Approximations of stochastic optimization problems subject to measurability constraints.

Pierre Carpentier and SOWG¹

ENSTA — ENPC — EDF

August 30, 2007

XI. International Conference on Stochastic Programming

¹Systems and Optimization Working Group:

K. Barty, J.-P. Chancelier, G. Cohen, A. Dallagi, M. de Lara, B. Seck & C. Strugarek

P. Carpentier and SOWG Approximations of stochastic optimization problems

Introduction

Counterexample Convergence theorem Conclusions Problem statement Strong convergence topology of σ -fields Convergence issues

Introduction

- Problem statement
- Strong convergence topology of $\sigma\text{-fields}$
- Convergence issues

2 Counterexample

3 Convergence theorem

4 Conclusions

Problem statement Strong convergence topology of σ -fields Convergence issues

Prototype Problem

Stochastic optimization problem under consideration:

$$V(\boldsymbol{\xi}, \mathcal{F}) = \min_{\mathbf{u} \in L^2(\Omega, \mathcal{A}, \mathbb{P}; U)} \mathbb{E}[j(\mathbf{u}, \boldsymbol{\xi})] , \qquad (1a)$$

subject to
$$\mathbf{u}$$
 is \mathcal{F} -measurable. (1b)

- $(\Omega, \mathcal{A}, \mathbb{P})$: probability space.
- $\boldsymbol{\xi}$: random variable on $\boldsymbol{\Xi} = \mathbb{R}^q$ (noise).
- **u** : random variable on $U = \mathbb{R}^p$ (control).
- \mathcal{F} : subfield of \mathcal{A} , usually generated by a r.v. **y** (observation).

Problem statement Strong convergence topology of σ -fields Convergence issues

Prototype Problem

Stochastic optimization problem under consideration:

$$V(\boldsymbol{\xi}, \mathcal{F}) = \min_{\mathbf{u} \in L^2(\Omega, \mathcal{A}, \mathbb{P}; U)} \mathbb{E}[j(\mathbf{u}, \boldsymbol{\xi})], \qquad (1a)$$

subject to
$$\mathbf{u}$$
 is \mathcal{F} -measurable. (1b)

 \rightsquigarrow easily extended to the sequential control problem:

$$\min \mathbb{E} \left[\sum_{t=0}^{T-1} L_{t+1} (\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) + \mathcal{K} (\mathbf{x}_T) \right] ,$$
subject to
$$\begin{cases} \mathbf{x}_0 = f_0 (\boldsymbol{\xi}_0) \\ \mathbf{x}_{t+1} = f_{t+1} (\mathbf{x}_t, \mathbf{u}_t, \boldsymbol{\xi}_{t+1}) \\ \mathbf{u}_t \text{ is } \sigma (\boldsymbol{\xi}_0, \dots, \boldsymbol{\xi}_t) - \text{measurable} \end{cases}$$

Problem statement Strong convergence topology of σ -fields Convergence issues

Prototype Problem

Stochastic optimization problem under consideration:

$$V(\boldsymbol{\xi}, \mathcal{F}) = \min_{\mathbf{u} \in L^2(\Omega, \mathcal{A}, \mathbb{P}; U)} \mathbb{E}[j(\mathbf{u}, \boldsymbol{\xi})] , \qquad (1a)$$

subject to
$$\mathbf{u}$$
 is \mathcal{F} -measurable. (1b)

In order to obtain a tractable approximation of problem (1),

- the random variable ξ in (1a) must be discretized,
- 2 and the σ -field \mathcal{F} in (1b) must be discretized.

These two discretizations are a priori independent.

The first discretization is somewhat traditional (Monte Carlo), whereas the last one is not so well-known...

