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Max-plus or tropical algebra

In an exotic country, children are taught that:

“a + b” = max(a, b) “a × b” = a + b

So

“2 + 3” =

“2× 3” =

“5/2” =

“23” =

“
√
−1” =
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The sister algebra: min-plus

“a + b” = min(a, b) “a × b” = a + b

“2 + 3” = 2

“2× 3” = 5
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The term “tropical” refers to Imre Simon, 1943 -

2009

who lived in São Paulo (south tropic).

These structures were invented by several schools in the
world.
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Cuninghame-Green 1960- OR (scheduling, optimization)

Vorobyev ∼65 . . . Zimmerman, Butkovic; Optimization

Maslov ∼ 80’- . . . Kolokoltsov, Litvinov, Samborskii, Shpiz. . . Quasi-classic
analysis, variations calculus

Simon ∼ 78- . . . Hashiguchi, Leung, Pin, Krob, . . . Automata theory

Gondran, Minoux ∼ 77 Operations research

Cohen, Quadrat, Viot ∼ 83- . . . Olsder, Baccelli, S.G., Akian initially
discrete event systems, then optimal control, idempotent probabilities,
combinatorial linear algebra

Nussbaum 86- Nonlinear analysis, dynamical systems, also related work in
linear algebra, Friedland 88, Bapat ˜94

Kim, Roush 84 Incline algebras

Fleming, McEneaney ∼00- max-plus approximation of HJB

Salut, Del Moral ∼95 Puhalskii ∼99, idempotent probabilities.

now in tropical geometry, after Viro, Mikhalkin, Passare, Sturmfels and many.
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Part I

tropical approximation of the value function.
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Lagrange problem / Lax-Oleinik semigroup

v(t, x) = sup
x(0)=x , x(·)

∫ t

0

L(x(s), ẋ(s))ds + φ(x(t))

Lax-Oleinik semigroup: (S t)t≥0, S tφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

S t(sup(φ, ψ)) = sup(S tφ, S tψ)
S t(λ + φ) = λ + S tφ

So S t is max-plus linear.
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The function v is solution of the Hamilton-Jacobi
equation

∂v

∂t
= H(x ,

∂v

∂x
) v(0, ·) = φ

Max-plus linearity ⇔ Hamiltonian convex in p

H(x , p) = sup
u

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) = sup
y∈Rn

tL(
x − y

t
) + φ(y) .
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Classical Maxplus

Expectation sup
Brownian motion L(ẋ(s)) = (ẋ(s))2/2

Heat equation: Hamilton-Jacobi equation:
∂v
∂t = −1

2∆v ∂v
∂t = 1

2

(
∂v
∂x

)2
exp(−1

2‖x‖
2) −1

2‖x‖
2

Fourier transform: Fenchel transform:∫
exp(i〈x , y〉)f (x)dx supx〈x , y〉 − f (x)

convolution inf or sup-convolution

See Akian, Quadrat, Viot 97 Duality & Opt. . . .
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Max-plus basis / finite-element method

Fleming, McEneaney 00-; Akian, Lakhoua, SG 04-

Approximate the value function by a “linear comb.” of
“basis” functions with coeffs. λi(t) ∈ R:

v(t, ·) '“
∑
i∈[p]

λi(t)wi”

The wi are given finite elements, to be chosen depending
on the regularity of v(t, ·)
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Best max-plus approximation

P(f ) := max{g ≤ f | g “linear comb.” of wi}
linear forms wi : x 7→ 〈yi , x〉

〈yi , x〉

adapted if v is convex
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Best max-plus approximation

P(f ) := max{g ≤ f | g “linear comb.” of wi}

cone like functions wi : x 7→ −C‖x − xi‖

xi

adapted if v is C -Lip
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Use max-plus linearity of Sh:

v t = “
∑
i∈[p]

λi(t)wi”

and look for new coefficients λi(t + h) such that

v t+h ' “
∑
i∈[p]

λi(t + h)wi”

Stephane Gaubert (INRIA and CMAP) Tropical methods in Dynamic Programming Cadarache 12 / 80



Use max-plus linearity of Sh:

v t+h = Shv t ' “
∑
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Use max-plus linearity of Sh:

v t+h = Shv t ' sup
i∈[p]

λi(t) + Shwi

and look for new coefficients λi(t + h) such that

v t+h ' sup
i∈[p]

