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Introduction

Why studying larvae dispersion?

• Debate concerning the demographic limiting factors for populations:

before or after recrutment?

• The dispersion at the larva stade delimitates the populations and de-

termines their connectivity: importance for gestion and conservation

purposes

• The omnipresence of larvae dispersion for marine organisms is an

evolutionary puzzle.
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Introduction

Why focusing upon auto-recruitment?

Def. Auto-recrutment:

Recrutment of an organism on its natal place

⇒ retention phenomena (active or passive).
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Introduction

Why focusing upon auto-recruitment?

Difficulties in studying dispersion:

• Wide spatial range, and thus strong larvae dilution

• Very low survival rate: difficulty with capture-recapture tech-

niques

Avdantages in studying auto-recrutment:

• Shortest spatial range (retention in the vicinity of the island)

• Marquage-capture-recapture possible (Jones et al., 1999)

• Estimation of auto-recrutment by population genetics.
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Introduction

Interest of modelling

• Well developed current models

• Less costly than planktonic study.

• Contribution to decision-making (conservation purposes).
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Dight et al., 1990, Black et al., 1991.

• Focus on current studies

• Passive particles advection/diffusion
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Introduction

A brief history of larvae dispersion modelling

First models:

Dight et al., 1990, Black et al., 1991.

• Focus on current studies

• Passive particles advection/diffusion

Recent models:

Wolanski et al. (1997), Armsworth (2000), Armsworth (2001),

Armsworth et al. (2001).

• Currents but active particles

• Introduction of biological characteristics of particles (energy bud-

get...)
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Introduction

Modelling

Modelling trajectories in a given environment
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Introduction

Specificities of the modelling approach

• Wider temporal and spatial scales

• More complete description of the environment

• Larvae are no longer passive in a given environment, but active in

exploiting it.
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The model

Problem characteristics

Def. Optimal:

Which maximizes auto-recrutment probability.

Def. Optimal trajectory:

Random state trajectory for which the sequence of decisions is optimal

(in expectation)
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State Energetic ressources level (θ ∈ [0, θmax]) + Position (x ∈
[0, xmax] or bounded (x,y,z))
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The model

Theoretical framework

Time Discrete. Time step = 6h. Temporal horizon fixed = T .

State Energetic ressources level (θ ∈ [0, θmax]) + Position (x ∈
[0, xmax] or bounded (x,y,z))

Environment To each spatial position is associated

• a probability of dying by predation

• a feeding probability

• a current vector (intensity, direction)
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The model
Theoretical framework

Controlled dynamics Larva trade-off between two comportmental

alternatives

• getting food and thus energy but at the price of swimming in a

random direction

• swimming directionally but at the price of spending energy.
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The model

Transitions

Stochastic dynamic model: transition probabilities and matri-
ces are indexed by the control
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The model

Optimization

Optimization criterion Maximization of return probability at the hori-

zon.

Zero instantaneous gains:

∀t = 0, ..., T − 1, L(θ, x, u, t) = 0 (1)

Final gain

Φ(θ, x) = 1{x=0} (2)

The optimization problem is

max
u0,...,uT−1

E

(
T−1∑
t=0

L(θt, xt, ut, t) + Φ(θT , xT )

)
= max

u0,...,uT−1
E(1{xT =0})

(3)
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The model

Stochastic dynamic programming

Bellman equation:
V (θ, x, T ) = Φ(θT , xT , T )

V (θ, x, t) = maxu [L(θ, x, u, t) + (MuV (·, t + 1))(θ, x)]

u#(θ, x, t) ∈ arg max [L(θ, x, u, t) + (MuV (·, t + 1))(θ, x)]
(4)

Gives both

the optimal feedbacks (u#(θ, x, t))

and the maximal auto-recrutment probability.
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The model

Stochastic dynamic programming

⇒ optimal feedback



19/29

≪
≫
C
B

Back

Close

The model

Stochastic dynamic programming

By (4) and (3), one notices that

V (θ, x, 0) = max
u0,...,uT−1

E

(
T−1∑
t=0

L(θt, xt, ut, t) + Φ(θT , xT )

)
(5)

= max
u0,...,uT−1

E(1{xT =0}) (6)

= max
u0,...,uT−1

P(xT = 0) (7)

⇒ maximal auto-recrutment probability.



20/29

≪
≫
C
B

Back

Close

The model

Parameters

Environment

• Current: unidirectional

and uniform

• Predators et plank-
ton “reef effect” and “is-

land mass effect”

• Plankton Daily vertical

migration
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The model

Parameters

Larva

• Demersal eggs

• Pelagic stage = 20 days

• 3 development stages. Swimming

speed = 3, 10, 30 cm.s−1 ; energy con-

sumption = yolk sac, then 1 unit by

time step.

• Energy ⇒ 1 day without feeding be-

fore dying
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Biological realism and numerical consequences

Transition matrices of very large size:

100 × 100 × 3 × 6 = 180 000 states

matrix = 180 000 × 180 000 ↔ 130MB RAM
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The model
Biological realism and numerical consequences

Transition matrices of very large size:

100 × 100 × 3 × 6 = 180 000 states

matrix = 180 000 × 180 000 ↔ 130MB RAM

Two problems:

1. matrices declaration

2. RAM

Two solutions:

1. C langage

2. sparse matrices
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Simulations

Avoids high predation zones
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Simulations

Maximizes the probability of

finding food
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Simulations

Fights against current when ef-

ficient + avoids high predation

zones
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Model specificities

• Optimization = rather new theoretical framework (exception: Armsworth

2001)

• Widening of temporal and spatial scales
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Discussion

Model specificities

• Optimization = rather new theoretical framework (exception: Armsworth

2001)

• Widening of temporal and spatial scales

• Focus on the larvae abilities: comportmental trade-offs (= courants)

• Richer description of the environment (currents + predation and

plankton)
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Why optimization?

Evolutionary argument High mortality at the larva pre-reproductive

stage =

high evolutive pressure on survival
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Discussion

Why optimization?

Evolutionary argument High mortality at the larva pre-reproductive

stage =

high evolutive pressure on survival

Probabilistic argument Upper bound for maximal auto-recrutment

probability.



28/29

≪
≫
C
B

Back

Close

Perspectives

• Introduction of finer functions to describe the island and reef effects,

and the evolution of the larva swimming abilities.
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Perspectives

• Introduction of finer functions to describe the island and reef effects,

and the evolution of the larva swimming abilities.

• Introduction of a second island

(auto-recrutment versus dispersion)

• Better description of the currents via a hydrodynamics model

• Sensitivity analysis.
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