Problem statement Strong convergence topology of σ -fields Convergence issues

Strong convergence topology of σ -fields (Neveu)

Coarsest topology such that conditional expectation is continuous with respect to the $\sigma\text{-field}$:

$$\lim_{n \to +\infty} \mathcal{F}_n = \mathcal{F} \Longleftrightarrow \lim_{n \to +\infty} \|\mathbb{E}[f \mid \mathcal{F}_n] - \mathbb{E}[f \mid \mathcal{F}]\|_{L^1} = 0 \quad \forall f \in L^1.$$

This notion of strong convergence, given using $L^1(\Omega, \mathcal{A}, \mathbb{P}; \mathbb{R})$ can be equivalently defined using $L^r(\Omega, \mathcal{A}, \mathbb{P}; U)$, for $r \ge 1$ (Piccinini).

Main properties of the strong topology (Cotter)

- The strong convergence topology is metrizable.
- **2** The set of σ -fields generated by a finite partition is dense.

3 If
$$\mathbf{y}_n \xrightarrow{\mathbb{P}} \mathbf{y}$$
 and $\sigma(\mathbf{y}_n) \subset \sigma(\mathbf{y})$, then $\sigma(\mathbf{y}_n) \to \sigma(\mathbf{y})$.

Problem statement Strong convergence topology of $\sigma\text{-fields}$ Convergence issues

Known results

$$V(\boldsymbol{\xi}, \mathcal{F}) = \min_{\mathbf{u} \in L^2(\Omega, \mathcal{A}, \mathbb{P}; U)} \mathbb{E}[j(\mathbf{u}, \boldsymbol{\xi})],$$

subject to \mathbf{u} is $\mathcal{F}-measurable$.

In most discretization schemes (e.g. Pennanen '05 and Barty '04), the approximations of ξ and \mathcal{F} are linked together...

How to devise a discretization scheme independent in ξ and \mathcal{F} ? More precisely, can we use the Monte Carlo method in order to discretize ξ , as for open-loop problems (Dupacova-Wets) ?

P. Carpentier and SOWG Approximations of stochastic optimization problems

Problem statement Strong convergence topology of $\sigma\text{-fields}$ Convergence issues

Known results

$$V(\boldsymbol{\xi}, \mathcal{F}) = \min_{\mathbf{u} \in L^2(\Omega, \mathcal{A}, \mathbb{P}; U)} \mathbb{E}[j(\mathbf{u}, \boldsymbol{\xi})],$$

subject to \mathbf{u} is $\mathcal{F}-measurable$.

In most discretization schemes (e.g. Pennanen '05 and Barty '04), the approximations of $\boldsymbol{\xi}$ and $\boldsymbol{\mathcal{F}}$ are linked together...

How to devise a discretization scheme independent in $\boldsymbol{\xi}$ and \mathcal{F} ?

< 回 > う Q ()

Problem statement Strong convergence topology of $\sigma\text{-fields}$ Convergence issues

Known results

$$V(\boldsymbol{\xi}, \mathcal{F}) = \min_{\mathbf{u} \in L^2(\Omega, \mathcal{A}, \mathbb{P}; U)} \mathbb{E}[j(\mathbf{u}, \boldsymbol{\xi})],$$

subject to \mathbf{u} is $\mathcal{F}-measurable$.

In most discretization schemes (e.g. Pennanen '05 and Barty '04), the approximations of $\boldsymbol{\xi}$ and $\boldsymbol{\mathcal{F}}$ are linked together...

How to devise a discretization scheme independent in $\boldsymbol{\xi}$ and \mathcal{F} ? More precisely, can we use the Monte Carlo method in order to discretize $\boldsymbol{\xi}$, as for open-loop problems (Dupacova-Wets)?

Introduction Form Counterexample Disc Convergence theorem Appr Conclusions What

Formulation and exact solutio Discretization scheme Approximated solution What is wrong?

1 Introduction

2 Counterexample

- Formulation and exact solution
- Discretization scheme
- Approximated solution
- What is wrong?

3 Convergence theorem

Conclusions

Introduction Formulation and exact solution Counterexample Discretization scheme Convergence theorem Approximated solution Conclusions What is wrong?

