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Prototype Problem

Stochastic optimization problem under consideration:

V
(
ξ,F

)
= min

u∈L2(Ω,A,P;U)
E

[
j(u, ξ)

]
, (1a)

subject to u is F−measurable . (1b)

(
Ω,A, P

)
: probability space.

ξ : random variable on Ξ = Rq (noise).

u : random variable on U = Rp (control).

F : subfield of A, usually generated by a r.v. y (observation).

P. Carpentier and SOWG Approximations of stochastic optimization problems
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Prototype Problem

Stochastic optimization problem under consideration:

V
(
ξ,F

)
= min

u∈L2(Ω,A,P;U)
E

[
j(u, ξ)

]
, (1a)

subject to u is F−measurable . (1b)

 easily extended to the sequential control problem:

min E

[
T−1∑
t=0

Lt+1

(
xt ,ut , ξt+1

)
+ K

(
xT

)]
,

subject to

{
x0 = f0

(
ξ0

)
xt+1 = ft+1

(
xt ,ut , ξt+1

) ,

ut is σ
(
ξ0, . . . , ξt

)
−measurable .
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Prototype Problem

Stochastic optimization problem under consideration:

V
(
ξ,F

)
= min

u∈L2(Ω,A,P;U)
E

[
j(u, ξ)

]
, (1a)

subject to u is F−measurable . (1b)

In order to obtain a tractable approximation of problem (1),

1 the random variable ξ in (1a) must be discretized,

2 and the σ-field F in (1b) must be discretized.

These two discretizations are a priori independent.

The first discretization is somewhat traditional (Monte Carlo),
whereas the last one is not so well-known. . .
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Strong convergence topology of σ-fields (Neveu)

Coarsest topology such that conditional expectation is continuous
with respect to the σ-field:

lim
n→+∞

Fn = F ⇐⇒ lim
n→+∞

‖E [f | Fn]− E [f | F ]‖L1 = 0 ∀f ∈ L1 .

This notion of strong convergence, given using L1(Ω,A, P; R) can
be equivalently defined using Lr (Ω,A, P;U), for r ≥ 1 (Piccinini).

Main properties of the strong topology (Cotter)

1 The strong convergence topology is metrizable.

2 The set of σ-fields generated by a finite partition is dense.

3 If yn
P−→ y and σ

(
yn

)
⊂ σ

(
y
)
, then σ

(
yn

)
→ σ

(
y
)
.
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Known results

V
(
ξ,F

)
= min

u∈L2(Ω,A,P;U)
E

[
j(u, ξ)

]
,

subject to u is F−measurable .

In most discretization schemes (e.g. Pennanen ’05 and Barty ’04),
the approximations of ξ and F are linked together. . .

How to devise a discretization scheme independent in ξ and F ?

More precisely, can we use the Monte Carlo method in order to
discretize ξ, as for open-loop problems (Dupacova-Wets) ?
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Formulation

x and w: independent uniformly distributed random variables
on [−1, 1] (initial state and noise): ξ =

(
x,w

)
.

u: random variable on R (control), measurable with respect
to the initial state x: F = σ(x).

z = x + u + w (final state).

The problem is formulated on
(
[−1, 1]2,B[−1,1]2 , µ

)
:

min
u is F−measurable

E
[
εu2 + z2

]
. (2)

Exact resolution using dynamic programming

u](x) = − x

1 + ε
and J] = V

(
ξ,F

)
=

1

3

(
1 +

ε

1 + ε

)
.
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Information

Let n ∈ N?. Let
(
F

(1)
n , . . . ,F

(n)
n

)
be a partition of [−1, 1]2, with

F
(k)
n =

(
2(k − 1)

n
− 1,

2k

n
− 1

]
× [−1, 1] .

Let Fn be the sub σ-field generated by
(
F

(1)
n , . . . ,F

(n)
n

)
.

(
Fn

)
n∈N strongly converges to F ,

u is Fn−measurable ⇐⇒ u is constant over each F
(k)
n

⇐⇒ u
(
x ,w

)
=

n∑
k=1

u
(k)
n I

F
(k)
n

(
x ,w

)
.
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Random variable

Let
(
ζn

)
n∈N be a deterministic sequence of elements in [−1, 1]2

such that the associated sequence of empirical probability laws
weakly converges to µ. For n ∈ N? and k ∈ {1, . . . , n}, let(

x
(k)
n , w

(k)
n

)
=

(
2k − 1

n
− 1 +

ζk,1

n
, ζk,2

)
,

and define the approximation
(
xn,wn

)
of

(
x,w

)
by(

xn,wn

)
=

n∑
k=1

(
x

(k)
n ,w

(k)
n

)
I
F

(k)
n

(
x,w

)
.

(
xn,wn

)
is constant over each subset F

(k)
n .(

xn,wn

)
n∈N converges in distribution to

(
x,w

)
.
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Approximated problem and solution

min(
u

(1)
n ,...,u

(n)
n

)
∈Rn

n∑
k=1

∫
F

(k)
n

(
ε
(
u(k)

n

)2
+

(
x (k)
n + u(k)

n + w (k)
n

)2
)

µ
(
dxdw

)
.

û
(k)
n = −x

(k)
n + w

(k)
n

1 + ε
.

