Two time scales stochastic dynamic optimization

Managing energy storage investment, aging and operation in microgrids

P. Carpentier, <u>J.-Ph. Chancelier</u>, M. De Lara and T. Rigaut

EFFICACITY CERMICS, ENPC UMA, ENSTA LISIS, IFSTTAR

PGMO, November 21, 2018

Outline

- Energy system description and motivations
 - Notations for two time scales
 - Uncertainties, fast and slow controls and dynamics
 - Stochastic optimization problem
- Time blocks dynamic programming
 - Intraday target problems
 - Stochastic adaptative weights algorithm
- 3 Numerical applications
 - A benchmark realistic instance
 - Algorithms comparison on a simple aging problem
 - Time blocks target decomposition for aging and renewal control

Energy system description

All the equipment exchange electricity though a DC grid.

$$m{E}_{d,m+1}^E + m{E}_{d,m+1}^S = m{E}_{d,m}^B + m{E}_{d,m+1}^L$$

DC microgrid to be managed

- DC: Very small storage on a really fast time scale
- *E*^L: Electrical load, or demand, that is uncertain
- E^S: Solar panels, uncertain renewable electricity
- E^E: Connection to the national grid (recourse)
- E^B: Electrical storage (charge/discharge)

A Two time scales decision process

- $M \in \mathbb{N}^*$ the number of minutes in a day,
- $D \in \mathbb{N}^*$, the number of days taken into account.
- Decisions:
 - ▶ Battery charge/discharge every minutes $m \in \{0, ..., M\}$ of every day $d \in \{0, ..., D\}$,
 - ▶ Renewal of the battery or not every day $d \in \{0, ..., D+1\}$.
- Notations:
 - ▶ Two time indexes $z_{d,m}$: z changes every minutes m of everyday d
 - ▶ Single index z_d : z changes only every day
 - ▶ $(d, m) \in \mathbb{T}$ with

$$\mathbb{T} = \{0,\ldots,D\} \times \{0,\ldots,M\} \cup \{(D+1,0)\}\ ,$$

equipped with the lexicographical order

$$(d,m) < (d',m') \iff (d < d') \lor (d = d' \land m < m') \ .$$

Two time scales

- Long term economic profitability
- Horizon: 10 years (d: step is 1 day)
- Storage aging target every day

- Energy intraday arbitrage
- Horizon: 24h (m: step is 1 min)
- charge/discharge

Uncertainties

- Fast scale:
 - ▶ $\boldsymbol{E}_{d.m}^{S}$: the solar production in kWh,
 - ▶ $\boldsymbol{E}_{d,m}^{L}$: the electrical demand (load) in kWh.
- Slow scale:
 - ▶ P_d^b : the price of a battery replacement in $\frac{kWh}{d}$.
- ullet Gather uncertainties as the sequence $\Big\{oldsymbol{W}_{d,m}\Big\}_{(d,m)\in\mathbb{T}}$:

$$m{W}_{d,m} = egin{pmatrix} m{E}_{d,m}^S \\ m{E}_{d,m}^L \end{pmatrix}$$
 and $m{W}_{d,M} = egin{pmatrix} m{E}_{d,M}^S \\ m{E}_{d,M}^L \\ m{P}_d^b \end{pmatrix}$

• Information at time (d, m): past observations of noises

$$\mathcal{F}_{d,m} = \sigma(\mathbf{W}_{d',m'}; (d',m') \leq (d,m))$$

Non anticipative decisions

- Physical decision variables
 - ► Fast scale:
 - ★ $\boldsymbol{E}_{d,m}^{E}$: the national grid consumption in kWh;
 - ★ $\mathbf{E}_{d,m}^{B}$: the battery charge (≥ 0) or discharge (≤ 0) in kWh.
 - Slow scale:
 - * R_d : the size of the new battery in kWh.
- Mathematical decision variables
 - ▶ $\boldsymbol{E}_{d,m}^{E}$ is supposed to be imposed by non modelized dynamics:

$$\boldsymbol{E}_{d,m+1}^E = \boldsymbol{E}_{d,m}^B + \boldsymbol{E}_{d,m+1}^L - \boldsymbol{E}_{d,m+1}^S$$

Controls are grouped as:

$$m{U}_{d,m} = \left(m{E}_{d,m}^B
ight)$$
 and $m{U}_{d,M} = \left(m{R}_d
ight)$

Charge/discharge impacts battery state of charge and age

- Fast state dynamics
 - ▶ **C**_d: capacity of the battery
 - ▶ **B**_{d,m}: state of charge of the battery

$$egin{aligned} oldsymbol{B}_{d,m+1} &= oldsymbol{B}_{d,m} - rac{1}{
ho_d} oldsymbol{E}_{d,m}^{B-} + rac{1}{
ho_d}
ho_c oldsymbol{E}_{d,m}^{B+} \ & ext{s.t.} \ \underline{B} imes oldsymbol{C}_d imes oldsymbol{B}_{d,m} \leq \overline{B} imes oldsymbol{C}_d \end{aligned}$$

