Hidden Convexity in the ℓ_0 Pseudonorm

Jean-Philippe Chancelier and Michel De Lara CERMICS, Ecole des Ponts ParisTech ´

> NCSU Nonlinear Analysis Seminar 19 October 2022

Here are the level sets of the (highly nonconvex) ℓ_0 pseudonorm in \mathbb{R}^2

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The ℓ_0 pseudonorm is not a norm

Only 1-homogeneity is missing, whereas 0-homogeneity holds true Let $d \in \mathbb{N}^*$ be a fixed natural number

▶ For any vector $x \in \mathbb{R}^d$, we define its ℓ_0 pseudonorm (x) by

 $\ell_0(x) =$ number of nonzero components of $x = \sum$ d $i=1$ $\mathbf{1}_{\{ \mathsf{x}_{i} \neq \mathsf{0} \}}$

▶ The function ℓ_0 pseudonorm : $\mathbb{R}^d \to \{0, 1, \ldots, d\}$ satisfies 3 out of 4 axioms of a norm

\n- we have
$$
\ell_0(x) \geq 0
$$
 \checkmark
\n- we have $\left(\ell_0(x) = 0 \iff x = 0\right)$ \checkmark
\n- we have $\ell_0(x + x') \leq \ell_0(x) + \ell_0(x')$ \checkmark
\n

▶ But... 0-homogeneity holds true

$$
\ell_0(\rho x)=\ell_0(x)\;,\;\;\forall\rho\neq 0
$$

 \triangleright We denote the level sets of the ℓ_0 pseudonorm by

$$
\ell_0^{\leq k} = \left\{x \in \mathbb{R}^d \middle| \ell_0(x) \leq k\right\}, \quad \forall k \in \left\{0, 1, \ldots, d\right\}
$$

Fenchel versus E-CAPRA conjugacies for the ℓ_0 pseudonorm

where, for any subset $W \subset \mathbb{R}^d$, the *characteristic function* δ_W of the set W is given by

 $\delta_W(w) = 0$ if $w \in W$, $\delta_W(w) = +\infty$ if $w \notin W$

The ℓ_0 pseudonorm coincides, on the Euclidean unit sphere with a proper convex lsc function \mathcal{L}_0

 299

This function \mathcal{L}_0 is the best convex lower approximation of the ℓ_0 pseudonorm on the Euclidean unit ball

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Variational formulas for the ℓ_0 pseudonorm

Proposition [\[Chancelier and De Lara, 2021\]](#page-109-0) $\ell_0(x) = \frac{1}{\ln x}$ $\frac{1}{\|x\|_2}$ $\lim_{x^{(1)} \in \mathbb{R}^d, ..., x^{(n)} \neq 0}$ $\mathsf{x}^{(1)}\mathsf{\in}\mathbb{R}^{d},\!...,\! \mathsf{x}^{(d)}\mathsf{\in}\mathbb{R}^{d}$ $\sum_{l=1}^{d} ||x^{(l)}||_{(l)}^{* \text{sn}}$ $\sum_{(l)}^{\infty}$ ≤ $||x||_2$ $\sum_{l=1}^{d} x^{(l)} = x$ \sum d $l=1$ \mathbf{E} $x^{(l)}\Big\|$ \star sn $\begin{array}{c} \lambda \text{sn} \\ (l) \end{array}$, $\forall x \in \mathbb{R}^d$ $\ell_0(\mathsf{x})=\,$ sup y∈R^d $\mathop{\mathsf{inf}}\limits_{l=1,...,d}$ $\langle x, y \rangle$ $\frac{\langle X, Y \rangle}{\|X\|_2} - \left[\|y\|_{2,I}^{\text{tn}} - I \right]_+ \right), \ \ \forall x \in \mathbb{R}^d \setminus \{0\}$

KORKAR KERKER ST VOOR

[Background on one-sided linear couplings](#page-8-0)

[The Euclidean](#page-30-0) CAPRA conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

[Conclusion](#page-101-0)

[Background on one-sided linear couplings](#page-8-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-9-0) [One-sided linear couplings \(and hidden convexity\)](#page-20-0)

