Cours RTE 2022
 OpTIMISATION STOCHASTIQUE
 En guise de conclusion

Mélange des techniques de décomposition spatiale et de décomposition par blocs temporels
P. Carpentier, J.-Ph. Chancelier, M. De Lara , V. Leclère

Vendredi 22 avril 2022

IP PARIS
École des Ponts
ParisTech

Two time scales stochastic control problem. . .

We start with a stochastic multistage optimization problem presenting a two time scales structure

$$
\begin{aligned}
\min _{\left(\mathbf{X}_{0: D+1}, \mathbf{U}_{0: D}\right)} & \mathbb{E}\left[\sum_{d=0}^{D} L_{d}\left(\mathbf{X}_{d}, \mathbf{U}_{d}, \mathbf{W}_{d}\right)+K\left(\mathbf{X}_{D+1}\right)\right] \\
\text { s.t } \quad & \mathbf{X}_{0}=x_{0}, \quad \mathbf{X}_{d+1}=f_{d}\left(\mathbf{X}_{d}, \mathbf{U}_{d}, \mathbf{W}_{d}\right) \\
& \sigma\left(\mathbf{U}_{d, m}\right) \subset \sigma\left(\mathbf{W}_{d^{\prime}, m^{\prime}},\left(d^{\prime}, m^{\prime}\right) \leq(d, m)\right)
\end{aligned}
$$

The decision \mathbf{U}_{d} (resp. noise \mathbf{W}_{d}) at the slow time step d is a sequence of decisions (resp. noises) at the fast time scale

$$
\begin{aligned}
& \mathbf{U}_{d}=\left(\mathbf{U}_{d, 0}, \ldots, \mathbf{U}_{d, m}, \ldots, \mathbf{U}_{d, M}\right) \\
& \mathbf{W}_{d}=\left(\mathbf{W}_{d, 0}, \ldots, \mathbf{W}_{d, m}, \ldots, \mathbf{W}_{d, M}\right)
\end{aligned}
$$

\mathbf{X}_{d} being the state at the beginning of the slow time step d
We assume that the \mathbf{W}_{d} are independent at the slow time scale

that incorporates a large spatial dimension

The problem is assumed to have a large spatial dimension

$$
\begin{aligned}
\min _{\left(\mathbf{X}_{0: D+1}, \mathbf{U}_{0: D}\right)} & \mathbb{E}\left[\sum_{i=1}^{N}\left(\sum_{d=0}^{D} L_{d}^{i}\left(\mathbf{X}_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)+K^{i}\left(\mathbf{X}_{D+1}^{i}\right)\right)\right] \\
\text { s.t } & \mathbf{X}_{0}^{i}=x_{0}^{i}, \quad \mathbf{X}_{d+1}^{i}=f_{d}^{i}\left(\mathbf{X}_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right) \\
& \sigma\left(\mathbf{U}_{d, m}^{i}\right) \subset \sigma\left(\mathbf{W}_{d^{\prime}, m^{\prime}},\left(d^{\prime}, m^{\prime}\right) \leq(d, m)\right) \\
& \sum_{i=1}^{N} \Theta_{d}^{i}\left(\mathbf{X}_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)=0
\end{aligned}
$$

The question is: how to decompose the problem both

- in the time dimension (time blocks)
- and in the space dimension (units)

If we start by time blocks decomposition. . .

If we first perform a time blocks decomposition (say by resources), we obtain a collection of relaxed deterministic intraday function L_{d}^{R}

$$
\begin{gathered}
L_{d}^{\mathrm{R}}\left(x_{d}^{1}, \ldots, x_{d}^{N}, r_{d+1}^{1}, \ldots, r_{d+1}^{N}\right)=\min _{\mathbf{U}_{d}} \mathbb{E}\left[\sum_{i=1}^{N} L_{d}^{i}\left(x_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)\right] \\
\text { s.t } \quad f_{d}^{i}\left(x_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}^{i}\right) \geq r_{d+1}^{i}, \quad \forall i \in \llbracket 1, N \rrbracket \\
\\
\sigma\left(\mathbf{U}_{d, m}^{i}\right) \subset \sigma\left(\mathbf{W}_{d, 0: m}\right), \quad \forall i \in \llbracket 1, N \rrbracket \\
\sum_{i=1}^{N} \Theta_{d}^{i}\left(\mathbf{X}_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)=0
\end{gathered}
$$

- This intraday problem seems to be a stochastic version of the deterministic problem solved by Antares when using targets
- The problem may be difficult to solve in a stochastic framework
- and has to be solved for every pair $\left(x_{d}, r_{d+1}\right)$

If we start by time blocks decomposition. . .