Formulation

- x and w: independent uniformly distributed random variables on [-1,1] (initial state and noise): ξ = (x, w).
- u: random variable on \mathbb{R} (control), measurable with respect to the initial state **x**: $\mathcal{F} = \sigma(\mathbf{x})$.
- $\mathbf{z} = \mathbf{x} + \mathbf{u} + \mathbf{w}$ (final state).
- The problem is formulated on $([-1,1]^2,\mathcal{B}_{[-1,1]^2},\mu)$:

$$\min_{\mathbf{u} \text{ is } \mathcal{F}-\text{measurable}} \mathbb{E}\left[\epsilon \mathbf{u}^2 + \mathbf{z}^2\right] \ . \tag{2}$$

Exact resolution using dynamic programming

$$u^{\sharp}(x) = -rac{x}{1+\epsilon}$$
 and $J^{\sharp} = V\left(\xi, \mathcal{F}
ight) = rac{1}{3}\left(1+rac{\epsilon}{1+\epsilon}
ight)$

<<p>
・ 一

Introduction Formulation and exact solution Counterexample Discretization scheme Convergence theorem Approximated solution Conclusions What is wrong?

Formulation

- x and w: independent uniformly distributed random variables on [-1,1] (initial state and noise): ξ = (x, w).
- u: random variable on \mathbb{R} (control), measurable with respect to the initial state **x**: $\mathcal{F} = \sigma(\mathbf{x})$.
- $\mathbf{z} = \mathbf{x} + \mathbf{u} + \mathbf{w}$ (final state).
- The problem is formulated on $([-1,1]^2,\mathcal{B}_{[-1,1]^2},\mu)$:

$$\min_{\mathbf{u} \text{ is } \mathcal{F}-\text{measurable}} \mathbb{E}\left[\epsilon \mathbf{u}^2 + \mathbf{z}^2\right] \ . \tag{2}$$

Exact resolution using dynamic programming

$$u^{\sharp}(x) = -rac{x}{1+\epsilon}$$
 and $J^{\sharp} = V(oldsymbol{\xi}, \mathcal{F}) = rac{1}{3}\left(1+rac{\epsilon}{1+\epsilon}
ight)$

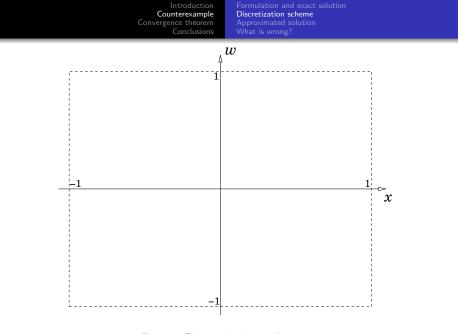


Figure: Discretization scheme.

P. Carpentier and SOWG Approximations of stochastic optimization problems

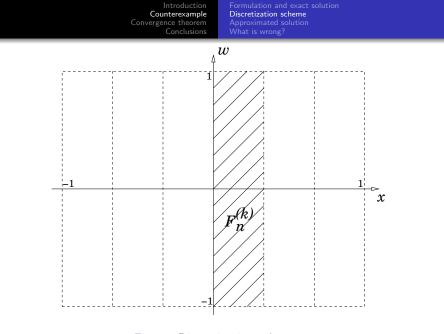
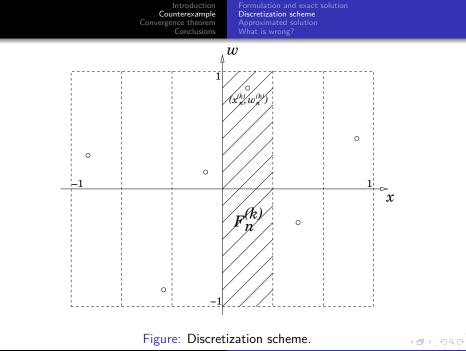


Figure: Discretization scheme.