[The Euclidean](#page-30-0) Capra conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

CAPRA [conjugacies](#page-68-0) [Best convex approximations of 0-homogeneous functions](#page-75-0) [The case of norms](#page-80-0)

[Conclusion](#page-101-0)

[Background on one-sided linear couplings](#page-8-0) [Background on couplings and Fenchel-Moreau conjugacies](#page-9-0) [One-sided linear couplings \(and hidden convexity\)](#page-20-0)

[The Euclidean](#page-30-0) Capra conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

CAPRA [conjugacies](#page-68-0) [Best convex approximations of 0-homogeneous functions](#page-75-0) [The case of norms](#page-80-0)

[Conclusion](#page-101-0)

The Fenchel conjugacy

$$
\overline{\mathbb{R}}=\mathbb{R}\cup\{-\infty\}\cup\{+\infty\}=[-\infty,+\infty]
$$

Definition

Two vector spaces X and Y , paired by a bilinear form \langle, \rangle give rise to the classic Fenchel conjugacy

$$
f \in \overline{\mathbb{R}}^{\mathbb{X}} \mapsto f^{\star} \in \overline{\mathbb{R}}^{\mathbb{Y}}
$$

$$
f^{\star}(y) = \sup_{x \in \mathbb{X}} \left(\langle x, y \rangle + (-f(x)) \right), \ \forall y \in \mathbb{Y}
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ B $2Q$ Background on couplings and Fenchel-Moreau conjugacies

- \blacktriangleright Let be given two sets \mathbb{X} ("primal") and \mathbb{Y} ("dual") not necessarily paired vector spaces (nodes and arcs, etc.)
- \triangleright We consider a coupling function

 $c : \mathbb{X} \times \mathbb{Y} \rightarrow \overline{\mathbb{R}}$

We also use the notation $\mathbb{X} \overset{\mathcal{L}}{\leftrightarrow} \mathbb{Y}$ for a coupling

 \triangleright The Moreau lower addition extends the usual addition with

$$
(+\infty)+(-\infty)=(-\infty)+(+\infty)=-\infty
$$

▶ The Moreau upper addition extends the usual addition with

 $(+\infty) \dotplus (-\infty) = (-\infty) \dotplus (+\infty) = +\infty$

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

Fenchel-Moreau conjugate

$$
f\in\overline{\mathbb{R}}^{\mathbb{X}}\mapsto f^{c}\in\overline{\mathbb{R}}^{\mathbb{Y}}
$$

Definition

The c-Fenchel-Moreau conjugate of a function $f : \mathbb{X} \to \overline{\mathbb{R}}$, with respect to the coupling c , is the function $f^c: \mathbb{Y} \to \overline{\mathbb{R}}$ defined by

$$
f^{c}(y) = \sup_{x \in \mathbb{X}} \left(c(x, y) + (-f(x)) \right), \ \forall y \in \mathbb{Y}
$$

What are couplings good for?

Couplings are good for providing

- \triangleright lower bounds for optimization problems with constraints (uses conjugates)
- ▶ c-convex lower approximations of functions, hence a tool for duality in optimization (uses biconjugates)

KORKARYKERKER POLO

 \blacktriangleright dual representation formulas for c-convex functions (uses biconjugates and subdifferentials)

[Martínez-Legaz, 2005]

"Fenchel-like" inequality yields a lower bound

$$
\sup_{y\in\mathbb{Y}}\left(\left(-f^{c}(y)\right)+\left(-g^{-c}(y)\right)\right)\leq \inf_{x\in\mathbb{X}}\left(f(x)+g(x)\right)
$$

▶ In particular, optimization under constraints $x \in X$ gives

$$
\sup_{y\in\mathbb{Y}}\left(\left(-f^{c}(y)\right)+\left(-\delta_{X}^{-c}(y)\right)\right)\leq \inf_{x\in X}f(x)
$$

where
$$
\delta_X(x) = \begin{cases} 0 & \text{if } x \in X \\ +\infty & \text{if } x \notin X \end{cases}
$$

 \blacktriangleright Hence, the issue is to find a coupling c that gives nice expressions for f^c and δ_X^{-c} X

