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Here are the level sets
of the (highly nonconvex) ℓ0 pseudonorm in R2

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



The ℓ0 pseudonorm is not a norm
Only 1-homogeneity is missing, whereas 0-homogeneity holds true

Let d ∈ N∗ be a fixed natural number

▶ For any vector x ∈ Rd , we define its ℓ0 pseudonorm(x) by

ℓ0(x) = number of nonzero components of x =
d∑

i=1

1{xi ̸=0}

▶ The function ℓ0 pseudonorm : Rd →
{
0, 1, . . . , d

}
satisfies 3 out of 4 axioms of a norm
▶ we have ℓ0(x) ≥ 0 ✓
▶ we have

(
ℓ0(x) = 0 ⇐⇒ x = 0

)
✓

▶ we have ℓ0(x + x ′) ≤ ℓ0(x) + ℓ0(x
′) ✓

▶ But... 0-homogeneity holds true

ℓ0(ρx) = ℓ0(x) , ∀ρ ̸= 0

▶ We denote the level sets of the ℓ0 pseudonorm by

ℓ≤k
0 =

{
x ∈ Rd

∣∣ ℓ0(x) ≤ k
}
, ∀k ∈

{
0, 1, . . . , d

}



Fenchel versus E-Capra conjugacies
for the ℓ0 pseudonorm

Fenchel conjugacy E-Capra conjugacy

δ⋆
ℓ≤k
0

= δ{0}, k ̸= 0 δ
¢
ℓ≤k
0

= ∥·∥tn2,k
ℓ⋆0 = δ{0} ℓ

¢
0 = supl=0,1,...,d

[
∥·∥tn2,l − l

]
ℓ⋆⋆

′
0 = 0 ℓ

¢¢′

0 = ℓ0

where, for any subset W ⊂ Rd ,
the characteristic function δW of the set W is given by

δW (w) = 0 if w ∈W , δW (w) = +∞ if w ̸∈W



The ℓ0 pseudonorm coincides, on the Euclidean unit sphere
with a proper convex lsc function L0

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



This function L0 is the best convex lower approximation
of the ℓ0 pseudonorm on the Euclidean unit ball



Variational formulas for the ℓ0 pseudonorm

Proposition

[Chancelier and De Lara, 2021]

ℓ0(x) =
1

∥x∥2
min

x(1)∈Rd ,...,x(d)∈Rd∑d
l=1 ∥x(l)∥⋆sn(l)

≤∥x∥2∑d
l=1 x

(l)=x

d∑
l=1

l
∥∥∥x (l)∥∥∥⋆sn

(l)
, ∀x ∈ Rd

ℓ0(x) = sup
y∈Rd

inf
l=1,...,d

(⟨x , y⟩
∥x∥2

−
[
∥y∥tn2,l − l

]
+

)
, ∀x ∈ Rd \ {0}



Outline of the presentation

Background on one-sided linear couplings

The Euclidean Capra conjugacy

Extension: constant along primal rays conjugacies

Conclusion



Outline of the presentation

Background on one-sided linear couplings
Background on couplings and Fenchel-Moreau conjugacies
One-sided linear couplings (and hidden convexity)

The Euclidean Capra conjugacy

Extension: constant along primal rays conjugacies
Capra conjugacies
Best convex approximations of 0-homogeneous functions
The case of norms

Conclusion



Outline of the presentation

Background on one-sided linear couplings
Background on couplings and Fenchel-Moreau conjugacies
One-sided linear couplings (and hidden convexity)

The Euclidean Capra conjugacy

Extension: constant along primal rays conjugacies
Capra conjugacies
Best convex approximations of 0-homogeneous functions
The case of norms

Conclusion



The Fenchel conjugacy

R = R ∪ {−∞} ∪ {+∞} = [−∞,+∞]

Definition

Two vector spaces X and Y, paired by a bilinear form ⟨, ⟩
give rise to the classic Fenchel conjugacy

f ∈ RX 7→ f ⋆ ∈ RY

f ⋆(y) = sup
x∈X

(
⟨x , y⟩+

(
−f (x)

))
, ∀y ∈ Y

Fenchel conjugate Fourier transform
sup → +
+ → ×

supx∈X
(
⟨x , y⟩+

(
−f (x)

)) ∫
X e⟨x , y⟩f (x)dx



Background on couplings and Fenchel-Moreau conjugacies

▶ Let be given two sets X (“primal”) and Y (“dual”)
not necessarily paired vector spaces (nodes and arcs, etc.)

▶ We consider a coupling function

c : X× Y→ R

We also use the notation X c↔ Y for a coupling

▶ The Moreau lower addition extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

▶ The Moreau upper addition extends the usual addition with

(+∞)∔ (−∞) = (−∞)∔ (+∞) = +∞



Fenchel-Moreau conjugate

f ∈ RX 7→ f c ∈ RY

Definition

The c-Fenchel-Moreau conjugate of a function f : X→ R,
with respect to the coupling c ,
is the function f c : Y→ R defined by

f c(y) = sup
x∈X

(
c(x , y) ·+

(
−f (x)

))
, ∀y ∈ Y

Fenchel-Moreau conjugate (max,+) Kernel transform (+,×)
supx∈X

(
c(x , y) ·+

(
−f (x)

)) ∫
X c(x , y)f (x)dx



What are couplings good for?

Couplings are good for providing

▶ lower bounds for optimization problems with constraints
(uses conjugates)

▶ c-convex lower approximations of functions, hence a tool for
duality in optimization
(uses biconjugates)

▶ dual representation formulas for c-convex functions
(uses biconjugates and subdifferentials)

[Mart́ınez-Legaz, 2005]



“Fenchel-like” inequality yields a lower bound

sup
y∈Y

((
−f c(y)

)
·+
(
−g−c(y)

))
≤ inf

x∈X

(
f (x)∔ g(x)

)
▶ In particular, optimization under constraints x ∈ X gives

sup
y∈Y

((
−f c(y)

)
·+
(
−δ−c

X (y)
))
≤ inf

x∈X
f (x)

where δX (x) =

{
0 if x ∈ X

+∞ if x ̸∈ X

▶ Hence, the issue is to find a coupling c
that gives nice expressions for f c and δ−c