P. Carpentier and SOWG Approximations of stochastic optimization problems

· つ × の × の × の ×



P. Carpentier and SOWG Approximations of stochastic optimization problems

Introduction Formulation and exact solution Counterexample Discretization scheme Convergence theorem Approximated solution Conclusions What is wrong?

Information

Let $n \in \mathbb{N}^{\star}$. Let $\left(F_n^{(1)}, \ldots, F_n^{(n)}\right)$ be a partition of $[-1, 1]^2$, with

$$F_n^{(k)} = \left(\frac{2(k-1)}{n} - 1, \frac{2k}{n} - 1\right] \times [-1, 1].$$

Let \mathcal{F}_n be the sub σ -field generated by $(F_n^{(1)}, \ldots, F_n^{(n)})$.

Introduction Formulation and exact solut Counterexample Discretization scheme Convergence theorem Approximated solution Conclusions What is wrong?

Random variable

Let $(\zeta_n)_{n \in \mathbb{N}}$ be a deterministic sequence of elements in $[-1, 1]^2$ such that the associated sequence of empirical probability laws weakly converges to μ . For $n \in \mathbb{N}^*$ and $k \in \{1, \ldots, n\}$, let

$$(x_n^{(k)}, w_n^{(k)}) = \left(\frac{2k-1}{n} - 1 + \frac{\zeta_{k,1}}{n}, \zeta_{k,2}\right),$$

and define the approximation $(\mathbf{x}_n, \mathbf{w}_n)$ of (\mathbf{x}, \mathbf{w}) by

$$(\mathbf{x}_n, \mathbf{w}_n) = \sum_{k=1}^n (x_n^{(k)}, w_n^{(k)}) \mathbb{I}_{F_n^{(k)}}(\mathbf{x}, \mathbf{w}) .$$

Formulation and exact solution Discretization scheme Approximated solution What is wrong?

Approximated problem and solution

$$\begin{split} \min_{\left(u_n^{(1)},\dots,u_n^{(n)}\right)\in\mathbb{R}^n} & \sum_{k=1}^n \int_{\mathcal{F}_n^{(k)}} \left(\epsilon \left(u_n^{(k)}\right)^2 + \left(x_n^{(k)} + u_n^{(k)} + w_n^{(k)}\right)^2\right) \mu(\mathrm{d}x\mathrm{d}w) \ .\\ & \widehat{u}_n^{(k)} = -\frac{x_n^{(k)} + w_n^{(k)}}{1+\epsilon} \ . \end{split}$$

Approximated feedback and associated cost

$$\widehat{\mathbf{u}}_n(x,w) = -\sum_{k=1}^n \frac{x_n^{(k)} + w_n^{(k)}}{1 + \epsilon} \mathbb{I}_{F_n^{(k)}}(x,w) \quad \rightsquigarrow \quad \mathbb{E}\left[\epsilon \widehat{\mathbf{u}}_n^2 + \mathbf{z}^2\right] \longrightarrow \frac{2}{3} .$$

Discretization fails to asymptotically give the optimal solution.

<<p>・日・ つへへ

Formulation and exact solution Discretization scheme Approximated solution What is wrong?

Approximated problem and solution

$$\begin{split} \min_{\left(u_n^{(1)},\dots,u_n^{(n)}\right)\in\mathbb{R}^n} & \sum_{k=1}^n \int_{F_n^{(k)}} \left(\epsilon \left(u_n^{(k)}\right)^2 + \left(x_n^{(k)} + u_n^{(k)} + w_n^{(k)}\right)^2\right) \mu(\mathrm{d}x\mathrm{d}w) \ .\\ & \widehat{u}_n^{(k)} = -\frac{x_n^{(k)} + w_n^{(k)}}{1+\epsilon} \ . \end{split}$$

Approximated feedback and associated cost

$$\widehat{\mathbf{u}}_n(x,w) = -\sum_{k=1}^n \frac{x_n^{(k)} + w_n^{(k)}}{1 + \epsilon} \mathbb{I}_{F_n^{(k)}}(x,w) \quad \rightsquigarrow \quad \mathbb{E}\left[\epsilon \widehat{\mathbf{u}}_n^2 + \mathbf{z}^2\right] \longrightarrow \frac{2}{3} .$$

Discretization fails to asymptotically give the optimal solution.