Once computed the resource intraday functions, we have to solve the associated Bellman equation

$$
\bar{V}_{d}^{\mathrm{R}}\left(x_{d}\right)=\inf _{r_{d+1}} L_{d}^{\mathrm{R}}\left(x_{d}, r_{d+1}\right)+\bar{V}_{d+1}^{\mathrm{R}}\left(r_{d+1}\right)
$$

- This Bellman equation can not be solved directly by DP \longrightarrow curse of dimensionality
- SDDP, or some decomposition tool, is needed

Now we start with the space decomposition

If we first perform a spatial decomposition (say by prices), we obtain a collection of subproblems indexed by the spatial index i

$$
\begin{gathered}
\min _{\mathbf{U}_{d}^{i}} \mathbb{E}\left[\sum_{d=0}^{D} L_{d}^{i}\left(\mathbf{X}_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)+\left\langle\lambda_{d}, \Theta_{d}^{i}\left(\mathbf{X}_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)\right\rangle+K^{i}\left(\mathbf{X}_{D+1}^{i}\right)\right] \\
\text { s.t } \quad f_{d}^{i}\left(\mathbf{X}_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)=\mathbf{X}_{d+1}^{i} \\
\\
\\
\sigma\left(\mathbf{U}_{d, m}^{i}\right) \subset \sigma\left(\mathbf{W}_{d^{\prime}, m^{\prime}},\left(d^{\prime}, m^{\prime}\right) \leq(d, m)\right)
\end{gathered}
$$

- This subproblem involves a small dimension state
- and displays a two time scales structure, hence possible time blocks decomposition

In order to use time blocks decomposition with resources, one has to check that the monotonicity property holds true when introducing the duality terms $\left\langle\lambda_{d}, \Theta_{d}^{i}\left(\mathbf{X}_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)\right\rangle$ in the criterion...

Performing a time blocks decomposition (say by resources) on the i-th subproblem leads to defining deterministic intraday functions $L_{d}^{\mathrm{R}, i}$

$$
\begin{aligned}
L_{d}^{\mathrm{R}, i}\left(x_{d}^{i}, r_{d+1}^{i}, \lambda_{d}\right)= & \min _{\mathbf{U}_{d}^{i}} \mathbb{E}\left[L_{d}^{i}\left(x_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)+\left\langle\lambda_{d}, \Theta_{d}^{i}\left(x_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right)\right\rangle\right] \\
\text { s.t } & f_{d}^{i}\left(x_{d}^{i}, \mathbf{U}_{d}^{i}, \mathbf{W}_{d}\right) \geq r_{d+1}^{i} \\
& \sigma\left(\mathbf{U}_{d, m}^{i}\right) \subset \sigma\left(\mathbf{W}_{d, 0: m}\right)
\end{aligned}
$$

Once computed the intraday functions, we have to solve a Bellman equation associated to subsystem i

$$
\bar{V}_{d}^{\mathrm{R}, i}\left(x_{d}^{i}\right)=\min _{r_{d+1}^{i}} L_{d}^{\mathrm{R}, i}\left(x_{d}^{i}, r_{d+1}^{i}, \lambda_{d}\right)+\bar{V}_{d+1}^{\mathrm{R}, i}\left(r_{d+1}^{i}\right)
$$

and then update the prices λ_{d} by a gradient-like method

- The computation of the intraday functions for all pair $\left(x_{d}^{i}, r_{d+1}^{i}\right)$ is tractable, but has to be done for different values of the price λ_{d}
- The Bellman equation involves a low dimension state

