

ICIAM 2003, Sydney, Australia, 7-11 July 2003

Optimal strategies of dispersion for coral fish larvae: a Stochastic Dynamic Programming approach to estimate self-recruitment

Michel DE LARA, Anselme LE VAN, Jean-Olivier IRISSON, Serge PLANES

mcdl@cermics.enpc.fr

≪(≫) ↓ Back Close

1. Introduction

(a) Why studying larvae dispersion?(b) Why focusing upon auto-recruitment?(c) Why modelling?

《

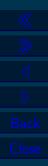
√
↓
Back
Close

1. Introduction

(a) Why studying larvae dispersion?(b) Why focusing upon auto-recruitment?(c) Why modelling?

2. Description of the models

(a) Problem characteristics(b) Theoretical framework(c) Parametrization



1. Introduction

(a) Why studying larvae dispersion?(b) Why focusing upon auto-recruitment?(c) Why modelling?

2. Description of the models

(a) Problem characteristics(b) Theoretical framework(c) Parametrization

3. Simulations

1. Introduction

(a) Why studying larvae dispersion?(b) Why focusing upon auto-recruitment?(c) Why modelling?

2. Description of the models

(a) Problem characteristics(b) Theoretical framework(c) Parametrization

- 3. Simulations
- 4. Perspectives

3/29

Dispersion

≪
✓
✓
✓
Back
Close

Why studying larvae dispersion?

• Debate concerning the demographic limiting factors for populations: before or after recrutment?

≪
✓
✓
✓
Back
Close

Why studying larvae dispersion?

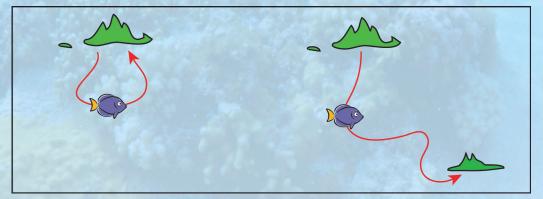
- Debate concerning the demographic limiting factors for populations: before or after recrutment?
- The dispersion at the larva stade delimitates the populations and determines their connectivity: importance for gestion and conservation purposes

Why studying larvae dispersion?

- Debate concerning the demographic limiting factors for populations: before or after recrutment?
- The dispersion at the larva stade delimitates the populations and determines their connectivity: importance for gestion and conservation purposes
- The omnipresence of larvae dispersion for marine organisms is an evolutionary puzzle.

Why focusing upon auto-recruitment?

Def. Auto-recrutment: Recrutment of an organism on its natal place



 \Rightarrow retention phenomena (active or passive).

≪(≫) √ Back Close

Why focusing upon auto-recruitment?

Difficulties in studying dispersion:

- Wide spatial range, and thus strong larvae dilution
- Very low survival rate: difficulty with capture-recapture techniques

Why focusing upon auto-recruitment?

Difficulties in studying dispersion:

- Wide spatial range, and thus strong larvae dilution
- Very low survival rate: difficulty with capture-recapture techniques

Avdantages in studying auto-recrutment:

- Shortest spatial range (retention in the vicinity of the island)
- Marquage-capture-recapture **possible** (Jones et al., 1999)
- Estimation of auto-recrutment by population genetics.

Interest of modelling

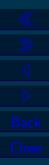
• Well developed current models

≪
✓
✓
✓
Back
Close

Interest of modelling

• Well developed current models

• Less costly than planktonic study.



Interest of modelling

• Well developed current models

• Less costly than planktonic study.

• Contribution to decision-making (conservation purposes).

≪
≫
↓
Back
Close

A brief history of larvae dispersion modelling

First models: Dight et al., 1990, Black et al., 1991.

- Focus on **current** studies
- Passive particles advection/diffusion

A brief history of larvae dispersion modelling

First models: Dight et al., 1990, Black et al., 1991.

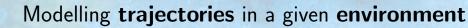
- Focus on **current** studies
- Passive particles advection/diffusion

Recent models:

Wolanski et al. (1997), Armsworth (2000), Armsworth (2001), Armsworth et al. (2001).

- Currents but active particles
- Introduction of biological characteristics of particles (energy budget...)

Modelling



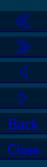
plusieurs kms

≪ ≫ ⊲ Back Close

plusieurs kms

Specificities of the modelling approach

- Wider temporal and spatial scales
- More **complete** description of the environment
- Larvae are no longer passive in a given environment, but **active** in exploiting it.



