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Introduction
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ce topology of o-fields

Prototype Problem

Stochastic optimization problem under consideration:

V(EF) = min E[j(u8)], (1a)

uel2(Q,A,P;U)

subject to u is F —measurable . (1b)

o (Q,A,P) : probability space.
@ & : random variable on = = R (noise).
@ u : random variable on U = RP (control).

e F : subfield of A, usually generated by a r.v. y (observation).
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Prototype Problem

Stochastic optimization problem under consideration:

V(EF) = min _ E[j(u,&)], (1a)

uel?(Q,A,P;U)

subject to u is F—measurable . (1b)

~> easily extended to the sequential control problem:

T-1
min E Z Litq (Xh ut7€t+1) + K(XT) )
t=0
. X0 = fO(EO)
subject to { Xer1 = ft—f—l(xt7ut7£t+1) )

ugis o (&, ..., &) —measurable .
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Strong convergence topology of o-fields
Convergence issues

Prototype Problem

Stochastic optimization problem under consideration:

V(EF) = min  E[j(u,&)], (1a)

uel2(Q,A,P;U)

subject to u is F—measurable . (1b)

In order to obtain a tractable approximation of problem (1),
@ the random variable £ in (1a) must be discretized,
@ and the o-field F in (1b) must be discretized.

These two discretizations are a priori independent.

The first discretization is somewhat traditional (Monte Carlo),
whereas the last one is not so well-known. ..

P. Carpentier and SOWG Approximations of stochastic optimization problems



Introduction
Problem statement

Strong convergence topology of o-fields
Convergem:e Issues

Strong convergence topology of o-fields (Neveu)

Coarsest topology such that conditional expectation is continuous
with respect to the o-field:

lim Fp=F <« lim [E[f|F]-E[f|F]]:=0 Vfell.

n—-+o00o

This notion of strong convergence, given using L1(Q, A, P; R) can
be equivalently defined using L"(Q2, A, P; U), for r > 1 (Piccinini).

Main properties of the strong topology (Cotter)

© The strong convergence topology is metrizable.
@ The set of o-fields generated by a finite partition is dense.

Q Ify, N y and U(y,,) C a(y), then a(yn) — J(y).
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Known results

V(EF) = min E[j(u,e€)],

uel2(Q,A,P;U)
subject to uis F —measurable .

In most discretization schemes (e.g. Pennanen '05 and Barty '04),
the approximations of & and F are linked together. . .
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Strong convergence topology of o-fields
Convergence issues

Known results

V(EF) = min E[j(u,e€)],

uel2(Q,A,P;U)
subject to uis F —measurable .

In most discretization schemes (e.g. Pennanen '05 and Barty '04),
the approximations of & and F are linked together. . .

How to devise a discretization scheme independent in & and F 7

More precisely, can we use the Monte Carlo method in order to
discretize &, as for open-loop problems (Dupacova-Wets) ?
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@ Formulation and exact solution
@ Discretization scheme
@ Approximated solution
@ What is wrong?
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Counterexample

Formulation

@ x and w: independent uniformly distributed random variables
on [—1,1] (initial state and noise): £ = (x,w).

@ u: random variable on R (control), measurable with respect
to the initial state x: F = o(x).

@ z=x+ u+ w (final state).

® The problem is formulated on ([-1, 1]2,8[_1,1]2,,u):

min E [eu2 + 22] . (2)

u is F—measurable
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Formulation and exact solution
Counterexample Discretization scheme

Approximated solution
What is wrong?

Formulation

@ x and w: independent uniformly distributed random variables
on [—1,1] (initial state and noise): £ = (x,w).

@ u: random variable on R (control), measurable with respect
to the initial state x: F = o(x).

@ z=x+ u+ w (final state).

® The problem is formulated on ([-1, 1]2,8[_1,1]2,,u):

min  E[eu® +2%] . (2)

u is F—measurable

Exact resolution using dynamic programming

1

fx) = — >~ f— v — (1 €
v = - and F=VI(E7) 3< Tlte
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Formulation and exact solution
Counterexample Discretization scheme
Approximated solution

What rong?

Figure: Discretization scheme.
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Counterexample

Information

Let ne N*. Let (F",..., F{") be a partition of [~1,1]?, with

F _ <2(’<—1)_1,2"_1 x [-1,1] .
n n

Let F, be the sub o-field generated by (F,(,l), e F,(,")).

o (Fn),ey Strongly converges to F,

. . k
@ uis F,— measurable <= uis constant over each F( )

<:>uxw Zun)]l k)xw)
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Formulation and exact solution
Counterexample Discretization scheme

Approximated solution
What is wrong?

Random variable

Let (C,,) ey De a deterministic sequence of elements in [-1,1]?
such that the associated sequence of empirical probability laws
weakly converges to . For n € N* and k € {1,...,n}, let

(49, i) = (B2 o182 gl

)
n

and define the approximation (x,, w,) of (x,w) by

n

(W) = > (), w00 (x, w)

k=1

o (xn,w,) is constant over each subset FLk.

° (x,,,wn) neN converges in distribution to (x,w).
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Formulation and exact solution
Counterexample Discretization scheme

Approximated solution

What is wrong?

Approximated problem and solution

n

i (k))? (k) (k) (k))2
o 3 (A 60 4 ) 0

) _Xr(rk) + w
o 1+e€ ’

Approximated feedback and associated cost

n X,(7k)+W,(7k)

T ite TAY

I

wWIN

(x,w) ~ E [eﬁi + 22} —
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Formulation and exact solution
Counterexample Discretization scheme

Approximated solution

What is wrong?