X



Fenchel-Moreau biconjugate

With the coupling c, we associate the reverse coupling c ′

c ′ : Y× X→ R , c ′(y , x) = c(x , y) , ∀(y , x) ∈ Y× X

▶ The c ′-Fenchel-Moreau conjugate of a function g : Y→ R,
with respect to the coupling c ′, is the function g c ′ : X→ R

g c ′(x) = sup
y∈Y

(
c(x , y) ·+

(
−g(y)

))
, ∀x ∈ X

▶ The c-Fenchel-Moreau biconjugate f cc
′
: X→ R

of a function f : X→ R is given by

f cc
′
(x) =

(
f c
)c ′

(x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X



So called c-convex functions have dual representations

f cc
′ ≤ f

Definition

The function f : X→ R is c-convex if f cc
′
= f

If the function f : X→ R is c-convex, we have

f (x) = sup
y∈Y

(
c(x , y) ·+

(
−f c(y)

))
, ∀x ∈ X

Example: ⋆-convex functions
= closed convex functions [Rockafellar, 1974, p. 15]
= proper convex lsc or ≡ −∞ or ≡ +∞
= suprema of affine functions



Subdifferential of a conjugacy

For any function f : X→ R and x ∈ X, there are
three possibilities for the c-subdifferential

y ∈ Y , y ∈ ∂c f (x) ⇐⇒ f c(y) = c(x , y) ·+
(
−f (x)

)
y ∈ Y , y ∈ ∂c f (x) ⇐⇒ f (x) = c(x , y) ·+

(
−f c(y)

)
y ∈ Y , y ∈ ∂c

c f (x) ⇐⇒ c(x , y) = f (x) ·+
(
−f c(y)

)
∂c f (x) ̸= ∅ ⇒ f cc

′
(x) = f (x)

If −∞ < c < +∞ and x ∈ domf , we have

∂c f (x) = ∂c f (x) = ∂c
c f (x)

={y ∈ Y | c(x ′, y)− f (x ′) ≤ c(x , y)− f (x) , ∀x ′ ∈ X}



Dual problems: perturbation scheme

▶ Set W, function h : W→ R and original minimization problem

inf
w∈W

h(w)

▶ Embedding/perturbation scheme given by a nonempty set X,
an element x ∈ X and a function H : W× X→ R such that

h(w) = H(w , x) , ∀w ∈W

▶ Value function

φ(x) = inf
w∈W

H(w , x) , ∀x ∈ X

▶ Original minimization problem

φ(x) = inf
w∈W

H(w , x) = inf
w∈W

h(w)



Dual problems: conjugacy, weak and strong duality
▶ Coupling X c↔ Y, and Lagrangian L : W× Y→ R given by

L(w , y) = inf
x∈X

{
H(w , x)∔

(
−c(x , y)

)}
▶ Dual maximization problem

−φc(y) = − sup
x∈X

{
c(x , y) ·+

(
− inf

w∈W
H(w , x)

)}
= inf

w∈W
L(w , y)

φcc ′(x) = sup
y∈Y

{
c(x , y) ·+ inf

w∈W
L(w , y)

}
▶ Weak duality always holds true

φcc ′(x) = sup
y∈Y

{
c(x , y) ·+ inf

w∈W
L(w , y)

}
≤ inf

w∈W
h(w) = φ(x)

▶ Strong duality holds true when φ is c-convex at x , that is,

φcc ′(x) = sup
y∈Y

{
c(x , y) ·+ inf

w∈W
L(w , y)

}
= inf

w∈W
h(w) = φ(x)
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One-sided linear couplings

▶ We consider two vector spaces X and Y
paired by a bilinear form ⟨·, ·⟩

▶ We suppose given a mapping θ : W→ X,
where W is any set

Definition

We define the one-sided linear coupling (OSL)

W ⋆θ←→ Y

between W and Y by

⋆θ(w , y) = ⟨θ(w), y⟩ , ∀w ∈W , ∀y ∈ Y



OSL-couplings induce conjugacies that share nice
properties with the classic Fenchel conjugacy

Proposition

[Chancelier and De Lara, 2021]
For any functions h : W→ R and g : Y→ R,
the Fenchel-Moreau conjugates are given by

h⋆θ =
(
inf

[
h | θ

])⋆
g⋆′θ = g⋆ ◦ θ

where, for all x ∈ X,

inf
[
h | θ

]
(x) = inf

{
h(w)

∣∣w ∈W, θ(w) = x
}



OSL-subdifferentials share properties
with the Rockafellar-Moreau subdifferential

Definition

For any function h : W→ R and w ∈W, the ⋆θ-subdifferential is

∂⋆θh(w) = {y ∈ Y |
〈
θ(w ′), y

〉
− h(w ′)

≤ ⟨θ(w), y⟩ − h(w) , ∀w ′ ∈W}
The following properties are satisfied

∂⋆θh(w) is a closed convex subset of Y
y ∈ ∂⋆θh(w) ⇐⇒ h⋆θ(y) = ⟨θ(w), y⟩ − h(w)

w ∈ argmin h ⇐⇒ 0 ∈ ∂⋆θh(w)

∂⋆θh + ∂⋆θk ⊂ ∂⋆θ(h ∔ k)

w ∈ domh , ∂⋆θh(w) ̸= ∅ ⇒ h⋆θ⋆θ
′
(w) = h(w)



The ⋆θ-convex functions are characterized
by a convex factorization property (hidden convexity)

⋆θ-convex function = closed convex function︸ ︷︷ ︸
proper convex lsc or ≡−∞ or ≡+∞

◦ θ

Proposition

[Chancelier and De Lara, 2021]

⋆θ -convexity of the function h : W→ R

⇐⇒ h = h⋆θ⋆θ
′

⇐⇒ h =
(
h⋆θ

)⋆′︸ ︷︷ ︸
convex lsc function

◦ θ

⇐⇒ hidden convexity in the function h : W→ R
as there exists a closed convex function f : X→ R
such that h = f ◦ θ



Concave dual problem

Proposition

For any function h : W→ R, and nonempty set W ⊂W,
we have the following lower bound

sup
y∈Y

concave usc function︷ ︸︸ ︷((
−
(
inf

[
h | θ

])⋆
(y)

)
·+
(
−σ−θ(W )(y)

))
≤ inf

x∈θ(W )
inf

[
h | θ

]
(x) = inf

w∈W
h(w)



Perturbation scheme

▶ Functions k : W→ R, h : W→ R ⋆θ-convex,
and original minimization problem

inf
w∈W

{
k(w)∔ h(w)