Fenchel-Moreau biconjugate

With the coupling c , we associate the reverse coupling c^\prime

 $c': \mathbb{Y} \times \mathbb{X} \to \overline{\mathbb{R}}$, $c'(y,x) = c(x,y)$, $\forall (y,x) \in \mathbb{Y} \times \mathbb{X}$

▶ The c'-Fenchel-Moreau conjugate of a function $g: \mathbb{Y} \to \overline{\mathbb{R}}$ with respect to the coupling c' , is the function $g^{c'} : \mathbb{X} \to \overline{\mathbb{R}}$

$$
g^{c'}(x) = \sup_{y \in \mathbb{Y}} \left(c(x, y) + (-g(y)) \right), \ \forall x \in \mathbb{X}
$$

▶ The *c*-Fenchel-Moreau biconjugate $f^{cc'} : \mathbb{X} \to \overline{\mathbb{R}}$ of a function $f : \mathbb{X} \to \overline{\mathbb{R}}$ is given by

$$
f^{cc'}(x) = (f^c)^{c'}(x) = \sup_{y \in \mathbb{Y}} \left(c(x, y) + (-f^c(y)) \right), \ \forall x \in \mathbb{X}
$$

KORKAR KERKER SAGA

So called c-convex functions have dual representations

$$
f^{cc'}\leq f
$$

Definition

The function $f : \mathbb{X} \to \overline{\mathbb{R}}$ is c-convex if $f^{cc'} = f$

If the function $f : \mathbb{X} \to \overline{\mathbb{R}}$ is c-convex, we have

$$
f(x) = \sup_{y \in \mathbb{Y}} \left(c(x, y) + \left(-f^{c}(y) \right) \right), \ \forall x \in \mathbb{X}
$$

KORKARYKERKER POLO

Example: \star -convex functions

- $=$ closed convex functions [\[Rockafellar, 1974,](#page-109-2) p. 15]
- $=$ proper convex lsc or $\equiv -\infty$ or $\equiv +\infty$
- $=$ suprema of affine functions

Subdifferential of a conjugacy

For any function $f : \mathbb{X} \to \overline{\mathbb{R}}$ and $x \in \mathbb{X}$, there are three possibilities for the c-subdifferential

> $y \in \mathbb{Y}$, $y \in \partial_c f(x) \iff f^c(y) = c(x, y) + (-f(x))$ $y \in \mathbb{Y}$, $y \in \partial^c f(x) \iff f(x) = c(x, y) + (-f^c(y))$ $y \in \mathbb{Y}$, $y \in \partial_c^c f(x) \iff c(x, y) = f(x) + (-f^c(y))$ ·

> > $\partial^{\mathsf{c}} f(x) \neq \emptyset \Rightarrow f^{\mathsf{cc}'}(x) = f(x)$

If $-\infty < c < +\infty$ and $x \in \text{dom} f$, we have

$$
\partial_c f(x) = \partial^c f(x) = \partial^c_c f(x)
$$

= {y \in \mathbb{Y} \mid c(x', y) - f(x') \le c(x, y) - f(x), \forall x' \in \mathbb{X}}

Dual problems: perturbation scheme

▶ Set W, function $h : W \to \overline{\mathbb{R}}$ and original minimization problem

 $\inf_{w \in \mathbb{W}} h(w)$

 \blacktriangleright Embedding/perturbation scheme given by a nonempty set \mathbb{X} , an element $\overline{x} \in \mathbb{X}$ and a function $H : \mathbb{W} \times \mathbb{X} \to \overline{\mathbb{R}}$ such that

 $h(w) = H(w, \overline{x})$, $\forall w \in \mathbb{W}$

▶ Value function

$$
\varphi(x) = \inf_{w \in \mathbb{W}} H(w, x) , \ \ \forall x \in \mathbb{X}
$$

▶ Original minimization problem

$$
\varphi(\overline{x}) = \inf_{w \in \mathbb{W}} H(w, \overline{x}) = \inf_{w \in \mathbb{W}} h(w)
$$