Approximated problem and solution

n

i (k))? (k) (k) (k))2
o 3 (A 60 4 ) 0

) _Xr(rk) + w
o 1+e€ ’

Approximated feedback and associated cost

n X,(7k)+W,(7k)

T ite TAY

I

wWIN

ij\n(XaW):— (X,W) ~ E[Eai—kzﬂ —

k=1

Discretization fails to asymptotically give the optimal solution.
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Formulation and exact solution
Counterexample Discretization scheme

Approximated solution
What is wrong?

Standard notions of convergence, but
@ F and & are independently approximated:

this makes possible to solve each open-loop subproblem using
a unique sample of the random variable (a very poor way to
compute conditional expectations).

@ The convergence notion used for £ is weak:

{ (xn,wn) } .y does not converge in probability to (x,w).
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Formulation and exact solution
Counterexample Discretization scheme

Approximated solution
What is wrong?

Standard notions of convergence, but
@ F and & are independently approximated:

this makes possible to solve each open-loop subproblem using
a unique sample of the random variable (a very poor way to
compute conditional expectations).

@ The convergence notion used for £ is weak:

{ (xn,wn) } .y does not converge in probability to (x,w).

Question: can we expect a convergence result when using a
stronger convergence notion for the random variable?
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© Convergence theorem
@ Notations
@ Theorem
@ Remarks
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Notations
Theorem
Remarks

Convergence theorem

Framework for the study of problem (1):
e £€L9Q, A P, =) with g € [1,400),
e uc L(Q AP U) with r € [1,+00),

° A(f) subset of F-measurable control random variables:
A(F) = L"(Q,F,P; V),
@ j a normal integrand on U x = and J the associated integral
functional:

J(u, &) = E[j(u,€)] .

V(EF) = uengi(nf) J(u,€) .
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Notations
Theorem
Remarks

Convergence theorem

Under the following assumptions:

H1 {&,},cn converges to € in L9(Q, A, P; =),

H2 {F,},cy strongly converges to F and F, C F,

H3 j is such that:
V(u,v), ¥(£,¢), Li(u, &) — (v, Q) < allu— vy + Bl = ClI12,
the convergence of the approximated optimal costs holds true:

nﬂToo V(ém}-n) = V(é,]:) 5 (3)
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Remarks

Convergence theorem

@ Same result with:
A(F) ={u €U, u F — measurable, u(w) € U** P —as} ,

U2 being a closed convex subset of U.
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Theorem
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Convergence theorem

© Same result with:
A(F) ={u €U, u F — measurable, u(w) € U** P —as} ,
U2 being a closed convex subset of U.

@ Assumption H3 in our theorem is far from being minimal,
and can be alleviated using the tools of epi-convergence
(see Chancelier for further details).
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Notations
Theorem
RENEN

Convergence theorem

© Same result with:
A(F) ={u €U, u F — measurable, u(w) € U** P —as} ,
U2 being a closed convex subset of U.

@ Assumption H3 in our theorem is far from being minimal,
and can be alleviated using the tools of epi-convergence
(see Chancelier for further details).

© Numerical point of view:
° (Qg,l ,...,Q( )) partition generating the o-field F,,
(U(l) . U(")) partltlon generated by &,

., min ZZ U(l)) (ug,), ,(,))

u$) . uMeur =
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Conclusions

@ Another point of view on stochastic approximation.
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Conclusions

Conclusions

@ Another point of view on stochastic approximation.

@ Scenario trees are not built-in in stochastic programming.

clclclehy

P. Carpentier and SOWG
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Conclusions

Pennanen'’s discretization scheme for problem (1)
Suppose that F = o(y), with y = h(§).
© Approximate £ by a finitely valued r.v. £, = gn(€),

and approximate F by F, generated by y, = h(&,):

V(ﬁ,,,}',,) = min E[j(u,fn)] .

u is F,—measurable

But. .. u is F,— measurable = uis F— measurable

Convergence theorem (Epi-convergence)

Main assumptions:
Q &, — £ in probability.
@ o(hogn) C a(h).
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Conclusions

Barty's discretization scheme for problem (1)

@ Approximate F by F generated by a finite partition of :

V(& Fi) = min E[j(u,£)] .

u is Fy—measurable

@ Approximate £ by a finitely valued random variable &,

V(smfk) = min E[f(”:Sn)] :

u is Fy—measurable

Convergence theorem

© Information structure discretization error:
|V(&,F) — V(& Fk)| — 0 as Fx — F strongly.
© Mean computation discretization error:
|V(£,-7:k) — V(E,,,}"kﬂ — 0 as &, — & in distribution.

P. Carpentier and SOWG Approximations of stochastic optimization problems



Conclusions

lim sup V(En,}",, < V € .7-"

n—-400

@ Yu € A(F), define u, =E[u| F,]. Then, 7, = F = u, — u.
The set-valued mapping A is thus Isc.

@ J being continuous, we conclude that the marginal function V is u.s.c.

||m_i|_ch(§n7 ) > V(f f)
@ From J(u,&,) = J(u, &) + (J(u,&,) — J(u,&)), we obtain:
Jmin S €,) > min S €) + min (J(u€,) — S(u,€))

@ Using F, C F = A(F,) C A(F), we deduce:

V(e F) 2 VIEF) + min (J(u&,) —J(w.8)) -

@ The conclusion is again a consequence of H3.
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Figure: Voronoi cells.
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