Approximated feedback and associated cost

ûn

(
x ,w

)
= −

n∑
k=1

x
(k)
n + w

(k)
n

1 + ε
I
F

(k)
n

(
x ,w

)
; E

[
εû2

n + z2
]
−→ 2

3
.

Discretization fails to asymptotically give the optimal solution.
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Standard notions of convergence, but

F and ξ are independently approximated:

this makes possible to solve each open-loop subproblem using
a unique sample of the random variable (a very poor way to
compute conditional expectations).

The convergence notion used for ξ is weak:{(
xn,wn

)}
n∈N does not converge in probability to

(
x,w

)
.

Question: can we expect a convergence result when using a
stronger convergence notion for the random variable?
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Framework for the study of problem (1):

ξ ∈ Lq(Ω,A, P; Ξ) with q ∈ [1,+∞),

u ∈ Lr (Ω,A, P;U) with r ∈ [1,+∞),

∆
(
F

)
subset of F-measurable control random variables:

∆
(
F

)
= Lr (Ω,F , P;U) ,

j a normal integrand on U × Ξ and J the associated integral
functional:

J(u, ξ) = E
[
j(u, ξ)

]
.

V
(
ξ,F

)
= min

u∈∆(F)
J
(
u, ξ

)
.

P. Carpentier and SOWG Approximations of stochastic optimization problems
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Theorem

Under the following assumptions:

H1 {ξn}n∈N converges to ξ in Lq(Ω,A, P; Ξ),

H2 {Fn}n∈N strongly converges to F and Fn ⊂ F ,

H3 j is such that:

∀(u, v), ∀(ξ, ζ), |j(u, ξ)− j(v , ζ)| ≤ α‖u − v‖r
U + β‖ξ − ζ‖q

Ξ ,

the convergence of the approximated optimal costs holds true:

lim
n→+∞

V
(
ξn,Fn

)
= V

(
ξ,F

)
. (3)

P. Carpentier and SOWG Approximations of stochastic optimization problems
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1 Same result with:

∆
(
F

)
=

{
u ∈ U , u F −measurable, u(ω) ∈ Uad P− as

}
,

Uad being a closed convex subset of U.

2 Assumption H3 in our theorem is far from being minimal,
and can be alleviated using the tools of epi-convergence
(see Chancelier for further details).

3 Numerical point of view:(
Ω

(1)
n , . . . ,Ω

(n)
n

)
partition generating the σ-field Fn,(

0
(1)
n , . . . ,0

(n)
n

)
partition generated by ξn,

min
(u

(1)
n ,...,u

(n)
n )∈Un

n∑
i=1

n∑
l=1

P
(
Ω

(i)
n ∩ 0

(l)
n

)
j
(
u

(i)
n , ξ

(l)
n

)
.
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1 Another point of view on stochastic approximation.

2 Scenario trees are not built-in in stochastic programming.
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Pennanen’s discretization scheme for problem (1)

Suppose that F = σ(y), with y = h(ξ).

1 Approximate ξ by a finitely valued r.v. ξn = qn(ξ),

and approximate F by Fn generated by yn = h(ξn):

V
(
ξn,Fn

)
= min

u is Fn−measurable
E

[
j(u, ξn)

]
.

But. . . u is Fn−measurable ; u is F−measurable

Convergence theorem (Epi-convergence)

Main assumptions:

1 ξn −→ ξ in probability.

2 σ(h ◦ qn) ⊂ σ(h).

P. Carpentier and SOWG Approximations of stochastic optimization problems
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Barty’s discretization scheme for problem (1)

1 Approximate F by Fk generated by a finite partition of Ω:

V
(
ξ,Fk

)
= min

u is Fk−measurable
E

[
j(u, ξ)

]
.

2 Approximate ξ by a finitely valued random variable ξn:

V
(
ξn,Fk

)
= min

u is Fk−measurable
E

[
j(u, ξn)

]
.

Convergence theorem

1 Information structure discretization error:∣∣V (
ξ,F

)
− V

(
ξ,Fk

)∣∣ −→ 0 as Fk −→ F strongly.

2 Mean computation discretization error:∣∣V (
ξ,Fk

)
− V

(
ξn,Fk

)∣∣ −→ 0 as ξn −→ ξ in distribution.

P. Carpentier and SOWG Approximations of stochastic optimization problems
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lim sup
n→+∞

V
(
ξn,Fn

)
≤ V

(
ξ,F

)
∀u ∈ ∆(F), define un = E [u | Fn]. Then, Fn → F =⇒ un → u.

The set-valued mapping ∆ is thus lsc.

J being continuous, we conclude that the marginal function V is u.s.c.

lim inf
n→+∞

V
(
ξn,Fn

)
≥ V

(
ξ,F

)
From J(u, ξn) = J(u, ξ) + (J(u, ξn)− J(u, ξ)), we obtain:

min
u∈∆(Fn)

J(u, ξn) ≥ min
u∈∆(Fn)

J(u, ξ) + min
u∈∆(Fn)

“
J(u, ξn)− J(u, ξ)

”
.

Using Fn ⊂ F =⇒ ∆(Fn) ⊂ ∆(F), we deduce:

V (ξn,Fn) ≥ V (ξ,F) + min
u∈∆(F)

“
J(u, ξn)− J(u, ξ)

”
.

The conclusion is again a consequence of H3.

P. Carpentier and SOWG Approximations of stochastic optimization problems
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