

ICIAM 2003, Sydney, Australia, 7-11 July 2003

Optimal strategies of dispersion for coral fish larvae: a Stochastic Dynamic Programming approach to estimate self-recruitment

Michel DE LARA, Anselme LE VAN, Jean-Olivier IRISSON, Serge PLANES

mcdl@cermics.enpc.fr

1. Introduction

(a) Why studying larvae dispersion? (b) Why focusing upon auto-recruitment? (c) Why modelling?

1. Introduction

(a) Why studying larvae dispersion? (b) Why focusing upon auto-recruitment? (c) Why modelling?

2. Description of the models

(a) Problem characteristics (b) Theoretical framework (c) Parametrization

1. Introduction

(a) Why studying larvae dispersion? (b) Why focusing upon auto-recruitment? (c) Why modelling?

2. Description of the models

(a) Problem characteristics (b) Theoretical framework (c) Parametrization

3. Simulations

1. Introduction

(a) Why studying larvae dispersion? (b) Why focusing upon auto-recruitment? (c) Why modelling?

2. Description of the models

(a) Problem characteristics (b) Theoretical framework (c) Parametrization

- 3. Simulations
- 4. Perspectives

Dispersion

Why studying larvae dispersion?

• Debate concerning the demographic limiting factors for populations: before or after recrutment?

Why studying larvae dispersion?

- Debate concerning the demographic limiting factors for populations: before or after recrutment?
- The dispersion at the larva stade delimitates the populations and determines their connectivity: importance for gestion and conservation purposes

Why studying larvae dispersion?

- Debate concerning the demographic limiting factors for populations: before or after recrutment?
- The dispersion at the larva stade delimitates the populations and determines their connectivity: importance for gestion and conservation purposes
- The omnipresence of larvae dispersion for marine organisms is an evolutionary puzzle.

Why focusing upon auto-recruitment?

Def. Auto-recrutment: Recrutment of an organism on its natal place

 \Rightarrow retention phenomena (active or passive).

Why focusing upon auto-recruitment?

Difficulties in studying dispersion:

- Wide spatial range, and thus strong larvae dilution
- Very low survival rate: difficulty with capture-recapture techniques

Why focusing upon auto-recruitment?

Difficulties in studying dispersion:

- Wide spatial range, and thus strong larvae dilution
- Very low survival rate: difficulty with capture-recapture techniques

Avdantages in studying auto-recrutment:

- Shortest spatial range (retention in the vicinity of the island)
- Marquage-capture-recapture **possible** (Jones et al., 1999)
- Estimation of auto-recrutment by population genetics.

Interest of modelling

· Well developed current models

Interest of modelling

• Well developed current models

• Less costly than planktonic study.

Interest of modelling

• Well developed current models

• Less costly than planktonic study.

• Contribution to decision-making (conservation purposes).

A brief history of larvae dispersion modelling

First models: Dight et al., 1990, Black et al., 1991.

- Focus on **current** studies
- Passive particles advection/diffusion

A brief history of larvae dispersion modelling

First models: Dight et al., 1990, Black et al., 1991.

- Focus on current studies
- Passive particles advection/diffusion

Recent models:

Wolanski et al. (1997), Armsworth (2000), Armsworth (2001), Armsworth et al. (2001).

- Currents but active particles
- Introduction of **biological** characteristics of particles (energy budget...)

Modelling

Modelling trajectories in a given environment

plusieurs kms

Plusieurs Kms

Specificities of the modelling approach

- Wider temporal and spatial scales
- More complete description of the environment
- Larvae are no longer passive in a given environment, but active in exploiting it.

Problem characteristics

· Isolated island (auto-recrutment)

Problem characteristics

• Isolated island (auto-recrutment)

• A larva born in the island and maximizing its return probability at a given horizon

Problem characteristics

- Isolated island (auto-recrutment)
- A larva born in the island and maximizing its return probability at a given horizon
- Comportmental alternatives during dispersion ⇒ choices and tradeoffs (active larva)

Problem characteristics

- Isolated island (auto-recrutment)
- A larva born in the island and maximizing its return probability at a given horizon
- Comportmental alternatives during dispersion ⇒ choices and tradeoffs (active larva)

Optimality

Problem characteristics

- Isolated island (auto-recrutment)
- A larva born in the island and maximizing its return probability at a given horizon
- Comportmental alternatives during dispersion ⇒ choices and tradeoffs (active larva)

Optimality

Problem characteristics

Def. Optimal: Which maximizes auto-recrutment probability.

Def. Optimal trajectory: Random state trajectory for which the sequence of decisions is optimal (in expectation)

Theoretical framework

Time Discrete. Time step = 6h. Temporal horizon fixed = T .

Theoretical framework

Time Discrete. Time step $= 6h$. Temporal horizon fixed $= T$.

State Energetic ressources level $(\theta \in [0, \theta_{max}])$ + Position $(x \in$ $[0, x_{max}]$ or bounded (x,y,z))

Theoretical framework

Time Discrete. Time step $= 6h$. Temporal horizon fixed $= T$.

State Energetic ressources level $(\theta \in [0, \theta_{max}])$ + Position $(x \in$ $[0, x_{max}]$ or bounded (x,y,z))

Environment To each spatial position is associated

- a probability of dying by predation
- a feeding probability
- a current vector (intensity, direction)

Theoretical framework

Controlled dynamics Larva trade-off between two comportmental alternatives

- getting food and thus energy but at the price of swimming in a random direction
- swimming directionally but at the price of spending energy.