λi(t + h) + wi
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Max-plus variational approach

Max-plus scalar product

“〈w , z〉” := “

∫
w(x)z(x)dx”

For all test functions zj , j ∈ [q]

“〈v t+h, zj〉” = “
∑
i∈[p]

λi(t + h)”“〈wi , zj〉

= “
∑
k∈[p]

λk(t)〈Shwk , zj〉”
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Max-plus variational approach

Max-plus scalar product

“〈w , z〉” := sup
x

w(x) + z(x)

For all test functions zj , j ∈ [q]

sup
i∈[p]

λi(t + h) + “〈wi , zj〉

= sup
k∈[p]

λk(t) + “〈Shwk , zj〉
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This is of the form

Aλ(t + h) = Bλ(t), A,B ∈ Rq×p
max

� The linear system Aµ = b generically has no solution
µ ∈ Rp, however, Aµ ≤ b has a maximal solution A]b
given by

(A]b)j := min
i∈[q]
−Aij + bi .

Cohen, SG, Quadrat, LAA 04, Akian, SG, Kolokoltsov: Moreau

conjugacies
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So, the coeffs of v(t + h) are recursively given:

λ(t + h) = A]Bλ(t) .

The global error is controlled by the projection errors of
all the v(t, ·). The method is efficient if Shwi is evaluated
by a high order scheme. Then, A]B glues the
characteristics in time h.
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McEneaney’s curse of dimensionality reduction

Suppose the Hamiltonian is a finite max of Hamiltonians
arising from LQ problems

H = sup
i∈[r ]

Hi , Hi = −(
1

2
x∗Dix + x∗A∗i p +

1

2
p∗Σip)

(=LQ with switching). Let S t and S t
i denote the

corresponding Lax-Oleinik semigroups, S t
i is exactly

known (Riccati!)

Want to solve v = S tv ,∀t ≥ 0
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Choose a quadratic function φ such that S tφ→ v as
t →∞. Then, for t = hk large enough,

v ' (Sh)kφ .

This is a sup of quadratic forms. Inessential terms are
trimmed dynamically using Shor relaxation (SDP) →
solution of a typical instance in dim 6 on a single
processor
McEneaney, Desphande, SG; ACC 08 SG, McEneaney, Qu; CDC 11
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Figure: Backsubstitution error and optimal policy on the x1,x2 plane,
h = 0.1 SG, McEneaney, Qu CDC 11
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Error of the cod reduction method

Theorem (Coro of Qu 2012, improving Kluberg, McEneaney

SICON 09)

Under technical conditions (ensuring in particular that the
sol. of the switched LQ is finite), the approximation error
of the maxplus cod reduction method is

‖v codr − v‖∞,[−1,1]n = O
(

exp(
log k

ε
)× polynomial(d)

)
polynomial = RiccatiODE.
A certified coarse approximation can be obtained in a cod
free way. (This bound does not take pruning into
account, much better complexity in practice.)
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however . . .
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Curse of dimensionality is unavoidable

SG, McEneaney, Qu CDC 11: Cant approximate a C 2 strictly
convex function ψ by N affine max-plus finite elements in
dimension d with an approximation error better than

cst× 1

N2/d

Corollary of techniques/results of Grüber on
approximation of convex bodies.

cst ∼
(∫

X

(det(ψ′′x ))
1
2 dx
) 2

d

L∞ case

If the value function is flat in certain directions, the
constant is zero (lower dimension).
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A similar negative result holds for the L1 norm.
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Current works & TODO

equivalence between pruning and facility location for
Bregman distances (McEneaney, SG, Qu).

better complexity bounds ?

relation between the template method of Manna et al

in static analysis by abstract interpretation (Adjé,

Goubault, SG), dimension = # lines of a program.

higher dimensional examples (McEneaney, James,
Sridharan - control of 2 q-bits = SU(4), dim 15)

extension to the stochastic case, comparison (6=) with
SDDP

extension to general Hamiltonians (non cod free?)
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Part II

Tropical methods for mean payoff zero-sum games

(= ergodic reward, average cost)
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A repeated zero-sum stochastic game
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Max and Min flip a coin to decide who makes the move.
Min always pays.