}
= inf

w∈W

{
k(w)∔ h⋆θ⋆

′(
θ(w)

)}
because h = h⋆θ⋆θ

′
= h⋆θ⋆

′ ◦ θ
▶ Embedding/perturbation scheme H : W× X→ R given by

H(w , x) = k(w)∔ h⋆θ⋆
′(
θ(w) + x

)
, ∀(w , x) ∈W× X

▶ Value function

φ(x) = inf
w∈W

{
k(w)∔ h⋆θ⋆

′(
θ(w) + x

)}
, ∀x ∈ X



Lagrangian and dual problem

▶ Lagrangian L : W×Y→ R given, for any (w , y) ∈W×Y, by

L(w , y) = inf
x∈X

{
k(w)∔ h⋆θ⋆

′(
θ(w) + x

)
− ⟨x , y⟩

}
= k(w)∔ ⟨θ(w), y⟩∔

(
−h⋆θ(y)

)
▶ Dual maximization problem

φ⋆⋆′(0) = sup
y∈Y

inf
w∈W

L(w , y) = sup
y∈Y

{(
−k−⋆θ(y)

)
·+
(
−h⋆θ(y)

)}
▶ Original minimization problem (case “∔ = +” when k proper)

φ(0) = inf
w∈W

sup
y∈Y
L(w , y) = inf

w∈W

{
k(w)∔ h(w)

}
▶ Existence of a saddle point? Algorithms?



Our roadmap (1/2)

▶ Introduce the Euclidean-Capra coupling (E-Capra),
a particular one-sided linear coupling

▶ Show how the Euclidean-Capra coupling proves suitable
to analyze the ℓ0 pseudonorm
▶ E-Capra-convexity
▶ hidden convexity
▶ best convex lower approximation on the unit ball
▶ E-Capra-subdifferential (thanks to Adrien Le Franc)
▶ variational formulas
▶ difference of convex (DC) formulas

with graded sequences of induced norms
▶ concave dual problems in sparse optimization
▶ duality



Our roadmap (2/2)

▶ Introduce a subclass of one-sided linear couplings,
the constant along primal rays (Capra) couplings,
depending on a source norm, and more generally on a
1-homogeneous nonnegative function
▶ relevant classes of norms
▶ relevant classes of functions
▶ matrix functions and norms
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We introduce the coupling E-Capra between Rd and itself

Definition

The Euclidean-Capra coupling (E-Capra) Rd ¢←→ Rd is given by

∀y ∈ Rd ,


¢(x , y) =

⟨x , y⟩
∥x∥2

=
⟨x , y⟩√
⟨x , x⟩

, ∀x ∈ Rd\{0}

¢(0, y) = 0

The coupling E-Capra has the property of being
Constant Along Primal RAys (Capra)



E-Capra = Fenchel coupling after primal normalization

▶ We introduce the Euclidean unit sphere S2
and the pointed unit sphere S(0)2 by

S2 =
{
x ∈ Rd

∣∣ ∥x∥2 = 1
}
, S(0)2 = S2 ∪ {0}

▶ and we define the primal normalization mapping n as

n : Rd → S(0)2 , n(x) =

{
x

∥x∥2
if x ̸= 0

0 if x = 0

▶ so that the coupling E-Capra

¢(x , y) = ⟨n(x), y⟩ , ∀x ∈ Rd , ∀y ∈ Rd

appears as the Fenchel coupling after primal normalization

▶ hence, the coupling E-Capra is one-sided linear



The E-Capra conjugacy shares properties
with the Fenchel conjugacy

Proposition

[Chancelier and De Lara, 2021]
For any function f : Rd → R,
the ¢-Fenchel-Moreau conjugate is given by

f ¢ =
(
inf

[
f | n

])⋆
where

inf
[
f | n

]
(x) =

{
infρ>0 f (ρx) if x ∈ S(0)2

+∞ if x ̸∈ S(0)2



The E-Capra-convex functions are 0-homogeneous and
coincide, on the unit sphere, with a closed convex function

Proposition

[Chancelier and De Lara, 2021]

¢-convexity of the function h : Rd → R

⇐⇒ h = h¢¢
′

⇐⇒ h =
(
h¢

)⋆′︸ ︷︷ ︸
convex lsc function

◦ n

⇐⇒ hidden convexity in the function h : Rd → R
there exists a closed convex function f : Rd → R

such that h = f ◦ n , that is, h(x) = f
( x

∥x∥2
)



The ℓ0 pseudonorm is E-Capra-convex



We recall the top-(2,k) norms ∥·∥tn2,k

The top-k norm is also known as the 2-k-symmetric gauge norm,
or Ky Fan vector norm

∥y∥tn2,k =

√√√√ k∑
l=1

|yν(l)|2 , |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|

= sup
|K |≤k

∥yK∥2

where yK ∈ Rd is the vector which coincides with y ,
except for the components outside of K ⊂

{
1, . . . , d

}
that vanish



The ℓ0 pseudonorm and the E-Capra-coupling

Theorem

[Chancelier and De Lara, 2021]
The ℓ0 pseudonorm,
the characteristic functions δ

ℓ≤k
0

of its level sets

and the top-(2,k) norm norms ∥·∥tn2,k are related by

δ
−¢
ℓ≤k
0

= δ
¢
ℓ≤k
0

= ∥·∥tn2,k , k = 0, 1, . . . , d

ℓ
¢
0 = sup

l=0,1,...,d

[
∥·∥tn2,l − l

]
ℓ
¢¢′

0 = ℓ0



The ℓ0 pseudonorm displays hidden convexity



The ℓ0 pseudonorm displays a convex factorization property

Theorem

[Chancelier and De Lara, 2021]
As the ℓ0 pseudonorm is E-Capra-convex, we get that

ℓ0 = ℓ
¢¢′

0 = ℓ
¢⋆′
0 ◦ n =

(
ℓ
¢
0

)⋆′︸ ︷︷ ︸
convex lsc function L0

◦ n

that is,
ℓ0(x) = L0(x) , ∀x ∈ S2



Hidden convexity in the ℓ0 pseudonorm
Here is graph of the proper convex lsc function L0 such that ℓ0 = L0 on the circle



The ℓ0 pseudonorm coincides, on the sphere (circle on R2),
with a proper convex lsc function

