the state grids x
(k)
t , t = 0, . . . ,T .
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Algorithm (2)

Iteration (k) (continued)

The approximations Λ
(k)
t of the co-state functions Λ]

t defined
by Equation (6) are constructed by backward recursion:

• `i ,(k)
t =

1

N

N∑
j=1

(
∇xLt

(
x
i ,(k)
t , u

i ,(k)
t ,w j

t+1

)
+

∇x ft
(
x
i ,(k)
t , u

i ,(k)
t ,w j

t+1

)
Λ

(k)
t+1

(
ft
(
x
i ,(k)
t , u

i ,(k)
t ,w j

t+1

)))
,

• `(k)
t =

{
`
i ,(k)
t

}
i=1,...,N

,

• Λ
(k)
t = RXt

(
x

(k)
t , `

(k)
t

)
.

Note that the computation of l
i ,(k)
t is such that the function Λ

(k)
t+1

has to be evaluated at points which lie outside of the grid x
(k)
t+1.
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Algorithm (3)

Iteration (k) (end)

Finally, Equation (7) is used to update the control particles,
using a gradient step (with stepsize ε(k)) projected on the
feasible set Ct :

u
i,(k+1)
t = projCt

(
u
i,(k)
t − ε(k)

N

N∑
j=1

(
∇uLt

(
x
i,(k)
t , u

i,(k)
t ,w j

t+1

)
+

∇uft
(
x
i,(k)
t , u

i,(k)
t ,w j

t+1

)
Λ

(k)
t+1

(
ft
(
x i,(k), u

i,(k)
t ,w j

t+1

))))
.

Terminaison

Assuming the convergence of state and control particle values at

x
(∞)
t =

{
x
i ,(∞)
t

}
i=1,...,N

and u
(∞)
t =

{
u
i ,(∞)
t

}
i=1,...,N

, we build up
an approximation of the solution by interpolation-regression:

γ
(∞)
t = RUt

(
x

(∞)
t ,u

(∞)
t

)
.
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Algorithm (4)

Algorithm summary.

Initialization: Set k = 0 and guess initial control grids u
(0)
t

for t = 0, . . . ,T − 1 and i = 1, . . . ,N.

Iteration k: 1 Compute the state grids x
(k)
t

using a forward recursion.
2 Compute the co-state functions Λ

(k)
t

using a backward recursion.
3 Update the control grids to u

(k+1)
t

using a gradient step.
4 Iterate with k + 1← k or stop if stationarity.

Termination: With the limit values x
(∞)
t and u

(∞)
t , build up

feedback functions γ
(∞)
t for t = 0, . . . ,T − 1.
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A simple benchmark problem

Production management of an hydro-electric dam.

Horizon: T = 24 (one day with one hour time steps).

Dynamics:

X0 = W0 ,
Xt+1 = min

(
max(Xt −Ut + At+1, x), x

)
.

Cost function:∑
t

ct(Dt+1 − Pt+1) + K (XT ) ,

where Pt+1 = g(Ut ,Xt ,At+1) is the electricity production

Constraints:

measurability: Ut � (W0, . . . ,Wt), with Wt = (At ,Dt).
bounds: Ut ∈ [ u , u ].
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A simple benchmark problem: data
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Figure: Water inflow and electricity demand trajectories
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Results: Dynamic Programming
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Figure: Dynamic Programming: optimal feedback for three time instants
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Results: particle method
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Figure: Scenario tree: optimal pairs (x , u) at three time instants
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Final comments

The sampling is done once and for all, and that there is no
need to derive a tree structure from these noise trajectories.

The state space discretization is “self-constructive” and
adapted to the optimal solution of the problem: the state
grids are not designed a priori by the user, as in the case of
the DP resolution, but they are automatically produced by the
algorithm itself. In fact, the state grids reflect the optimal
state distribution of the problem under consideration.

The fact that the particle method is able to construct a grid
in the state space which is adapted to the optimal state
distribution, as illustrated by our benchmark problem, should
be considered as an advantage (but of course not a definitive
answer) to the curse of dimensionality.
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