Problem characteristics

• Isolated island (auto-recrutment)

≪
✓
✓
✓
✓
Back
Close

Problem characteristics

• Isolated island (auto-recrutment)

• A larva born in the island and maximizing its return probability at a given horizon

≪
≫
↓
Back
Close

Problem characteristics

- Isolated island (auto-recrutment)
- A larva born in the island and maximizing its return probability at a given horizon
- Comportmental alternatives during dispersion ⇒ choices and tradeoffs (active larva)

Problem characteristics

- Isolated island (auto-recrutment)
- A larva born in the island and maximizing its return probability at a given horizon
- Comportmental alternatives during dispersion ⇒ choices and tradeoffs (active larva)

Optimality

Problem characteristics

- Isolated island (auto-recrutment)
- A larva born in the island and maximizing its return probability at a given horizon
- Comportmental alternatives during dispersion ⇒ choices and tradeoffs (active larva)

Optimality

Problem characteristics

Def. Optimal: Which maximizes auto-recrutment probability.

Def. Optimal trajectory: Random state trajectory for which the sequence of decisions is optimal (in expectation)

≪ ≫ √ Back Close

Theoretical framework

Time Discrete. Time step = 6h. Temporal horizon fixed = T.

≪
≫
↓
Back
Close

Theoretical framework

Time Discrete. Time step = 6h. Temporal horizon fixed = T.

State Energetic ressources level $(\theta \in [0, \theta_{max}])$ + Position $(x \in [0, x_{max}]$ or bounded (x, y, z))

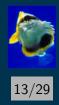
Theoretical framework

Time Discrete. Time step = 6h. Temporal horizon fixed = T.

State Energetic ressources level $(\theta \in [0, \theta_{max}])$ + Position $(x \in [0, x_{max}]$ or bounded (x, y, z))

Environment To each spatial position is associated

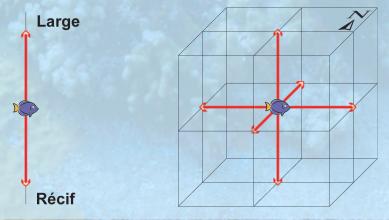
- a probability of dying by predation
- a feeding probability
- a current vector (intensity, direction)



Theoretical framework

Controlled dynamics Larva **trade-off** between two comportmental alternatives

- getting food and thus energy but at the price of swimming in a random direction
- swimming directionally but at the price of spending energy.



≪
≫
↓
Back
Close

Transitions

Stochastic dynamic model: transition probabilities and matrices are indexed by the control

Energy 0				. <u> </u>				2				-	0				1				2						
Position	0	1	2	3	0	1	2	3	0	1	2	3		ľ	0	1	2	3	0	1	2	3	0	1	2	3	
T	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	0 1	0 0	0	$\begin{vmatrix} 0\\0 \end{vmatrix}$	0	0	0	$\begin{vmatrix} 0\\0 \end{vmatrix}$	0	0	0 \		(1 0	0	0	0	0	0	0 0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	0		-	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	
0 2 3	0	0	1 0	0 1	0	0	0	0	0	0	0	0		ć	0	0	1 0	0	0	0	0	0	0	0	0	0	
Ťo	1-p	0 0	0	0	0	0	0	0	0	p	0	0		-	$\frac{0}{1-p+p}$	0	0	0	0	0	0	0	0	0	0	0	
1 2	0 0	1 - p 0	0 1 - p	0 0	00	0 0	0 0	0 0	0 0	0 0	p 0	0 p			p 0	1-p p	$0 \\ 1 - p$	0 0	0 0	0 0	0 0	0 0	0 0	Ŭ	0	0 0	
	$\frac{0}{1-p}$	0 0	0 0	1 - p	0	0	0	0	0	0 p	0	p 0		-	$\frac{0}{1 - p}$	0	p 0	$\frac{1-p}{0}$	0 p	0	0	0	0	0	0	$\frac{0}{0}$	
2 2	0	1 - p	$\frac{0}{1-p}$	0	0	0	0	0	0	0	p 0	0			0	1 − p 0	0 1 – p	0 0	р 0	0 p	0 0	0	0	0	0	0	
13	0	0	1 - p	$1 - \mathbf{p}$		0	0	0	0	0	0	р р/			0	0	1 - p	1-p	0	P 0	p	0	0	0		0)	
$=\mathcal{M}^0$																					=	= /	\mathcal{M}^{1}				

≪
✓
✓
Back

Optimization

Optimization criterion Maximization of return probability at the horizon.