 $ightharpoonup H_{d,m}$: remaining amount of exchangeable energy (health measure)

$$m{H}_{d,m+1} = m{H}_{d,m} - rac{1}{
ho_d} m{E}_{d,m}^{B-} -
ho_c m{E}_{d,m}^{B+}$$
 s.t. $0 \leq m{H}_{d,m}$

(max number of cycles gives initial value as) $2 \times N_c(\boldsymbol{C}_d) \times \boldsymbol{C}_d$

7 / 22

time scales SDP PGMO, November 21, 2018

Battery renewal impacts state dynamics

- Physical fast state dynamics
 - Capacity

$$m{C}_{d+1} = egin{cases} m{R}_d \;, & ext{if} \; m{R}_d > 0 \;, \ m{C}_d \;, & ext{otherwise} \;. \end{cases}$$

Charge: new battery is assumed empty

$$m{B}_{d+1,0} = egin{cases} \underline{B} imes m{R}_d \;, & ext{ if } m{R}_d > 0 \;, \ m{B}_{d,M} \;, & ext{ otherwise }, \end{cases}$$

Exchangeable energy (new battery has a renewed health)

$$m{H}_{d+1,0} = egin{cases} 2 imes \textit{N}_c(m{R}_d) imes m{C}_d \;, & ext{ if } m{R}_d > 0 \;, \ m{H}_{d,M} \;, & ext{ otherwise }. \end{cases}$$

Mathematical fast state dynamics X_d:

$$m{X}_d = egin{pmatrix} m{C}_d \\ m{B}_{d,0} \\ m{H}_{d,0} \end{pmatrix}$$
 and $m{X}_{d+1} = f_dig(m{X}_d, m{U}_{d,0:M}ig)$

Stochastic optimization problem

Objective to be minimized: discounted sum of expenses, that is battery renewals cost and national grid energy consumption cost

$$\mathbb{E}\Big[\sum_{d=0}^{D}\gamma_{d}\Big(\underbrace{\boldsymbol{P}_{d}^{b}\times\boldsymbol{R}_{d}}_{\text{battery renewal}}+\sum_{m=0}^{M-1}\underbrace{\boldsymbol{p}_{d,m}^{e}\times\big(\underbrace{\boldsymbol{E}_{d,m}^{B}+\boldsymbol{E}_{d,m+1}^{L}-\boldsymbol{E}_{d,m+1}^{S}}\big)\Big)}\Big]$$

Gathering all the above equations, we obtain:

$$V(x) = \min_{\boldsymbol{X}_{0:D+1}, \boldsymbol{U}_{0:D}} \mathbb{E}\left[\sum_{d=0}^{D} L_d(\boldsymbol{X}_d, \boldsymbol{U}_d, \boldsymbol{W}_d) + K(\boldsymbol{X}_{D+1})\right],$$
s.t $\boldsymbol{X}_{d+1} = f_d(\boldsymbol{X}_d, \boldsymbol{U}_d, \boldsymbol{W}_d),$

$$\boldsymbol{U}_d = (\boldsymbol{U}_{d,0}, \dots, \boldsymbol{U}_{d,m}, \dots, \boldsymbol{U}_{d,M}),$$

$$\boldsymbol{W}_d = (\boldsymbol{W}_{d,0}, \dots, \boldsymbol{W}_{d,m}, \dots, \boldsymbol{W}_{d,M}),$$

$$\boldsymbol{\sigma}(\boldsymbol{U}_{d,m}) \subset \boldsymbol{\sigma}(\boldsymbol{W}_{d',m'}; (d', m') \leq (d, m))$$

$$\boldsymbol{X}_0 = x,$$

Outline

- Energy system description and motivations
 - Notations for two time scales
 - Uncertainties, fast and slow controls and dynamics
 - Stochastic optimization problem
- Time blocks dynamic programming
 - Intraday target problems
 - Stochastic adaptative weights algorithm
- 3 Numerical applications
 - A benchmark realistic instance
 - Algorithms comparison on a simple aging problem
 - Time blocks target decomposition for aging and renewal control

Time blocks dynamic programming

Independance Assumption

The sequence $\{\boldsymbol{W}_d\}_{d=0,\dots,D}$ is a sequence of independent random variables $(\boldsymbol{W}_d=(\boldsymbol{W}_{d,0},\dots,\boldsymbol{W}_{d,M}))$