2

3

−1
2

2 1

−1 −8

21

3
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Solving the game

v k
i := value of the k-horizon game starting from node

i .

value is defined as the mean reward of Max, assuming
both players play optimally

v k = (v k
i ) ∈ Rn

v 0 = 0

v k+1 = T (v k)

where T : Rn → Rn is the Shapley operator
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2

3

−1
2

2 1

−1 −8

21

3

v k+1
i =

1

2
(max
j : i→j

(cij + v k
j ) + min

j : i→j
(cij + v k

j )) .
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The mean payoff vector

χ(T ) := lim
k→∞

T k(0)/k
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The mean payoff vector

χ(T ) := lim
k→∞

T k(0)/k

χi(T ) = mean payoff per turn if initial state is i
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The mean payoff vector

χ(T ) := lim
k→∞

T k(0)/k

χi(T ) = mean payoff per turn if initial state is i

χ(T ) = lim
k→∞

T k(x)/k , ∀x ∈ Rn
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The mean payoff vector

χ(T ) := lim
k→∞

T k(0)/k

χi(T ) = mean payoff per turn if initial state is i

χ(T ) = lim
k→∞

T k(x)/k , ∀x ∈ Rn

Think of xi has a terminal bounty paid by Min to Max if
the game ends in state i .
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2

3

−1
2

2 1

−1 −8

21

3

50
4

 v1 = 1
2(max(2 + v1, 3 + v2,−1 + v3) + min(2 + v1, 3 + v2,−1 + v3)

v2 = 1
2(max(−1 + v1, 2 + v2,−8 + v3) + min(−1 + v1, 2 + v2,−8 + v3)

v3 = 1
2(max(2 + v1, 1 + v2) + min(2 + v1, 1 + v2)

this game is fair
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Optimality certificates

More generally, for u ∈ Rn and λ ∈ R,

T (u) ≥ u =⇒ χ(T ) ≥ 0 superfair

T (u) ≤ u =⇒ χ(T ) ≤ 0 subfair

T (u) = λ + u =⇒ χ(T ) = (λ, . . . , λ) .

Stephane Gaubert (INRIA and CMAP) Tropical methods in Dynamic Programming Cadarache 31 / 80



Optimality certificates

More generally, for u ∈ Rn and λ ∈ R,

T (u) ≥ u =⇒ χ(T ) ≥ 0 superfair

T (u) ≤ u =⇒ χ(T ) ≤ 0 subfair

T (u) = λ + u =⇒ χ(T ) = (λ, . . . , λ) .

Sufficient condition SG+Gunawardena, TAMS 2004: if G (T ) is
strongly connected, then the additive eigenproblem
T (u) = λ + u with λ ∈ R is solvable
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The latter game is a variant of the discrete Laplacian
infinity (Oberman) or of Richman games or of stochastic
Tug of war (Peres, Schramm, Sheffield, Scott, Wilson).

vi =
1

2
(max
j : i→j

vj + min
j : i→j

vj) ,

vi , i ∈ boundary prescribed.

The Laplacian infinity:

∆∞v :=
∑

1≤i ,j≤d

∂v

∂xi

∂v

∂xj

∂2v

∂xi∂xj
= 0

More generally, zero-sum games = degenerate elliptic
Hamilton-Jacobi PDE
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Shapley operators, general games, state space [n]

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
1≤j≤n

Pab
ij xj
)
, i ∈ [n]

[n] := {1, . . . , n} set of states

a action of Player I, b action of Player II

r abi payment of Player II to Player I

Pab
ij transition probability i → j

the game is deterministic if Pab
ij ∈ {0, 1}.
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Shapley operators, general games, state space [n]

Ti(x) = max
a∈Ai

min
b∈Bi,a

(
r abi +

∑
1≤j≤n

Pab
ij xj
)
, i ∈ [n]

T is order preserving and additively homogeneous:

x ≤ y =⇒ T (x) ≤ T (y)

T (α + x) = α + T (x), ∀α ∈ R
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Shapley operators, general games, state space [n]

Conversely, any order preserving additively homogeneous
operator is a Shapley operator (Kolokoltsov,Gunawardena,

Sparrow; Singer, Rubinov),

Ti(x) = sup
y∈R

(
Ti(y) + min

1≤i≤n
(xi − yi)

)
T is order preserving and additively homogeneous:

x ≤ y =⇒ T (x) ≤ T (y)

T (α + x) = α + T (x), ∀α ∈ R
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The operator approach

T is nonexpansive in the sup-norm:

‖T (x)− T (y)‖∞ ≤ ‖x − y‖∞
The nonexpansiveness axiom was noted very early in
dynamic programming (e.g., Blackwell), also in PDE
(e.g., Crandall, Tartar).
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The operator approach

T is nonexpansive in the sup-norm:

‖T (x)− T (y)‖∞ ≤ ‖x − y‖∞
The nonexpansiveness axiom was noted very early in
dynamic programming (e.g., Blackwell), also in PDE
(e.g., Crandall, Tartar).