< 回 > シックへ

Introduction Formulation and exact solution Counterexample Discretization scheme Convergence theorem Approximated solution Conclusions What is wrong?

Standard notions of convergence, but

• \mathcal{F} and $\boldsymbol{\xi}$ are *independently* approximated:

this makes possible to solve each open-loop subproblem using a *unique* sample of the random variable (a very poor way to compute conditional expectations).

• The convergence notion used for $\boldsymbol{\xi}$ is *weak*:

 $\{(\mathbf{x}_n, \mathbf{w}_n)\}_{n \in \mathbb{N}}$ does not converge *in probability* to (\mathbf{x}, \mathbf{w}) .

Question: can we expect a convergence result when using a stronger convergence notion for the random variable?

Introduction Formulation and exact solution Counterexample Discretization scheme Convergence theorem Approximated solution Conclusions What is wrong?

Standard notions of convergence, but

• \mathcal{F} and $\boldsymbol{\xi}$ are *independently* approximated:

this makes possible to solve each open-loop subproblem using a *unique* sample of the random variable (a very poor way to compute conditional expectations).

• The convergence notion used for ξ is *weak*:

 $\left\{\left(\mathbf{x}_{n},\mathbf{w}_{n}\right)\right\}_{n\in\mathbb{N}}\text{ does not converge }\textit{in probability to }\left(\mathbf{x},\mathbf{w}\right).$

Question: can we expect a convergence result when using a stronger convergence notion for the random variable?

Notations Theorem Remarks

2 Counterexample

3 Convergence theorem

- Notations
- Theorem
- Remarks

<<p>・日・ つへへ

Framework for the study of problem (1):

- $\boldsymbol{\xi} \in L^q(\Omega, \mathcal{A}, \mathbb{P}; \Xi)$ with $q \in [1, +\infty)$,
- $\mathbf{u} \in L^r(\Omega, \mathcal{A}, \mathbb{P}; U)$ with $r \in [1, +\infty)$,
- $\Delta(\mathcal{F})$ subset of \mathcal{F} -measurable control random variables: $\Delta(\mathcal{F}) = L^r(\Omega, \mathcal{F}, \mathbb{P}; U)$,
- *j* a normal integrand on U × Ξ and J the associated integral functional:

$$J(\mathbf{u},\boldsymbol{\xi}) = \mathbb{E}[j(\mathbf{u},\boldsymbol{\xi})]$$
.

$$V(\boldsymbol{\xi},\mathcal{F}) = \min_{\mathbf{u}\in\Delta(\mathcal{F})} J(\mathbf{u},\boldsymbol{\xi}) \;.$$

< 回 > う o へ

Notations **Theorem** Remarks

Theorem

Under the following assumptions:

- **H1** $\{\boldsymbol{\xi}_n\}_{n\in\mathbb{N}}$ converges to $\boldsymbol{\xi}$ in $L^q(\Omega, \mathcal{A}, \mathbb{P}; \Xi)$,
- **H2** $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ strongly converges to \mathcal{F} and $\mathcal{F}_n \subset \mathcal{F}$,

H3 *j* is such that:

$$\forall (u, v), \ \forall (\xi, \zeta), \ |j(u, \xi) - j(v, \zeta)| \le \alpha \|u - v\|_U^r + \beta \|\xi - \zeta\|_{\Xi}^q,$$

the convergence of the approximated optimal costs holds true:

$$\lim_{n \to +\infty} V(\boldsymbol{\xi}_n, \mathcal{F}_n) = V(\boldsymbol{\xi}, \mathcal{F}) .$$
(3)

Introduction Convergence theorem Conclusions

Remarks

Same result with:

 $\Delta(\mathcal{F}) = \{ \mathbf{u} \in \mathcal{U}, \ \mathbf{u} \ \mathcal{F} - \text{measurable}, \ \mathbf{u}(\omega) \in U^{\text{ad}} \ \mathbb{P} - \mathbf{as} \} \ ,$

 $U^{\rm ad}$ being a closed convex subset of U.