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



Best convex lower approximation on the unit ball



Best convex lower approximation of the ℓ0 pseudonorm
on the unit ball

Theorem

(work in progress)

ℓ0 =
(
ℓ
¢
0

)⋆′︸ ︷︷ ︸
convex lsc function L0

◦ n

The function L0 is the best convex lsc lower approximation of ℓ0

L0(x)︸ ︷︷ ︸
best convex lsc function

≤ ℓ0(x) , ∀x ∈ B2

on the unit ball B2 =
{
x ∈ Rd

∣∣ ∥x∥2 ≤ 1
}



Best convex lower approximation of the ℓ0 pseudonorm
on the Euclidean unit ball



E-Capra subdifferential of the ℓ0 pseudonorm
(thanks to Adrien Le Franc)



Capra-subdifferential of the ℓ0 pseudonorm on R2

Illustration at three points (black dots)

x1

x2

∂¢ℓ0(0, 0) , ∂¢ℓ0(1, 0) , ∂¢ℓ0(−
√
3
2 ,−1

2)



Capra-subdifferential of the ℓ0 pseudonorm on R2

x1

x2

∂¢ℓ0(0)
⋃{ ⋃

ℓ0(x)=1

∂¢ℓ0(x)
}⋃{ ⋃

ℓ0(x)=2

∂¢ℓ0(x)
}



Lower approximation of the ℓ0 pseudonorm
by a finite number of elementary E-Capra-functions

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2



Variational formulas



We recall the (2,k)-support norms ∥·∥sn2,k

The dual norm of the top-(2,k) norm ∥·∥tn2,k

∥·∥⋆sn(k) =
(
∥·∥tn(k)

)
⋆

is called the (2,k)-support norm
[Argyriou, Foygel, and Srebro, 2012]



Proposition

[Chancelier and De Lara, 2021]

▶ The proper convex lsc function L0 has epigraph

epiL0 = co
( d⋃
l=0

B⋆sn
(l) × [l ,+∞[

)
▶ L0 is the largest proper convex lsc function below

L0(x) =


0 if x = 0,

l if x ∈ B⋆sn
(l) \B⋆sn

(l−1) , l = 1, . . . , d

+∞ if x ̸∈ B⋆sn
(d) = B

▶ L0 has the variational expression

L0(x) = min
x(1)∈Rd ,...,x(d)∈Rd∑d

l=1 ∥x(l)∥⋆sn(l)
≤1∑d

l=1 x
(l)=x

d∑
l=1

l
∥∥∥x (l)∥∥∥⋆sn

(l)
, ∀x ∈ Rd



Variational formulas for the ℓ0 pseudonorm

Proposition

[Chancelier and De Lara, 2021]

ℓ0(x) =
1

∥x∥2
min

x(1)∈Rd ,...,x(d)∈Rd∑d
l=1 ∥x(l)∥⋆sn(l)

≤∥x∥2∑d
l=1 x

(l)=x

d∑
l=1

l
∥∥∥x (l)∥∥∥⋆sn

(l)
, ∀x ∈ Rd

ℓ0(x) = sup
y∈Rd

inf
l=1,...,d

(⟨x , y⟩
∥x∥2

−
[
∥y∥tn2,l − l

]
+

)
, ∀x ∈ Rd \ {0}



Difference of convex (DC) formulas
with graded sequences of induced norms



Difference of convex (DC) formulas

Well-known formulas

ℓ0(y) = min
{
k ∈ J1, dK

∣∣∣ ∥y∥tn2,k = ∥y∥2
}

∀y ∈ Rd

ℓ0(x) = min
{
k ∈ J1, dK

∣∣∣ ∥x∥sn2,k = ∥x∥2
}

∀x ∈ Rd



Lower bound convex programs for exact sparse optimization



Concave dual problem for exact sparse optimization

From sup
y∈Y

((
−f ¢(y)

)
·+
(
−δ−¢X (y)

))
≤ inf

x∈X

(
f (x)∔ δX (x)

)
we deduce that

sup
y∈Rd

(
−
(
inf

[
f | n

])⋆
(y) ·+

(
− δ

−¢
ℓ≤k
0

(y)︸ ︷︷ ︸
∥y∥tn2,k

))
≤ inf

ℓ0(x)≤k
f (x)

Proposition

For any function f : Rd → R, we have the following lower bound

sup
y∈Rd

concave usc function︷ ︸︸ ︷(
−
(
inf

[
f | n

])⋆
(y)− ∥y∥tn2,k

)
≤ inf

ℓ0(x)≤k
f (x)

= inf
ℓ0(x)≤k

inf
[
f | n

]
(x)



Convex primal problem for exact sparse optimization

Proposition

Under a mild technical assumption (“à la” Fenchel-Rockafellar),
namely if

(
inf

[
f | n

])⋆
is a proper function,

we have the following lower bound

min
∥x∥sn2,k≤1

(
inf

[
f | n

])⋆⋆′
(x) ≤ inf

ℓ0(x)≤k
f (x) = inf

ℓ0(x)≤k
inf

[
f | n

]
(x)

The primal problem is the minimization of a closed convex function
on the unit ball of the (2,k)-support norm norm ∥·∥sn2,k
(introduced in [Argyriou, Foygel, and Srebro, 2012])



Duality



Perturbation scheme

▶ Functions k : Rd → R, φ :
{
0, 1, . . . , d

}
→ R nondecreasing

(ex: identity, δ{0,1,...,k}) and original minimization problem

inf
w∈Rd

{
k(w)∔ φ

(
ℓ0(w)

)}
= inf

w∈Rd

{
k(w)∔

(
φ ◦ ℓ0

)¢⋆′(
n(w)

)}
because φ ◦ ℓ0 =

(
φ ◦ ℓ0

)¢¢′

=
(
φ ◦ ℓ0

)¢⋆′ ◦ n
[Chancelier and De Lara, 2022c]

▶ Embedding/perturbation scheme H : Rd × Rd → R given by

H(w , x) = k(w)∔
(
φ ◦ ℓ0

)¢⋆′(
n(w) + x

)
, ∀(w , x) ∈ Rd×Rd

▶ Value function

φ(x) = inf
w∈Rd

{
k(w)∔

(
φ ◦ ℓ0

)¢⋆′(
n(w) + x

)}
, ∀x ∈ Rd



Lagrangian and dual problem

▶ Fenchel coupling Rd ⟨·, ·⟩↔ Rd , and Lagrangian
L : Rd × Rd → R given, for any (w , y) ∈ Rd × Rd , by