Games ⊂ nonexpansive mappings in Banach spaces

χ(T ) := lim
k→∞

T k(x)/k mean payoff vector ?

Mean ergodic theorems for non-expansive maps, in the
70’ - 80’ Pazy, Reich, Kohlberg, Neyman, . . .
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The tropical point of view arises with log glasses
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .
y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .
y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

|y | ≤ |x |+ 1, |x | ≤ |y |+ 1, 1 ≤ |x |+ |y |
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Gelfand, Kapranov, and Zelevinsky defined the amoeba of an
algebraic variety V ⊂ (C∗)n to be the “log-log plot”

A(V ) := {(log |z1|, . . . , log |zn|) | (z1, . . . , zn) ∈ V } .
y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

X := log |x |, Y := log |y |
Y ≤ log(eX + 1), X ≤ log(eY + 1), 0 ≤ log(eX + eY )
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Viro’s log-glasses, related to Maslov’s dequantization

a +h b := h log(ea/h + eb/h), h→ 0+

With h-log glasses, the amoeba of the line retracts to the
tropical line as h→ 0+

y + x + 1 = 0

attained twice

max(log |x |, log |y |, 0)

max(a, b) ≤ a +h b ≤ h log 2 + max(a, b)
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From tropical convexity to games
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Some elementary tropical geometry

A tropical line in the plane is the set of (x , y) such that
the max in

“ax + by + c”

is attained at least twice.

max(x , y , 0)
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Some elementary tropical geometry

A tropical line in the plane is the set of (x , y) such that
the max in

max(a + x , b + y , c)

is attained at least twice.

max(x , y , 0)
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Two generic tropical lines meet at a unique point
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By two generic points passes a unique tropical line
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non generic case
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non generic case resolved by perturbation
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Tropical segments:

f

g

[f , g ] := {“λf + µg” | λ, µ ∈ R∪ {−∞}, “λ+ µ = 1”}.

(The condition “λ, µ ≥ 0” is automatic.)
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Tropical segments:

f

g

[f , g ] := { sup(λ + f , µ + g) | λ, µ ∈
R ∪ {−∞}, max(λ, µ) = 0}.

(The condition λ, µ ≥ −∞ is automatic.)
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Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C
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Tropical convex set: f , g ∈ C =⇒ [f , g ] ∈ C

Tropical convex cone: ommit “λ + µ = 1”, i.e., replace
[f , g ] by {sup(λ + f , µ + g) | λ, µ ∈ R ∪ {−∞}}
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Tropical convex sets are deformations of classical convex
sets

Briec and Horvath 04

[a, b] := {λa +p µb, λ, µ ≥ 0, λ +p µ = 1}

a +p b = (ap + bp)1/p
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Homogeneization

A convex set C in Rn
max is a cross section of a convex

cone Ĉ in Rn+1
max ,

Ĉ := {(λ + u, λ) | u ∈ C , λ ∈ Rmax}
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A tropical polytope with four vertices

Structure of the polyhedral complex: Develin, Sturmfels
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Back to Shapley operators

Ti(x) = max
a∈A

min
b∈B

(
r abi +

∑
j∈[n]

Pab
ij xj
)
, i ∈ [n] =: Ω

T is order preserving and additively homogeneous:

x ≤ y =⇒ T (x) ≤ T (y)

T (α + x) = α + T (x), ∀α ∈ R
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Back to Shapley operators

Ti(x) = max
a∈A

min
b∈B

(
r abi +

∑
j∈[n]

Pab
ij xj
)
, i ∈ [n] =: Ω

Conversely, any order preserving additively homogeneous
operator is a Shapley operator (Kolokoltsov), even with
degenerate transition probabilities (deterministic)
Gunawardena, Sparrow; Singer, Rubinov,

Ti(x) = sup
y∈R

(
Ti(y) + min

1≤i≤n
(xi − yi)

)
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From games to tropical convexity

If T is order preserving and additively homogeneous, then
the set of subsolutions

C = {u | T (u) ≥ u}

(showing that the game is superfair) is a tropical
(max-plus) convex cone.