KELK KØLK VELKEN EL 1990

Dual problems: conjugacy, weak and strong duality

▶ Coupling $\mathbb{X} \stackrel{\mathcal{L}}{\leftrightarrow} \mathbb{Y}$, and Lagrangian $\mathcal{L} : \mathbb{W} \times \mathbb{Y} \to \overline{\mathbb{R}}$ given by

$$
\mathcal{L}(w, y) = \inf_{x \in \mathbb{X}} \left\{ H(w, x) \dotplus (-c(x, y)) \right\}
$$

▶ Dual maximization problem

$$
-\varphi^{c}(y) = -\sup_{x \in \mathbb{X}} \left\{ c(x, y) + \left(-\inf_{w \in \mathbb{W}} H(w, x) \right) \right\} = \inf_{w \in \mathbb{W}} \mathcal{L}(w, y)
$$

$$
\varphi^{cc'}(\overline{x}) = \sup_{y \in \mathbb{Y}} \left\{ c(\overline{x}, y) + \inf_{w \in \mathbb{W}} \mathcal{L}(w, y) \right\}
$$

 \blacktriangleright Weak duality always holds true

$$
\varphi^{cc'}(\overline{x}) = \sup_{y \in \mathbb{Y}} \left\{ c(\overline{x}, y) + \inf_{w \in \mathbb{W}} \mathcal{L}(w, y) \right\} \leq \inf_{w \in \mathbb{W}} h(w) = \varphi(\overline{x})
$$

► Strong duality holds true when φ is c-convex at \overline{x} , that is, $\varphi^{\mathsf{cc}'}(\overline{\mathsf{x}}) = \mathsf{sup}$ $\{c(\overline{x}, y)\}$ $+\inf_{w\in\mathbb{W}}\mathcal{L}(w,y)\}=\inf_{w\in\mathbb{W}}h(w)=\varphi(\overline{x})$ y∈Y · **KORKAR KERKER SAGA**

[Background on one-sided linear couplings](#page-8-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-9-0) [One-sided linear couplings \(and hidden convexity\)](#page-20-0)

[The Euclidean](#page-30-0) Capra conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

CAPRA [conjugacies](#page-68-0) [Best convex approximations of 0-homogeneous functions](#page-75-0) [The case of norms](#page-80-0)

[Conclusion](#page-101-0)

One-sided linear couplings

 \blacktriangleright We consider two vector spaces $\mathbb X$ and $\mathbb Y$ paired by a bilinear form $\langle \cdot, \cdot \rangle$

 \triangleright We suppose given a mapping $\theta : W \to X$, where W is any set

Definition

We define the one-sided linear coupling (OSL)

 $\mathbb{W} \stackrel{\star\theta}{\longleftrightarrow} \mathbb{Y}$

between $\mathbb W$ and $\mathbb Y$ by

 $\star_{\theta}(w, y) = \langle \theta(w), y \rangle$, $\forall w \in \mathbb{W}$, $\forall y \in \mathbb{Y}$

OSL-couplings induce conjugacies that share nice properties with the classic Fenchel conjugacy

Proposition

[\[Chancelier and De Lara, 2021\]](#page-109-0) For any functions $h : \mathbb{W} \to \overline{\mathbb{R}}$ and $g : \mathbb{Y} \to \overline{\mathbb{R}}$, the Fenchel-Moreau conjugates are given by

> $h^{\star_{\theta}} = (\inf [h \mid \theta])^{\star}$ $g^{\star'}_{\theta} = g^{\star} \circ \theta$

where, for all $x \in \mathbb{X}$,

 $\inf [h | \theta] (x) = \inf \{ h(w) | w \in \mathbb{W}, \theta(w) = x \}$

OSL-subdifferentials share properties with the Rockafellar-Moreau subdifferential

Definition

For any function $h : \mathbb{W} \to \overline{\mathbb{R}}$ and $w \in \mathbb{W}$, the \star_{θ} -subdifferential is

$$
\partial_{\star_{\theta}} h(w) = \{ y \in \mathbb{Y} \mid \langle \theta(w'), y \rangle - h(w') \leq \langle \theta(w), y \rangle - h(w) , \forall w' \in \mathbb{W} \}
$$