Sequence of slow time scale value functions, defined by backward induction as follows. At time D+1, we set $V_{D+1}=K$ and then

$$V_d(x) = \min_{\boldsymbol{X}_{d+1}, \boldsymbol{U}_d} \mathbb{E} \left[L_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) + V_{d+1}(\boldsymbol{X}_{d+1}) \right]$$
s.t $\boldsymbol{X}_{d+1} = f_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d)$

$$\sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m})$$

Proposition [Carpentier et al., 2018]

Under Independance Assumption $V_0 = V$

Time blocks decomposition

The target intraday problem (min min problem)

$$\mathcal{P}_{(d,=)}[x_d, \boldsymbol{X}_{d+1}] \begin{cases} \min_{\boldsymbol{U}_d} \mathbb{E}\left[L_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d)\right] \\ \text{s.t } f_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) = \boldsymbol{X}_{d+1} \\ \sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m}) \end{cases}$$

Proposition

Under Independence Assumption, V_d satisfy: $V_{D+1} = K$

$$\begin{split} V_d(x) &= \min_{\boldsymbol{X} \in L^0(\Omega, \mathcal{F}, \mathbb{P}; \mathbb{X}_{d+1})} \Big(\phi_{(d,=)} \big(x, \boldsymbol{X} \big) + \mathbb{E} \big[V_{d+1}(\boldsymbol{X}) \big] \Big) \;, \\ &\text{s.t } \sigma(\boldsymbol{X}) \subset \sigma(\boldsymbol{W}_d) \;. \end{split}$$

where $\phi_{(d,=)}(x_d, \boldsymbol{X}_{d+1})$ is the value of $\mathcal{P}_{(d,=)}[x_d, \boldsymbol{X}_{d+1}]$

Relaxed Time blocks decomposition

A relaxed target intraday problem (min min problem)

$$\mathcal{P}_{(d, \geq)}[x_d, \boldsymbol{X}_{d+1}] \begin{cases} \min_{\boldsymbol{U}_d} \mathbb{E}\left[L_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d)\right] \\ \text{s.t } f_d(x, \boldsymbol{U}_d, \boldsymbol{W}_d) \geq \boldsymbol{X}_{d+1} \\ \sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m}) \end{cases}$$

A relaxed Bellman value function $V_{(d,\geq)}$

$$V_{(d,\geq)}$$
 satisfy: $V_{(D+1)}=K$

$$\begin{split} V_{(d,\geq)}(x) &= \min_{\boldsymbol{X} \in L^0(\Omega,\mathcal{F},\mathbb{P};\mathbb{X}_{d+1})} \Big(\phi_{(d,\geq)}\big(x,\boldsymbol{X}\big) + \mathbb{E}\big[V_{(d+1,\geq)}(\boldsymbol{X})\big]\Big) \;, \\ &\text{s.t } \sigma(\boldsymbol{X}) \subset \sigma(\boldsymbol{W}_d) \;. \end{split}$$

where $\phi_{(d,\geq)}(x_d, \boldsymbol{X}_{d+1})$ is the value of $\mathcal{P}_{(d,\geq)}[x_d, \boldsymbol{X}_{d+1}]$

Relaxed Time blocks decomposition

Assumption

The final cost K is a non increasing mapping and that for all $d \in \{0, \ldots, D\}$, the dynamics f_d are non decreasing over their first argument and that the instantaneous costs L_d are non increasing over their first argument.

Proposition

 $V_{(d,\geq)} \leq V_d$ and under above Assumption $V_d = V_{(d,\geq)} \leq V_{(d,\geq,\mathbb{X}_{d+1})}$

$$V_{(d,\geq,\mathbb{X}_{d+1})}(x) = \min_{X \in \mathbb{X}_{d+1}} \left(\phi_{(d,\geq)}(x,X) + V_{(d+1,\geq,\mathbb{X}_{d+1})}(X) \right)$$

Main numerical efforts compute $\phi_{(d,\geq)}(\cdot,\cdot)$

- May depend on x x', $(\phi_{(d,>)}(x x'))$. Subset of days.
- SP methods, Progressive hedging methods
- Parallelism (on variable d, on states (x, x'))

Adaptative weight algorithm

Dualized intraday problems ψ_d , $(x_d, \lambda_{d+1}) \in \mathbb{X}_d \times L^0(\Omega, \mathcal{F}, \mathbb{P}; \Lambda_{d+1})$

$$\psi_d(x_d, \boldsymbol{\lambda}_{d+1}) = \min_{\boldsymbol{U}_d} \mathbb{E} \left[L_d(x_d, \boldsymbol{U}_d, \boldsymbol{W}_d) + \langle \boldsymbol{\lambda}_{d+1}, f_d(x_d, \boldsymbol{U}_d, \boldsymbol{W}_d) \rangle \right]$$
s.t $\sigma(\boldsymbol{U}_{d,m}) \subset \sigma(\boldsymbol{W}_{d,0:m})$

Adaptative daily value function V_d

$$\underline{V}_d$$
 satisfy: $\underline{V}_{D+} = K$
$$\underline{V}_d(\mathbf{x}_d) = \sup_{oldsymbol{\lambda}_{d+1} \in \Lambda_{d+1}} \psi_d(\mathbf{x}_d, oldsymbol{\Lambda}_{d+1}) - \underline{V}_{d+1}^*(oldsymbol{\lambda}_{d+1}) \;,$$
 s.t $\sigma(oldsymbol{\lambda}_{d+1}) \subset \sigma(oldsymbol{X}_{d+1}) \;,$

where \underline{V}_{d+1}^* is the Fenchel transform of the function \underline{V}_{d+1} .