Supersolutions constitute a min-plus convex cone.
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Infinite dimensional tropical convex sets

Similarly, if S t is the semigroup of the Isaacs equation

vt − H(x ,Dv ,D2v) = 0, H(x , p, ·) order preserving

S t is order preserving and additively homogeneous

C = {u | S tu ≥ u, ∀t ≥ 0}
= {u | −H(x ,Du,D2u) ≤ 0}

is a tropical convex cone.
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Discounted case / terminating games

T is additively subhomogeneous if

T (α + x) ≤ α + T (x), ∀α ∈ R+

This corresponds to 1−
∑

j Pab
ij = death probability > 0.

If T is order preserving and additively subhomogeneous,
then

C = {u | T (u) ≥ u}
is a tropical (max-plus) convex set.
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Tropical sesquilinear form and Hilbert’s metric

x/v := max{λ | “λv” ≤ x}
= min

i
(xi − vi) if x , v ∈ Rn .

δ(x , y) = “(x/y)(y/x)” = min
i

(xi − yi) + min
j

(yj − xi)

d = −δ is the (additive) Hilbert’s projective metric

d(x , y) = ‖x − y‖H , ‖z‖H := max
1≤i≤d

zi − min
1≤i≤d

zi .

Shapley operators are nonexpansive in this metric.
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Projection on a tropical cone

If the tropical convex cone C ⊂ Rn
max generated by U is

stable stable by arbitrary sups (closed in Scott topology

-non-Haussdorf-):

PC (x) = max{v ∈ C | v ≤ x}
= max

u∈U
(x/u) + u .

Similar to PC (x) =
∑
u∈U

〈x , u〉u

C = Col(A), [PC (x)]i = max
k∈[p]

min
j∈[n]

(Aik−Ajk+xj), i ∈ [n]

Cuninghame-Green; Gondran, Minoux; Cohen, SG, Quadrat; Ardila; Joswig,
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Best approximation in Hilbert’s projective metric

Prop.(Cohen, SG, Quadrat, in Bensoussan Festschrift 01)

d(x ,PV(x)) = min
y∈V

d(x , y) .
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Separation

Goes back to Zimmermann 77, Hilbert metric construction
in Cohen, SG, Quadrat in Ben01, LAA04.
C closed linear cone of Rd

max, or complete semimodule
If y 6∈ C , then, the tropical half-space

H := {v | y/v ≤ PC (y)/v}

contains C and not y .
Compare with the optimality condition for the projection
on a convex cone C : 〈y − PC (y), v〉 ≤ 0,∀v ∈ C
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | “ax ≤ bx”}
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

1≤i≤n
ai + xi ≤ max

1≤i≤n
bi + xi}

x2x1

x3

max(x1, x2,−2 + x3)
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

1≤i≤n
ai + xi ≤ max

1≤i≤n
bi + xi}

x2x1

x3

max(x1,−2 + x3) ≤ x2
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

1≤i≤n
ai + xi ≤ max

1≤i≤n
bi + xi}

x2x1

x3

x1 ≤ max(x2 − 2 + x3)
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Tropical half-spaces

Given a, b ∈ Rn
max, a, b 6≡ −∞,

H := {x ∈ Rn
max | max

1≤i≤n
ai + xi ≤ max

1≤i≤n
bi + xi}

x2x1

x3

max(x2 − 2 + x3) ≤ x1
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Corollary (Zimmermann; Samborski, Shpiz; Cohen, SG, Quadrat,

Singer; Develin, Sturmfels; Joswig. . . )

A tropical convex cone closed (in the Euclidean topology)
is the intersection of tropical half-spaces.

Rmax is equipped with the topology of the metric
(x , y) 7→ maxi |exi − eyi | inherited from the Euclidean
topology by log-glasses.