≪
≫
↓
Back
Close

Optimization

Optimization criterion Maximization of return probability at the horizon.

Zero instantaneous gains:

$$\forall t = 0, ..., T - 1, \quad L(\theta, x, u, t) = 0$$
 (1)

Final gain

$$\Phi(\theta, x) = \mathbf{1}_{\{x=0\}}$$

(2)

Optimization

Optimization criterion Maximization of return probability at the horizon.

Zero instantaneous gains:

$$\forall t = 0, ..., T - 1, \quad L(\theta, x, u, t) = 0$$
 (1)

Final gain

$$\Phi(heta,x) = \mathbf{1}_{\{x=0\}}$$

The optimization problem is

$$\max_{u_0,...,u_{T-1}} \mathbb{E}\left(\sum_{t=0}^{T-1} L(\theta_t, x_t, u_t, t) + \Phi(\theta_T, x_T)\right) = \max_{u_0,...,u_{T-1}} \mathbb{E}(\mathbf{1}_{\{x_T=0\}})$$
(3)

(2)

17/29

The model

Stochastic dynamic programming

Bellman equation:

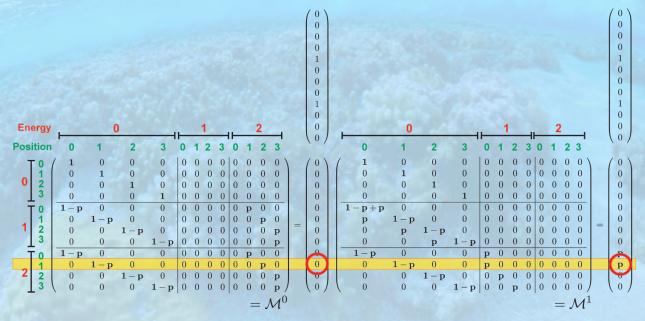
 $\begin{cases} V(\theta, x, T) = \Phi(\theta_T, x_T, T) \\ V(\theta, x, t) = \max_u \left[L(\theta, x, u, t) + (\mathcal{M}^u V(\cdot, t+1))(\theta, x) \right] \\ u^{\#}(\theta, x, t) \in \arg \max \left[L(\theta, x, u, t) + (\mathcal{M}^u V(\cdot, t+1))(\theta, x) \right] \end{cases}$

Gives both the **optimal feedbacks** $(u^{\#}(\theta, x, t))$ and the **maximal auto-recrutment probability**.

≪
✓
✓
Back

(4)

Stochastic dynamic programming



 \Rightarrow optimal feedback

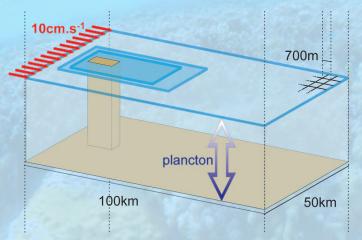
≪
✓
✓
✓
Back
Close

Stochastic dynamic programming By (4) and (3), one notices that

$$V(\theta, x, 0) = \max_{u_0, \dots, u_{T-1}} \mathbb{E} \left(\sum_{t=0}^{T-1} L(\theta_t, x_t, u_t, t) + \Phi(\theta_T, x_T) \right)$$
(5)
$$= \max_{u_0, \dots, u_{T-1}} \mathbb{E} (\mathbf{1}_{\{x_T=0\}})$$
(6)
$$= \max_{u_0, \dots, u_{T-1}} \mathbb{P} (x_T = 0)$$
(7)

 \Rightarrow maximal auto-recrutment probability.