Transitions

Stochastic dynamic model: transition probabilities and matrices are indexed by the control

Optimization

Optimization criterion Maximization of return probability at the horizon.

Optimization

Optimization criterion Maximization of return probability at the horizon.

Zero instantaneous gains:

$$
\forall t = 0, ..., T - 1, \quad L(\theta, x, u, t) = 0 \tag{1}
$$

Final gain

$$
\Phi(\theta, x) = \mathbf{1}_{\{x=0\}} \tag{2}
$$

Optimization

Optimization criterion Maximization of return probability at the horizon.

Zero instantaneous gains:

$$
\forall t = 0, ..., T - 1, \quad L(\theta, x, u, t) = 0 \tag{1}
$$

Final gain

$$
\Phi(\theta, x) = \mathbf{1}_{\{x=0\}} \tag{2}
$$

The optimization problem is

$$
\max_{u_0, \dots, u_{T-1}} \mathbb{E}\left(\sum_{t=0}^{T-1} L(\theta_t, x_t, u_t, t) + \Phi(\theta_T, x_T)\right) = \max_{u_0, \dots, u_{T-1}} \mathbb{E}(\mathbf{1}_{\{x_T=0\}})
$$
\n(3)

Stochastic dynamic programming

Bellman equation:

 $\sqrt{ }$ \int \mathcal{L} $V(\theta, x, T) \; = \; \Phi(\theta_T, x_T, T)$ $V(\theta, x, t) = \max_u [L(\theta, x, u, t) + (\mathcal{M}^u V(\cdot, t + 1))(\theta, x)]$ $u^{\#}(\theta, x, t) \in \arg \max [L(\theta, x, u, t) + (\mathcal{M}^u V(\cdot, t+1))(\theta, x)]$

Gives both the **optimal feedbacks** $(u^{\#}(\theta,x,t))$ and the maximal auto-recrutment probability.

 $\left(4\right)$

Stochastic dynamic programming

⇒ optimal feedback

Stochastic dynamic programming By [\(4\)](#page-33-0) and [\(3\)](#page-32-0), one notices that

$$
V(\theta, x, 0) = \max_{u_0, ..., u_{T-1}} \mathbb{E}\left(\sum_{t=0}^{T-1} L(\theta_t, x_t, u_t, t) + \Phi(\theta_T, x_T)\right)
$$
(5)
=
$$
\max_{u_0, ..., u_{T-1}} \mathbb{E}(\mathbf{1}_{\{x_T=0\}})
$$
(6)
=
$$
\max_{u_0, ..., u_{T-1}} \mathbb{P}(x_T = 0)
$$
(7)

 \Rightarrow maximal auto-recrutment probability.

Parameters

Environment

- Current: unidirectional and uniform
- Predators et plankton "reef effect" and "island mass effect"
- Plankton Daily vertical migration

Parameters

Larva

- Demersal eggs
- Pelagic stage $= 20$ days
- 3 development stages. Swimming speed $=$ 3, 10, 30 cm.s $^{-1}$; energy consumption $=$ yolk sac, then 1 unit by time step.
- Energy \Rightarrow 1 day without feeding before dying

Biological realism and numerical consequences

Transition matrices of very large size:

 $100 \times 100 \times 3 \times 6 = 180000$ states matrix = 180 000 \times 180 000 \leftrightarrow 130MB RAM

Biological realism and numerical consequences

Transition matrices of very large size:

 $100 \times 100 \times 3 \times 6 = 180000$ states matrix = 180 000 \times 180 000 \leftrightarrow 130MB RAM

Two problems:

- 1. matrices declaration
- 2. RAM

Biological realism and numerical consequences

Transition matrices of very large size:

 $100 \times 100 \times 3 \times 6 = 180000$ states matrix = 180 000 \times 180 000 \leftrightarrow 130MB RAM

Two problems:

- 1. matrices declaration
- 2. RAM

Two solutions:

- 1. C langage
- 2. sparse matrices

Simulations

Avoids high predation zones

Simulations

Maximizes the probability of finding food

Simulations

Fights against current when ef $ficient + avoids high predation$ zones

 $25/29$

Model specificities

• Optimization $=$ rather new theoretical framework (exception: Armsworth 2001)

• Widening of temporal and spatial scales

Model specificities

- Optimization $=$ rather new theoretical framework (exception: Armsworth 2001)
- Widening of temporal and spatial scales
- Focus on the larvae abilities: comportmental **trade-offs** (\leftrightarrow courants)

Model specificities

- Optimization $=$ rather new theoretical framework (exception: Armsworth 2001)
- Widening of temporal and spatial scales
- Focus on the larvae abilities: comportmental **trade-offs** (\leftrightarrow courants)

• Richer description of the environment (currents + predation and plankton)

Why optimization?

Why optimization?

Evolutionary argument High mortality at the larva pre-reproductive stage $=$ high evolutive pressure on survival

Probabilistic argument Upper bound for maximal auto-recrutment probability.

- Introduction of finer functions to describe the island and reef effects, and the evolution of the larva swimming abilities.
- Introduction of a **second** island (auto-recrutment versus dispersion)

- Introduction of finer functions to describe the island and reef effects, and the evolution of the larva swimming abilities.
- Introduction of a **second** island (auto-recrutment versus dispersion)
- Better description of the currents via a hydrodynamics model

28/29

- Introduction of finer functions to describe the island and reef effects, and the evolution of the larva swimming abilities.
- Introduction of a **second** island (auto-recrutment versus dispersion)
- Better description of the currents via a hydrodynamics model
- Sensitivity analysis.