� The apex −PC (y) of the algebraic separating half-space H
above may have some +∞ coordinates, and therefore may not
be closed in the Euclidean topology (always Scott closed). The
proof needs a perturbation argument, this is where the
assumption that C is closed (and not only stable by arbitrary
sups = Scott closed) is needed.
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

x2
x1

V

x3
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

x2
x1

V

x3

x2
x1

x3

2 + x1 ≤ max(x2, 3 + x3)
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Tropical polyhedral cones

can be defined as intersections of finitely many half-spaces

V
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More generally, all the results of classical convexity have
tropical analogues, but sometimes more degenerate. . .
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generation by extreme points Helbig; SG, Katz 07;

Butkovič, Sergeev, Schneider 07; Choquet Akian, SG,

Walsh 09, Poncet 11 infinite dim.

projection / best-approximation : Cohen, SG,

Quadrat 01,04; Singer

Hahn-Banach analytic Litvinov, Maslov, Shpiz 00; Cohen,

SG, Quadrat 04; geometric Zimmermann 77, Cohen, SG,

Quadrat 01,05; Develin, Sturmfels 04, Joswig 05

cyclic projections Butkovic, Cuninghame-Green TCS03; SG,

Sergeev 06

Radon, Helly, Carathéodory, Colorful Carathéodory,
Tverberg: SG, Meunier DCG09
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Correspondence between tropical convexity and

zero-sum games

Theorem (Akian, SG, Guterman, IJAC 2012)

TFAE:

C closed tropical convex cone

C = {u ∈ (R ∪ {−∞})n | u ≤ T (u)} for some
Shapley operator T

and MAX has at least one winning state (∃i , χi(T ) ≥ 0)
if and only if C 6= {(−∞, . . . ,−∞)} . Moreover, tropical
polyhedra correspond to deterministic games with finite
action spaces. Then, state i is winning iff ui 6= −∞ for
some u ∈ C .
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x1 x2

x3

x1 x2

x3

states 1,2,3 winning states 2,3 winning
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� The Shapley operator T is defined on Rn, but extends
continuously to (R ∪ {−∞})n,

T (x) = inf{T (z) | z ≥ x , z ∈ Rn} .

Setting xi = −∞ prohibits MAX from reaching state i .
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Proof. (Part 1, Equivalence). A closed tropical convex
cone can be written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : “Aix ≤ Bix”
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Proof. (Part 1, Equivalence). A closed tropical convex
cone can be written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : max
1≤j≤n

aij +xj ≤ max
1≤k≤n

bik +xk , aij , bik ∈ R∪{−∞}

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .
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Proof. (Part 1, Equivalence). A closed tropical convex
cone can be written as

C =
⋂
i∈I

Hi

where (Hi)i∈I is a family of tropical half-spaces.

Hi : max
1≤j≤n

aij +xj ≤ max
1≤k≤n

bik +xk , aij , bik ∈ R∪{−∞}

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .

x ≤ T (x) ⇐⇒ max
1≤j≤n

aij + xj ≤ max
1≤k≤n

bik + xk , ∀i ∈ I .
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Hi : max
1≤j≤n

aij + xj ≤ max
1≤k≤n

bik + xk

[T (x)]j = inf
i∈I
−aij + max

1≤k≤n
bik + xk .

Interpretation of the game

State of MIN: variable xj , j ∈ {1, . . . , n}
State of MAX: half-space Hi , i ∈ I

In state xj , Player MIN chooses a tropical half-space
Hi with xj in the LHS

In state Hi , player MAX chooses a variable xk at the
RHS of Hi

Payment −aij + bik .
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x1 ≤ a + max(x2 − 2, x3 − 1) (H1)

−2 + x2 ≤ a + max(x1, x3 − 1) (H2)

max(x2 − 2, x3 − a) ≤ x1 + 2 (H3)

value χ(T )j = (2a + 1)/2, ∀j .

3

2

1 1

2

33

2

1 1

2

3
−a

0

−2

2

−2

−a

0

−2

2

a

a− 2

a− 1a− 1

−2
a− 1 a− 1
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x1

x3

x2

H3
H2

H1

x3

x2

H2H1

H3

x1

a = −3/2, victorious strategy of Min: certificate of
emptyness involving ≤ n inequalities (Helly)

Stephane Gaubert (INRIA and CMAP) Tropical methods in Dynamic Programming Cadarache 67 / 80



x1

x3

x2

H3
H2

H1

x3

x2

H2H1

H3

x1

a = 1, victorious strategy of Max: tropical polytrope 6= ∅
included in the convex set
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Proof in the polyhedral case (cont.)

Relies on Kohlberg’s theorem 1980.

A nonexpansive piecewise affine map T : Rn → Rn

admits an invariant half-line

∃v ∈ Rn, ~η ∈ Rn, T (v + t~η) = v + (t + 1)~η .