L(w , y) = inf
x∈Rd

{
k(w)∔

(
φ ◦ ℓ0

)¢⋆′(
n(w) + x

)
− ⟨x , y⟩

}
= k(w)∔

(
⟨n(w), y⟩ −

(
φ ◦ ℓ0

)¢
(y)

)
▶ Dual maximization problem

φ⋆⋆′(0) = sup
y∈Rd

inf
w∈Rd

L(w , y) = sup
y∈Rd

{(
−k−¢(y)

)
·+
(
−
(
φ ◦ ℓ0

)¢
(y)

)}
▶ Original minimization problem (case “∔ = +” when k proper)

φ(0) = inf
w∈Rd

sup
y∈Rd

L(w , y) = inf
w∈Rd

{
k(w)∔ φ

(
ℓ0(w)

)}



Numerics



A toy example

min
w∈R2

k(w)︷ ︸︸ ︷(
(w1 − b1)

2 + (w2 − b2)
2
)
+ℓ0(w)

with b = (0.8, 1.1)

We have that {(0, b2)} = {(0, 1.1)} = argmin
w∈R2

{
k(w) + ℓ0(w)

}

0

1

2

0
1

2

2

4



The toy example as a min-max problem

As ℓ0(w) = maxy∈R2

{
¢(w , y)− ℓ

¢
0 (y)

}
, we obtain that

min
w∈R2

{
k(w) + ℓ0(w)

}
= min

w∈R2
max
y∈R2

{
k(w) + ¢(w , y)− ℓ

¢
0 (y)

}
with

ℓ
¢
0 (y) = sup

k=1,...,d

[
∥y∥tn2,k − k

]
+



Generalized primal-dual proximal splitting

GPDPS Algorithm [Clason, Mazurenko, and Valkonen, 2020]

Given a starting point (w0, y0) and step lengths τi , ωi , σi > 0,
iterate

w (i+1) := proxτik
(
w (i) − ¢w (w

(i), y (i))
)

w (i+1) := w (i+1) + ωi (w
(i+1) − w (i))

y (i+1) := prox
σi ℓ
¢
0

(
y (i) + σi¢y (w

(i+1), y (i))
)

The prox of k is analytically computed (quadratic function),

whereas the prox of ℓ
¢
0 is numerically computed with

the optimization algorithm newuoa by M.J.D. Powell



GPDPS convergence, varying the starting point
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Norm Norm Norm Normalization
Euclidean orthant-strictly any function

monotonic

ℓ0 pseudonorm ¢-convex (ℓ
¢¢′
0 = ℓ0) difference of norms

[Chancelier and De Lara, 2021] [Chancelier and De Lara, 2022b]
hidden convexity

[Chancelier and De Lara, 2021]
variational formula

[Chancelier and De Lara, 2021]
subdifferential

[Le Franc et al., 2022]

φ ◦ ℓ0 ¢-convex ((φ ◦ ℓ0)
¢¢′ = φ ◦ ℓ0)

φ : N → R [Chancelier and De Lara, 2022c]
nondecreasing hidden convexity

[Chancelier and De Lara, 2022c]
variational formula

[Chancelier and De Lara, 2022c]
subdifferential

[Chancelier and De Lara, 2022c]

φ ◦ ℓ0 (φ ◦ ℓ0)
¢¢′

φ : N → R [Chancelier and De Lara, 2022a]
any variational inequality

[Chancelier and De Lara, 2022a]
subdifferential

[Chancelier and De Lara, 2022a]
F◦ support

0-homogeneous this paper
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Homogeneous functions

Definition

We say that a function f : Rd → R is

▶ 0-homogeneous if f (ρx) = f (x) , ∀ρ ∈ R \ {0} , ∀x ∈ Rd

Example: the pseudonorm ℓ0

▶ 1-homogeneous if f (ρx) = ρf (x) , ∀ρ ∈ R , ∀x ∈ Rd

▶ absolutely 1-homogeneous if
f (ρx) = |ρ|f (x) , ∀ρ ∈ R \ {0} , ∀x ∈ Rd

Examples: norms

R+ = R+ ∪ {+∞} = [0,+∞]

For any nonnegative 1-homogeneous function ν : Rd → R+,
one has that ν(0) ∈ {0,+∞}



Normalization mapping

Definition

For any nonnegative 1-homogeneous function ν : Rd → R+,

the primal normalization mapping nν : Rd → S(0)ν is defined by

nν : x ∈ Rd 7→
{

x
ν(x) , if 0 < ν(x) < +∞
0 , else

where the unit “sphere” Sν and the pointed unit “sphere” S(0)ν are

Sν =
{
x ∈ Rd

∣∣ ν(x) = 1
}
, S(0)ν = Sν ∪ {0}

and the unit “ball” Bν is

Bν =
{
x ∈ Rd

∣∣ ν(x) ≤ 1
}



Capra-couplings

Definition

Let ν : Rd → R+ be a nonnegative 1-homogeneous function
The Capra coupling ¢ν : Rd × Rd → R, between Rd and itself,
associated with ν, is the function

¢ν : (x , y) ∈ Rd×Rd 7→ ⟨nν(x), y⟩ =
{ ⟨x , y⟩

ν(x) , if 0 < ν(x) < +∞
0 , else

The coupling Capra has the property of being
Constant Along Primal RAys (Capra)

Special case: ν = |||·||| (source) norm



The ¢ν-subdifferential shares properties
with the Rockafellar-Moreau subdifferential

Definition

For any function f : Rd → R and x ∈ Rd , the ¢ν-subdifferential is

∂¢ν
f (x) = {y ∈ Rd | ¢ν(x

′, y)− f (x ′)

≤ ¢ν(x , y)− f (x) , ∀x ′ ∈ Rd}

▶ The ¢ν-subdifferential ∂¢ν
f (x) is a closed convex set

▶ y ∈ ∂¢ν
f (x) ⇐⇒ f ¢ν (y) = ¢ν(x , y)− f (x)

▶ x ∈ argmin f ⇐⇒ 0 ∈ ∂¢ν
f (x)

▶ ∂¢ν
f + ∂¢ν

h ⊂ ∂¢ν
(f ∔ h)