The following properties are satisfied

 $\partial_{\star_\theta} h(w)$ is a closed convex subset of Y $y \in \partial_{\star_{\theta}} h(w) \iff h^{\star_{\theta}}(y) = \langle \theta(w), y \rangle - h(w)$ $w \in \argmin h \iff 0 \in \partial_{\star_{\theta}}h(w)$ $\partial_{\star_\theta} h + \partial_{\star_\theta} k \subset \partial_{\star_\theta} (h \dotplus k)$ $w \in \text{dom} h, \ \partial_{\star_{\theta}} h(w) \neq \emptyset \Rightarrow h^{\star_{\theta} \star_{\theta'}}(w) = h(w)$

The \star_{θ} -convex functions are characterized by a convex factorization property (hidden convexity)

$$
\star_{\theta}
$$
-convex function = closed convex function \circ θ
proper convex loc or $\equiv -\infty$ or $\equiv +\infty$

Proposition

[\[Chancelier and De Lara, 2021\]](#page-109-0)

 \star_{θ} -convexity of the function $h : \mathbb{W} \to \overline{\mathbb{R}}$

$$
\iff h=h^{\star_{\theta}\star_{\theta'}}
$$

$$
\iff h = \underbrace{(h^{\star \theta})^{\star'}}_{\bullet \bullet \bullet \bullet \bullet} \circ \theta
$$

convex lsc function

 \iff hidden convexity in the function $h : \mathbb{W} \to \overline{\mathbb{R}}$ as there exists a closed convex function $f : \mathbb{X} \to \overline{\mathbb{R}}$ such that $h = f \circ \theta$

Concave dual problem

Proposition

For any function $h : \mathbb{W} \to \overline{\mathbb{R}}$, and nonempty set $W \subset \mathbb{W}$, we have the following lower bound

> sup y∈Y concave usc function $\overline{\left(\left(-\left(\inf \left[h \mid \theta \right] \right) ^{\star}(y) \right) + \left(-\sigma_{-\theta(W)}(y) \right) \right) }$ · $+(-\sigma_{-\theta(W)}(y))$ $\leq \inf_{x \in \theta(W)} \inf [h \mid \theta](x) = \inf_{w \in W} h(w)$

> > K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Perturbation scheme

▶ Functions $k: \mathbb{W} \to \overline{\mathbb{R}}$, $h: \mathbb{W} \to \overline{\mathbb{R}}$ * $\#_0$ -convex, and original minimization problem

$$
\inf_{w \in \mathbb{W}} \left\{ k(w) \dotplus h(w) \right\} = \inf_{w \in \mathbb{W}} \left\{ k(w) \dotplus h^{\star_{\theta} \star'}(\theta(w)) \right\}
$$

because $h = h^{\star_{\theta} \star_{\theta'}} = h^{\star_{\theta} \star'} \circ \theta$

▶ Embedding/perturbation scheme $H : \mathbb{W} \times \mathbb{X} \to \overline{\mathbb{R}}$ given by

$$
H(w,x) = k(w) + h^{*\theta^{*}}(\theta(w) + x), \ \ \forall (w,x) \in \mathbb{W} \times \mathbb{X}
$$

▶ Value function

$$
\varphi(x) = \inf_{w \in \mathbb{W}} \left\{ k(w) \dotplus h^{\star_{\theta} x'} (\theta(w) + x) \right\}, \ \forall x \in \mathbb{X}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Lagrangian and dual problem

▶ Lagrangian $\mathcal{L}: \mathbb{W} \times \mathbb{Y} \to \overline{\mathbb{R}}$ given, for any $(w, y) \in \mathbb{W} \times \mathbb{Y}$, by

$$
\mathcal{L}(w, y) = \inf_{x \in \mathbb{X}} \left\{ k(w) + h^{\star_{\theta} x'}(\theta(w) + x) - \langle x, y \rangle \right\}
$$