χ(T ) = ~η

The vector u such that T (u) ≥ u is obtained from v , η
(hint: ui = −∞ if ~ηi < 0).
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Non polyhedral case

� The mean payoff starting from some state i

χi(T ) = lim
k→∞

[T k(x)]i/k , , x ∈ Rn

may not exist.

However,
χ(T ) = lim

k→∞
max
i∈[n]

[T k(x)]i/k

does exist,

∃i ∈ [n], χi(T ) = χ(T )

and we can certify it

∃u ∈ (R ∪ {−∞})n, ui 6= −∞, T (u) = χi(T ) + u .
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Existence of coordinates for which the mean payoff
χi(T ) = χ(T ) is a Denjoy-Wolff type theorem, SG,

Gunawardena (TAMS 2004), extended by SG, Vigeral (Math. Proc.

Cambridge Phil. Soc., 2011).

Existence of the certificate u follows from a non-linear
Collatz-Wielandt theorem of Nussbaum (LAA, 1986).

∃u ∈ (R ∪ {−∞})n, T (u) ≥ χ(T ) + u .
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Application: policy iteration for zero-sum games

with mean payoff

Write the Shapley operator T as

T = inf
σ

T σ

where σ is a strategy of MIN, and T σ is the Shapley
operator of a one-player stochastic game. Assume finite
action spaces, perfect information (finite number of
strategies, T ,T σ polyhedral).
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Idea: compute an invariant half-line of T σ

T σ(vσ + t~ησ) = vσ + (t + 1)~ησ ,∀t ≥ 0.

This is a one player problem (Howard, Denardo, Fox,
multichain policy iteration).

New strategy π is obtained by selection:

T (vσ + t~ησ) = T π(vσ + t~ησ) , for large t

Hoffman and Karp 66: ~ηπ < ~ησ, so terminates, if every
stochastic matrix is irreducible. Otherwise, may cycle !
(cyclic does occur for Richman games).
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Solution to cycling: using the tropical spectral

theorem

Cochet-Terrasson, SG, Gunawardena DSS 99, CRAS 98
(deterministic games), Cochet-Terrasson, SG CRAS 06, Akian,

Cochet-Terrasson, Detournay, SG (stochastic games,
PIGAMES library)
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One player, stochastic case, wlog χ(H) = 0:

Hi(x) = max
b∈Bi

(r bi +
∑
j

Pb
ij xj)

Theorem (Akian, SG; NLA TMA 03)

Any fixed point v of H is uniquely determined by its
values vi , i ∈ C , where C is the set of critical nodes (aka
projected stochastic Aubry set).

C is the set of points which are visited infinitely often,
a.s., when following an optimal strategy for the mean
payoff problem.
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Theorem (Cochet-Terrasson, SG, Gunawardena DSS 99,
deterministic case, Akian, Cochet-Terrasson, Detournay, SG 12
stochastic case)

If the previous strategy is σ, improved strategy π, select
the new bias vector vπ in such a way that

vπi = vσi , ∀i ∈ C (π) .

Then, the same policy is never selected twice.
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PIGAMES library (Detournay)

0 10000 20000 30000 40000 50000
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Number of nodes

Richman games. random graphs. 10 actions per state.
CPU time (s) on a single core Xeon 2.93Ghz.
PIGAMES (C library) soon public on inria gforge, see
Detournay PhD thesis for documentation.
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random Richman 106 states, 107 actions, typically 12
iterations, 5 hours on a single core
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Condon 92, Zwick and Paterson, TCS 96: mean payoff
games are in NP ∩ co-NP;

Ye: PI, one player, (strongly) polynomial time if the
discount factor is fixed.

Friedmann, LICS 2009 PI can be exponential time for
mean payoff problems

Edmonds conjectured that NP ∩ co-NP = P , if one
believes this, there should be a polynomial time
algorithm for mean payoff games

for stochastic mean payoff games, even pseudo
polynomial time is not known Boros, Elbassioni, Gurvich,

Makino.
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Concluding remarks

Connections between

Zero-sum games

metric geometry

tropical algebra

motivated by

algorithmic issues (complexity of mean payoff games
is unsettled).
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Thank you !

Stephane Gaubert (INRIA and CMAP) Tropical methods in Dynamic Programming Cadarache 80 / 80