▶ x ∈ domf and ∂¢ν
f (x) ̸= ∅ ⇒ f ¢ν¢ν

′
(x) = f (x)



The ¢ν-conjugacy shares properties
with the Fenchel conjugacy

Proposition

For any function f : Rd → R,
the ¢ν-Fenchel-Moreau conjugate is given by

f ¢ν =
(
inf

[
f | nν

])⋆
where

inf
[
f | nν

]
(x) =

{
infρ>0 f (ρx) if x ∈ S(0)ν

+∞ if x ̸∈ S(0)ν

As a consequence, the ¢ν-Fenchel-Moreau conjugate f ¢ν

is a closed convex function



The ¢ν-convex functions are 0-homogeneous and
coincide, on the “sphere”, with a closed convex function

▶ The ¢′ν-Fenchel-Moreau conjugate of g : Rd → R is given by

g¢
′
ν = g⋆ ◦ nν

▶ The ¢ν-convex functions are
{
g¢

′
ν

∣∣ g : Rd → R
}
, hence

g¢
′
ν (x) = g⋆

(
nν(x)

)
and therefore ¢ν-convex functions are 0-homogeneous

Proposition

Any ¢ν-convex function coincides, on the unit “sphere” Sν ,
with a closed convex function defined on Rd

¢ν-convex function = closed convex function ◦ nν
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Fenchel conjugates for 0-homogeneous functions

For any 0-homogeneous function f : Rd → R,

f ⋆ = δ{0} − inf
x∈Rd

f (x)

f ⋆⋆
′
= inf

x∈Rd
f (x)



Best convex lower approximations
of 0-homogeneous functions
(thanks to Thomas Bittar)

Proposition

Let ν : Rd → R+ be a normalization function, with unit “ball” Bν

and let f : Rd → R be a 0-homogeneous function

▶ The function f ¢ν⋆
′
is the tightest closed convex function

below f on the unit “ball” Bν , where

f ¢ν =
(
f ∔ δBν

)⋆
=

(
f ∔ δS(0)ν

)⋆
▶ If f (0) = 0, the function σ∂¢ν

f (0) is the tightest closed convex

positively 1-homogeneous function below f
on the unit “ball” Bν



Best convex lower approximation of the ℓ0 pseudonorm
on the Euclidean unit ball



Best convex and norm lower approximations
of the ℓ0 pseudonorm on the ℓp unit “balls”

1-homogeneous Best convex Best norm
function lower approximation lower approximation

ν of the ℓ0 pseudonorm of the ℓ0 pseudonorm

∥·∥p ∥·∥1 + δB1 ℓ1-norm ∥·∥1
0 < p ≤ 1

∥·∥p not a norm ℓ1-norm ∥·∥1
1 < p <∞
∥·∥∞ ∥·∥1 + δB∞ ℓ1-norm ∥·∥1
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Generalized coordinate, top and support norms



We reformulate sparsity in terms of coordinate subspaces

▶ For any x ∈ Rd and K ⊂ {1, . . . , d},
we denote by xK ∈ Rd the vector which coincides with x ,
except for the components outside of K that vanish

x = (1, 2, 3, 4, 5, 6)→ x{2,4,5} = (0, 2, 0, 4, 5, 0)

▶ xK is the orthogonal projection of x
onto the (coordinate) subspace

RK = RK × {0}−K =
{
x ∈ Rd

∣∣ xj = 0 , ∀j ̸∈ K
}
⊂ Rd

▶ The connection with the level sets of the ℓ0 pseudonorm is

ℓ≤k
0 =

⋃
|K |≤k

RK , ∀k = 0, 1, . . . , d



We generate a sequence of coordinate norms
from any source norm

For any source norm |||·||| on Rd , we define

▶ a sequence
{
|||·|||R(k)

}
k=1,...,d

of coordinate-k norms

characterized by the following dual norms

▶ a sequence
{
|||·|||R(k),⋆

}
k=1,...,d

of dual coordinate-k norms by

|||·|||R(k),⋆ =
(
|||·|||R(k)

)
⋆
= sup

|K |≤k
σRK∩S = σ

ℓ≤k
0 ∩S

|||y |||R(k),⋆ = sup
|K |≤k

|||yK |||K ,⋆ , ∀y ∈ Rd



Coordinate and dual coordinate norms
induced by the ℓp-norms ∥·∥p

For y ∈ Rd , let µ be a permutation of {1, . . . , d} such that

|yµ(1)| ≥ |yµ(2)| ≥ · · · ≥ |yµ(d)|

source norm |||·||| |||·|||R(k) |||·|||R(k),⋆
∥·∥p (p, k)-support norm top (k, q)-norm

∥x∥snp,k ∥y∥tnk,q
=

(∑k
j=1|yµ(j)|

q)1/q , 1/p + 1/q = 1

∥·∥1 (1, k)-support norm top (k,∞)-norm
ℓ1-norm ℓ∞-norm

∥x∥sn1,k = ∥x∥1 ∥y∥tnk,∞ = |yµ(1)| = ∥y∥∞
∥·∥2 (2, k)-support norm top (k, 2)-norm

∥y∥tnk,2 =
√∑k

j=1|yµ(j)|2

∥·∥∞ (∞, k)-support norm top (k, 1)-norm

∥y∥tnk,1 =
∑k

j=1|yµ(j)|



Concave dual problem for exact sparse optimization

Proposition

For any function f : Rd → R, we have the following lower bound

sup
y∈Rd

(
−
(
inf

[
f | n|||·|||

])⋆
(y)− |||y |||R(k),⋆

)
≤ inf

ℓ0(x)≤k
f (x)

= inf
ℓ0(x)≤k

inf
[
f | n|||·|||

]
(x)

The dual problem is the maximization of a concave usc function



Convex primal problem for exact sparse optimization

Proposition

Under a mild technical assumption (“à la” Fenchel-Rockafellar),
namely if

(
inf

[
f | n|||·|||

])⋆
is a proper function,

we have the following lower bound

min
|||x |||R(k)≤1

(
inf

[
f | n|||·|||

])⋆⋆′
(x) ≤ inf

ℓ0(x)≤k
f (x) = inf

ℓ0(x)≤k
inf

[
f | n|||·|||

]
(x)

The primal problem is the minimization of a closed convex function
on the unit ball of the coordinate-k norm |||·|||R(k)