Parameters



Environment

- Current: unidirectional and uniform
- Predators et plankton "reef effect" and "island mass effect"
- **Plankton** Daily vertical migration

Parameters

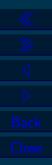
Larva

- Demersal eggs
- Pelagic stage = **20 days**
- 3 development stages. Swimming speed = 3, 10, 30 cm.s⁻¹; energy consumption = yolk sac, then 1 unit by time step.
- Energy ⇒ 1 day without feeding before dying

Biological realism and numerical consequences

Transition matrices of very large size:

 $100 \times 100 \times 3 \times 6 = 180\ 000\ \text{states}$ matrix = 180 000 × 180 000 \leftrightarrow 130MB RAM



Biological realism and numerical consequences

Transition matrices of very large size:

 $100 \times 100 \times 3 \times 6 = 180\ 000\ \text{states}$ $\text{matrix} = 180\ 000 \times 180\ 000 \leftrightarrow 130\text{MB}\ \text{RAM}$

Two problems:

- 1. matrices declaration
- 2. RAM

≪
≫
↓
Back
Close

Biological realism and numerical consequences

Transition matrices of very large size:

 $100 \times 100 \times 3 \times 6 = 180\ 000\ \text{states}$ $\text{matrix} = 180\ 000 \times 180\ 000 \leftrightarrow 130\text{MB}\ \text{RAM}$

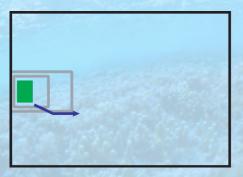
Two problems:

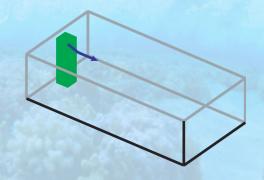
- 1. matrices declaration
- 2. RAM

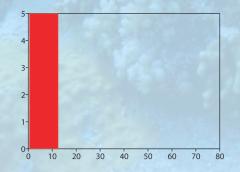
Two solutions:

- 1. C langage
- 2. sparse matrices

Simulations

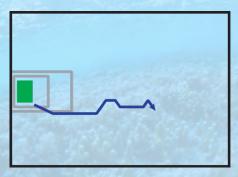


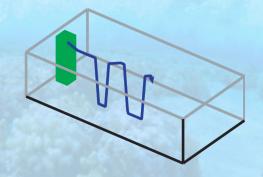


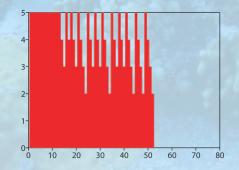


Avoids high predation zones

Simulations



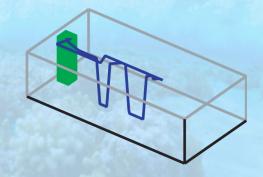


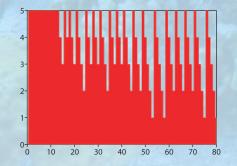


Maximizes the probability of finding food

Simulations







Fights against current when efficient + avoids high predation zones

Model specificities

• Optimization = **rather new** theoretical framework (exception: Armsworth 2001)

• Widening of temporal and spatial scales

≪
≫
↓
Back
Close

Model specificities

- Optimization = **rather new** theoretical framework (exception: Armsworth 2001)
- Widening of temporal and spatial scales
- Focus on the larvae abilities: comportmental **trade-offs** (+++ courants)

Model specificities

- Optimization = rather new theoretical framework (exception: Armsworth 2001)
- Widening of temporal and spatial scales
- Focus on the larvae abilities: comportmental **trade-offs** (+++ courants)

Richer description of the environment (currents + predation and plankton)

≪
≫
↓
Back
Close

Why optimization?

Evolutionary argument High mortality at the larva pre-reproductive stage = high evolutive pressure on survival

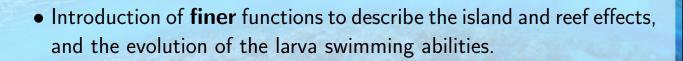
≪ ≫ √ Back Close

Why optimization?

Evolutionary argument High mortality at the larva pre-reproductive stage = high evolutive pressure on survival

Probabilistic argument Upper bound for maximal auto-recrutment probability.

《
√
↓
Back
Close



- Introduction of **finer** functions to describe the island and reef effects, and the evolution of the larva swimming abilities.
- Introduction of a second island (auto-recrutment versus dispersion)

- Introduction of **finer** functions to describe the island and reef effects, and the evolution of the larva swimming abilities.
- Introduction of a second island (auto-recrutment versus dispersion)
- Better description of the currents via a hydrodynamics model

- Introduction of **finer** functions to describe the island and reef effects, and the evolution of the larva swimming abilities.
- Introduction of a second island (auto-recrutment versus dispersion)
- Better description of the currents via a hydrodynamics model
- Sensitivity analysis.