P. Carpentier and SOWG Approximations of stochastic optimization problems

Introduction Counterexample Convergence theorem Remarks

Same result with:

 $\Delta(\mathcal{F}) = \{ \mathbf{u} \in \mathcal{U}, \ \mathbf{u} \ \mathcal{F} - \text{measurable}, \ \mathbf{u}(\omega) \in U^{\text{ad}} \ \mathbb{P} - \mathbf{as} \} \ ,$

 U^{ad} being a closed convex subset of U.

Assumption H3 in our theorem is far from being minimal, and can be alleviated using the tools of epi-convergence (see Chancelier for further details).

Same result with:

 $\Delta\big(\mathcal{F}\big) = \big\{ \mathbf{u} \in \mathcal{U}, \ \mathbf{u} \ \mathcal{F} - \text{measurable}, \ \mathbf{u}(\omega) \in \mathit{U}^{\mathrm{ad}} \ \mathbb{P} - \mathit{as} \big\} \ ,$

 U^{ad} being a closed convex subset of U.

- Assumption H3 in our theorem is far from being minimal, and can be alleviated using the tools of epi-convergence (see Chancelier for further details).
- Output States A states and a state of the states of the
 - $(\Omega_n^{(1)},\ldots,\Omega_n^{(n)})$ partition generating the σ -field \mathcal{F}_n ,
 - $(\mho_n^{(1)},\ldots,\mho_n^{(n)})$ partition generated by $\boldsymbol{\xi}_n$,

$$\min_{(u_n^{(1)},...,u_n^{(n)})\in U^n} \sum_{i=1}^n \sum_{l=1}^n \mathbb{P}(\Omega_n^{(i)} \cap \mathfrak{V}_n^{(l)}) j(u_n^{(i)},\xi_n^{(l)})$$

Conclusions

- Another point of view on stochastic approximation.
- Scenario trees are not built-in in stochastic programming.

Conclusions

- Another point of view on stochastic approximation.
- Scenario trees are not built-in in stochastic programming.

Conclusions

- Another point of view on stochastic approximation.
- Scenario trees are not built-in in stochastic programming.

< 回 > のQ (~

K. Barty

Contributions à la discrétisation des contraintes de mesurabilité pour les problèmes d'optimisation stochastique.

Thèse de doctorat de l'ENPC, june 2004.

J.-P. Chancelier and SOWG

Epi-convergence of stochastic optimization problems involving both random variables and measurability constraints approximations. Preprint CERMICS, october 2006.

K.D. Cotter

Similarity of information and behavior with a pointwise convergence topology. Journal of Mathematical Economics, 15, 1986.

T. Pennanen

Epi-Convergent Discretizations of Multistage Stochastic Programs. Mathematics of Operations Research, Vol. 30, No. 1, 2005.

C. Strugarek and SOWG

On the Fortet-Mourier metric for the stability of Stochastic Optimization Problems, an example.

Stochastic Programming E-Print Series, 25, 2004.

< 回 > う Q ()

Pennanen's discretization scheme for problem (1)

Suppose that $\mathcal{F} = \sigma(\mathbf{y})$, with $\mathbf{y} = h(\boldsymbol{\xi})$.