Fenchel versus Capra conjugacies for ℓ0

[Chancelier and De Lara, 2022a], [Chancelier and De Lara, 2022c]

Fenchel conjugacy Capra conjugacy

δ
(−⋆)

ℓ≤k
0

= δ{0}, k ̸= 0 δ
−¢|||·|||

ℓ≤k
0

= |||·|||R(k),⋆

ℓ⋆0 = δ{0} ℓ
¢|||·|||
0 = supl=0,1,...,d

[
|||·|||R(l),⋆ − l

]
δ⋆⋆

′

ℓ≤k
0

= 0 δ
¢|||·|||¢|||·|||

′

ℓ≤k
0

≤ δ
ℓ≤k
0

ℓ⋆⋆
′

0 = 0 ℓ
¢|||·|||¢|||·|||

′

0 ≤ ℓ0



We define generalized top-k and k-support dual norms

Definition

For any source norm |||·||| on Rd , for any k ∈
{
1, . . . , d

}
, we call

▶ generalized top-k dual norm the norm

|||y |||tn⋆,(k) = sup
|K |≤k

|||yK |||⋆ = sup
|K |≤k

|||yK |||⋆,K , ∀y ∈ Rd

▶ generalized k-support dual norm the dual norm

|||·|||⋆sn⋆,(k) =
(
|||·|||tn⋆,(k)

)
⋆

In the Euclidean case were the source norm is ∥·∥2, we recover the original definition of top-k dual norms,

used to define the k-support dual norms in [Argyriou, Foygel, and Srebro, 2012]



Support and top norms induced by the ℓp-norms ∥·∥p

For y ∈ Rd , let µ be a permutation of {1, . . . , d} such that

|yµ(1)| ≥ |yµ(2)| ≥ · · · ≥ |yµ(d)|

source norm |||·||| |||x|||⋆sn⋆,(k) |||y|||tn⋆,(k)
∥·∥p (p, k)-support norm top (k, q)-norm

∥x∥snp,k ∥y∥tnk,q
=

(∑k
l=1|yµ(l)|

q)1/q , 1/p + 1/q = 1

∥·∥1 (1, k)-support norm top (k,∞)-norm
ℓ1-norm ℓ∞-norm

∥x∥sn1,k = ∥x∥1 ∥y∥tnk,∞ = |yµ(1)| = ∥y∥∞
∥·∥2 (2, k)-support norm top (k, 2)-norm

∥y∥tnk,2 =
√∑k

l=1
|yµ(l)|2

∥·∥∞ (∞, k)-support norm top (k, 1)-norm

∥y∥tnk,1 =
∑k

l=1|yµ(l)|



Coordinate norms and dual norms
versus
generalized top-k and k-support dual norms

k-coordinate norm k-support dual norm

|||·|||R(k) ≤ |||·|||⋆sn⋆,(k)

dual k-coordinate norm top-k dual norm

|||·|||R(k),⋆ = sup|K |≤k |||·|||K ,⋆ ≥ sup|K |≤k |||·|||⋆,K = |||·|||tn⋆,(k)



Orthant-strictly monotonic norms and Capra-convexity



Orthant-strictly monotonic norms

For any x ∈ Rd , we denote by |x |
the vector of Rd with components |xi |, i = 1, . . . , d

Definition

A norm |||·||| on the space Rd is called

▶ orthant-monotonic [Gries, 1967]
if, for all x , x ′ in Rd , we have(
|x | ≤ |x ′| and x ◦ x ′ ≥ 0⇒ |||x ||| ≤ |||x ′|||

)
,

where x ◦ x ′ = (x1x
′
1, . . . , xdx

′
d)

is the Hadamard (entrywise) product

▶ orthant-strictly monotonic [Chancelier and De Lara, 2022b]
if, for all x , x ′ in Rd , we have(
|x | < |x ′| and x ◦ x ′ ≥ 0⇒ |||x ||| < |||x ′|||

)
,

where |x | < |x ′| means that there exists j ∈
{
1, . . . , d

}
such that |xj | < |x

′
j |



Examples of orthant-strictly monotonic norms
among the ℓp-norms ∥·∥p

▶ All the ℓp-norms ∥·∥p on the space Rd , for p ∈ [1,∞],
are monotonic, hence orthant-monotonic

▶ All the ℓp-norms ∥·∥p on the space Rd , for p ∈ [1,∞[,
are orthant-strictly monotonic

▶ The ℓ1-norm ∥·∥1 is orthant-strictly monotonic,
whereas its dual norm, the ℓ∞-norm ∥·∥∞,
is orthant-monotonic, but not orthant-strictly monotonic



Orthant-monotonic source norms
generate coordinate norms and duals
that are generalized top-k and k-support dual norms

Proposition

If the source norm is orthant monotonic, we have

|||·|||K ,⋆ = |||·|||⋆,K , ∀K ⊂
{
1, . . . , d

}
hence, for all k ∈ {1, . . . , d},

k-coordinate norm k-support dual norm

|||·|||R(k) = |||·|||⋆sn⋆,(k)

dual k-coordinate norm top-k dual norm

|||·|||R(k),⋆ = |||·|||tn⋆,(k)



We define graded sequence of norms
A graded sequence of norms detects the number of nonzero components of a vector in Rd

when the sequence becomes stationary

Definition

We say that a sequence {|||·|||k}k=1,...,d of norms is
(increasingly) graded with respect to the ℓ0 pseudonorm if,
for any y ∈ Rd and l = 1, . . . , d , we have

ℓ0(y) = l ⇐⇒ |||y |||1 ≤ · · · ≤ |||y |||l−1 < |||y |||l = · · · = |||y |||d

or, equivalently, k ∈
{
1, . . . , d

}
7→ |||y |||k is nondecreasing and

ℓ0(y) ≤ l ⇐⇒ |||y |||l = |||y |||d

Graded sequences are suitable for so-called
“difference of convex” (DC) optimization methods

to tackle sparse ℓ0(y) ≤ l constraints



Orthant-strictly monotonic dual norms
produce graded sequences of norms

Proposition

If the dual norm |||·|||⋆ of the source norm |||·|||
is orthant-strictly monotonic, then the sequence

{
|||·|||tn⋆,(l)