14 / 22

Adaptative weight algorithm

Lemma

 $\underline{V}_d \leq V_d$. Assume that K is convex non increasing and that the dynamics f_d are non decreasing over their first argument and linear and that the instantaneous costs L_d are non increasing over their first argument and convex. If moreover $ri\Big(dom(\psi_d(x_d,\cdot))-dom(\mathbb{E}V_{d+1}(\cdot))\Big) \neq \emptyset$. Then, the value functions V_d are non increasing and we have the equality $V_d = \underline{V}_d$

- Computationally costly to compute the function ψ_d for every $d \in \{0, \dots, D\}$, initial state $x_d \in \mathbb{X}_d$ and particularly stochastic weights $\lambda \in L^0(\Omega, \mathcal{F}, \mathbb{P}; \Lambda_{d+1})$.
- (Heuristic) Restrict the computation to deterministic weights in Λ_{d+1} .

Outline

- Energy system description and motivations
 - Notations for two time scales
 - Uncertainties, fast and slow controls and dynamics
 - Stochastic optimization problem
- Time blocks dynamic programming
 - Intraday target problems
 - Stochastic adaptative weights algorithm
- 3 Numerical applications
 - A benchmark realistic instance
 - Algorithms comparison on a simple aging problem
 - Time blocks target decomposition for aging and renewal control

A house with solar panels and a battery

- Solar radiation measurements from Zambia¹ converted into solar panels (12kWc) production with PVLIB²
- Load data from a customer in Australia³
- We want to minimize the electricity bill of the house!

¹energydata.info/en/dataset/zambia-solar-radiation-measurement-data-2015-2017

²github.com/pvlib/pvlib-python

³www.ausgrid.com.au/datatoshare

We compare three algorithms on a simple aging problem

Instance:

- 5 days, 7200 minutes
- 13 kWh battery, 100 kWh of exhangeable energy
- No battery renewal!
- We control state of charge and aging every minutes

Algorithms:

- Straightforward stochastic dynamic programming
 - ▶ State spaces discretization of: 26 × 100
 - ► Control spaces discretization: 100
 - Uncertainties quantization: 5
- Daily time blocks decomposition with targets
 - Intraday problem resolution: SDDP
 - ▶ Initial state+target couple (x, x') replaced by continuous initial state x x'
- Daily time decomposition with weigths
 - Intraday problem resolution: SDDP
 - Weights spaces discretization: 41

Computation times and in-sample assessment

Costs Comparison:

Computation times

Intraday resolution (SDDP)
Daily values functions
Minute values functions (SDP)

DP	Ta
ı.a	57
ı.a	0.0
2 5 min	Б 、

Targets
57.56 sec
0.059 sec
$5 \times 4.5 \text{ min}$

vveignts
41×56 sec
0.079 sec
$5 \times 4.5 \text{ min}$

Simulations and value functions comparison

A case with renewal

Instance:

- 20 years, 10512000 minutes
- Battery capacity between 0 and 20 kWh
- Initial health : $2 \times N_{cycles} \times capacity$
- Renewal possible everyday
- We control state of charge and aging every minutes
- Yearly discount rate: 0.96

Synthetic price of batteries

 Batteries cost stochastic model: synthetic scenarios that approximately coincide with market forecasts⁴

⁴Bloomberg forecasts: data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-Lithium-ion-battery-costs-and-market.pdf

1 simulation over 20 years: it pays to control aging!

- No battery: +10% of expenses over 20 years
- No aging control: +8% of expenses over 20 years

Carpentier, P., Chancelier, J.-P., Lara, M. D., and Rigaut, T. (2018).

Time blocks decomposition of multistage stochastic optimization problems.

Preprint.

https://hal.archives-ouvertes.fr/hal-01757113.

Heymann, B., Martinon, P., and Bonnans, F. (2016).

Long term aging : an adaptative weights dynamic programming algorithm.

working paper or preprint.

Rigaut, T., Carpentier, P., Chancelier, J.-P., Lara, M. D., and Waeytens, J. (2018).

Stochastic optimization of braking energy storage and ventilation in a subway station.

IEEE Transactions on on Power Systems. Accepted 2018.