Approximate ξ by a finitely valued r.v. ξ_n = q_n(ξ), and approximate F by F_n generated by y_n = h(ξ_n):

$$Vig(oldsymbol{\xi}_n,\mathcal{F}_nig) = \min_{oldsymbol{u} ext{ is } \mathcal{F}_n- ext{measurable}} \mathbb{E}ig[j(oldsymbol{u},oldsymbol{\xi}_n)ig] \;.$$

But... u is \mathcal{F}_n – measurable \Rightarrow **u** is \mathcal{F} – measurable

Convergence theorem (Epi-convergence)

Main assumptions:

$$\circ \sigma(h \circ q_n) \subset \sigma(h).$$

Barty's discretization scheme for problem (1)

() Approximate \mathcal{F} by \mathcal{F}_k generated by a finite partition of Ω :

$$Vig(m{\xi},\mathcal{F}_kig) = \min_{m{u} ext{ is } \mathcal{F}_k ext{-measurable}} \mathbb{E}ig[j(m{u},m{\xi})ig] \;.$$

2 Approximate $\boldsymbol{\xi}$ by a finitely valued random variable $\boldsymbol{\xi}_n$:

$$V(\boldsymbol{\xi}_n, \mathcal{F}_k) = \min_{\mathbf{u} \text{ is } \mathcal{F}_k - \text{measurable}} \mathbb{E}[j(\mathbf{u}, \boldsymbol{\xi}_n)]$$

Convergence theorem

■ Information structure discretization error: $|V(\boldsymbol{\xi}, \mathcal{F}) - V(\boldsymbol{\xi}, \mathcal{F}_k)| \longrightarrow 0$ as $\mathcal{F}_k \longrightarrow \mathcal{F}$ strongly.

2 Mean computation discretization error: $|V(\xi, \mathcal{F}_k) - V(\xi_n, \mathcal{F}_k)| \longrightarrow 0 \text{ as } \xi_n \longrightarrow \xi \text{ in distribution.}$

$\limsup_{n\to+\infty} V(\boldsymbol{\xi}_n,\mathcal{F}_n) \leq V(\boldsymbol{\xi},\mathcal{F})$

- $\forall \mathbf{u} \in \Delta(\mathcal{F})$, define $\mathbf{u}_n = \mathbb{E} [\mathbf{u} \mid \mathcal{F}_n]$. Then, $\mathcal{F}_n \to \mathcal{F} \implies \mathbf{u}_n \to \mathbf{u}$. The set-valued mapping Δ is thus lsc.
- J being continuous, we conclude that the marginal function V is u.s.c.

$\liminf_{n \to +\infty} \overline{V(\boldsymbol{\xi}_n, \mathcal{F}_n)} \geq V(\boldsymbol{\xi}, \mathcal{F})$

• From
$$J(\mathbf{u}, \boldsymbol{\xi}_n) = J(\mathbf{u}, \boldsymbol{\xi}) + (J(\mathbf{u}, \boldsymbol{\xi}_n) - J(\mathbf{u}, \boldsymbol{\xi}))$$
, we obtain:

$$\min_{\mathbf{u}\in\Delta(\mathcal{F}_n)}J(\mathbf{u},\boldsymbol{\xi}_n)\geq\min_{\mathbf{u}\in\Delta(\mathcal{F}_n)}J(\mathbf{u},\boldsymbol{\xi})+\min_{\mathbf{u}\in\Delta(\mathcal{F}_n)}\left(J(\mathbf{u},\boldsymbol{\xi}_n)-J(\mathbf{u},\boldsymbol{\xi})\right)\,.$$

• Using $\mathcal{F}_n \subset \mathcal{F} \implies \Delta(\mathcal{F}_n) \subset \Delta(\mathcal{F})$, we deduce:

$$V(oldsymbol{\xi}_n,\mathcal{F}_n)\geq V(oldsymbol{\xi},\mathcal{F})+\min_{oldsymbol{u}\in\Delta(\mathcal{F})}\left(J(oldsymbol{u},oldsymbol{\xi}_n)-J(oldsymbol{u},oldsymbol{\xi})
ight)$$

• The conclusion is again a consequence of H3.