}
l=1,...,d︸ ︷︷ ︸

generalized top-k dual norm

=
{
|||·|||R(l),⋆

}
l=1,...,d︸ ︷︷ ︸

dual-k coordinate norm

is graded with respect to the ℓ0 pseudonorm

Thus, we can produce families of graded sequences of norms
suitable for “difference of convex” (DC) optimization methods

to tackle sparse constraints



We establish ¢|||·|||-convexity of the ℓ0 pseudonorm

Proposition

▶ The sequence
{
|||·|||R(l)

}
l=1,...,d

of coordinate-k norms is

decreasingly graded with respect to the ℓ0 pseudonorm iff

δ
¢|||·|||¢|||·|||

′

ℓ≤k
0

= δ
ℓ≤k
0

▶ If both the norm |||·||| and the dual norm |||·|||⋆
are orthant-strictly monotonic, we have

ℓ
¢|||·|||¢|||·|||

′

0 = ℓ0



Capra-subdifferentiability properties of the ℓ0 pseudonorm

▶ {|||·|||R(j)}j=1,...,d and {|||·|||R(j),⋆}j=1,...,d ,
associated coordinate-k and dual coordinate-k norms

▶ {BR
(j)}j=1,...,d and {BR

(j),⋆}j=1,...,d , corresponding unit balls

Proposition

[Chancelier and De Lara, 2022a]
The Capra-subdifferential of the ℓ0 pseudonorm is given by

if x = 0, ∂¢|||·|||
ℓ0(0) =

⋂
j=1,...,d

jBR
(j),⋆

if x ̸= 0 and ℓ0(x) = l , ∂¢|||·|||
ℓ0(x) = NBR

(l)
(

x

|||x |||R(l)
) ∩ Yl

where Yl =
{
y ∈ Y

∣∣ l ∈ argmax
j=0,...,d

(
|||y |||R(j),⋆ − j

)}
, ∀l = 0, . . . , d



Capra-subdifferentiability properties of the ℓ0 pseudonorm

Proposition

[Chancelier and De Lara, 2022c]
If both the norm |||·||| and the dual norm |||·|||⋆
are orthant-strictly monotonic, we have that

∂¢|||·|||
ℓ0(x) ̸= ∅ , ∀x ∈ Rd ,

that is, the pseudonorm ℓ0 is Capra-subdifferentiable on Rd



Fenchel versus Capra conjugacies for ℓ0

[Chancelier and De Lara, 2022a], [Chancelier and De Lara, 2022c]
If the source norm is orthant-strictly monotonic, we have that

Fenchel conjugacy Capra conjugacy

δ
(−⋆)

ℓ≤k
0

= δ{0}, k ̸= 0 δ
−¢|||·|||

ℓ≤k
0

= |||·|||R(k),⋆ = |||·|||tn⋆,(k)

ℓ⋆0 = δ{0} ℓ
¢|||·|||
0 = supl=0,1,...,d

[
|||·|||R(l),⋆ − l

]
= supl=0,1,...,d

[
|||·|||⋆sn⋆,(l) − l

]
δ⋆⋆

′

ℓ≤k
0

= 0 δ
¢|||·|||¢|||·|||

′

ℓ≤k
0

= δ
ℓ≤k
0

ℓ⋆⋆
′

0 = 0 ℓ
¢|||·|||¢|||·|||

′

0 = ℓ0
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Conclusion (1/2)

▶ Sparsity is, by nature, indifferent to magnitude, which is
reflected in the support mapping being 0-homogeneous

▶ But the Fenchel conjugacy is not a suitable tool
to analyze 0-homogeneous functions



Conclusion (2/2)

We have proposed the Capra coupling ¢(x , y) = ⟨x , y⟩
ν(x)

and, with the Capra-conjugacy, we have obtained

▶ Capra-convexity
(by displaying nonempty Capra-subdifferential)

▶ hidden convexity

▶ best convex lower approximation on the unit ball

▶ E-Capra-subdifferential (thanks to Adrien Le Franc)

▶ variational formulas

▶ difference of convex (DC) formulas
with graded sequences of induced norms

▶ concave dual problems in sparse optimization

▶ duality



Perspectives

▶ Tackle open theoretical questions
▶ duality gap between lower bound convex program

and original sparse optimization problem
▶ Conditions for ∂¢ν

f + ∂¢ν
h ⊃ ∂¢ν

(f ∔ h)

(with ex-PhD student Adrien Le Franc)

▶ Matrix functions and norms
▶ Rank-based norms and suitable matrix norms

for Capra-conjugacy of the rank function
(with ENPC students Paul Barbier and Valentin Paravy)

▶ formula “à la Lewis” (F ◦ σ)¢ν = F¢ν ◦ σ
for Capra-conjugacy

▶ Algorithms with Capra-couplings
(with ex-PhD student Adrien Le Franc)
▶ Mirror descent, Bregman divergence
▶ Capra-convex sparse optimization problems



An example where the subdifferential of the sum. . .

|||·||| = ℓ2

u1

u2

x̄ = (1, 0)

x̄ ∈ argmin
K

ℓ0 =⇒ 0 ∈ ∂¢
(
ℓ0 + δK

)
(x̄)

(a property of one-sided linear couplings)



...is not the sum of the subdifferentials (Adrien Le Franc)

Let y ′ ∈ ∂¢ℓ0(x̄) and y ′′ ∈ ∂¢δK (x̄)

∂¢ℓ0(x̄)

x1

x2

y ′
1 ≥ 1

∂¢δK (x̄) = Nco
(
n(K)

)(x̄)
x1

x2

y ′′
1 ≥ 0

0 /∈ ∂¢ℓ0(x̄) + ∂¢δK (x̄) hence

∂¢ℓ0(x̄) + ∂¢δK (x̄) ⊊ ∂¢
(
ℓ0 + δK

)
(x̄)



...is not the sum of the subdifferentials (Adrien Le Franc)

Let y ′ ∈ ∂¢ℓ0(x̄) and y ′′ ∈ ∂¢δK (x̄)

∂¢ℓ0(x̄)

x1

x2

y ′
1 ≥ 1

∂¢δK (x̄) = Nco
(
n(K)

)(x̄)
x1

x2

y ′′
1 ≥ 0

0 /∈ ∂¢ℓ0(x̄) + ∂¢δK (x̄) hence

∂¢ℓ0(x̄) + ∂¢δK (x̄) ⊊ ∂¢
(
ℓ0 + δK

)
(x̄)



Thank you :-)
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