= $k(w) + \langle \theta(w), y \rangle + (-h^{\star_{\theta}}(y))$

▶ Dual maximization problem

$$
\varphi^{\star\star'}(0) = \sup_{y \in \mathbb{Y}} \inf_{w \in \mathbb{W}} \mathcal{L}(w, y) = \sup_{y \in \mathbb{Y}} \left\{ \left(-k^{-\star_{\theta}}(y) \right) + \left(-h^{\star_{\theta}}(y) \right) \right\}
$$

▶ Original minimization problem (case " $+$ = $+$ " when k proper)

$$
\varphi(0) = \inf_{w \in \mathbb{W}} \sup_{y \in \mathbb{Y}} \mathcal{L}(w, y) = \inf_{w \in \mathbb{W}} \left\{ k(w) \dotplus h(w) \right\}
$$

KELK KØLK VELKEN EL 1990

▶ Existence of a saddle point? Algorithms?

Our roadmap (1/2)

- \blacktriangleright Introduce the Euclidean-CAPRA coupling (E-Capra), a particular one-sided linear coupling
- \triangleright Show how the Euclidean-CAPRA coupling proves suitable to analyze the ℓ_0 pseudonorm
	- ▶ E-Capra-convexity
	- ▶ hidden convexity
	- ▶ best convex lower approximation on the unit ball
	- ▶ E-Capra-subdifferential (thanks to Adrien Le Franc)

- \blacktriangleright variational formulas
- \blacktriangleright difference of convex (DC) formulas with graded sequences of induced norms
- \triangleright concave dual problems in sparse optimization
- \blacktriangleright duality

Our roadmap (2/2)

 \blacktriangleright Introduce a subclass of one-sided linear couplings, the constant along primal rays (CAPRA) couplings, depending on a source norm, and more generally on a 1-homogeneous nonnegative function

- ▶ relevant classes of norms
- ▶ relevant classes of functions
- ▶ matrix functions and norms

[Background on one-sided linear couplings](#page-8-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-9-0) [One-sided linear couplings \(and hidden convexity\)](#page-20-0)

[The Euclidean](#page-30-0) Capra conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

CAPRA [conjugacies](#page-68-0) [Best convex approximations of 0-homogeneous functions](#page-75-0) [The case of norms](#page-80-0)

KORKARYKERKER POLO

[Conclusion](#page-101-0)

We introduce the coupling E- \rm{CAPRA} between \mathbb{R}^d and itself

Definition The Euclidean- CAPRA coupling $(\text{E-CAPRA}) \mathbb{R}^d \overset{\text{C}}{\longleftrightarrow} \mathbb{R}^d$ is given by $\forall y \in \mathbb{R}^d$, $\sqrt{ }$ \int \mathcal{L} $\phi(x, y) = \frac{\langle x, y \rangle}{\|x\|_2} = \frac{\langle x, y \rangle}{\sqrt{\langle x, x \rangle}}$ $\sqrt{\langle x, x \rangle}$ $, \forall x \in \mathbb{R}^d \backslash \{0\}$ $\phi(0, y) = 0$

KOD KOD KED KED E VOOR

The coupling E-Capra has the property of being Constant Along Primal RAys (Capra)

 $E-CAPRA =$ Fenchel coupling after primal normalization

 \triangleright We introduce the Euclidean unit sphere \mathbb{S}_2 and the pointed unit sphere $\mathbb{S}_{2}^{(0)}$ $\frac{1}{2}$ by

$$
\mathbb{S}_2 = \left\{ x \in \mathbb{R}^d \mid ||x||_2 = 1 \right\}, \ \mathbb{S}_2^{(0)} = \mathbb{S}_2 \cup \{0\}
$$

 \triangleright and we define the primal normalization mapping *n* as

$$
n:\mathbb{R}^d\to\mathbb{S}_2^{(0)}, n(x)=\begin{cases} \frac{x}{\|x\|_2} & \text{if } x\neq 0\\ 0 & \text{if } x=0 \end{cases}
$$

 \triangleright so that the coupling E-CAPRA

$$
\phi(x, y) = \langle n(x), y \rangle , \ \forall x \in \mathbb{R}^d , \ \forall y \in \mathbb{R}^d
$$

KID KA KERKER KID KO

appears as the Fenchel coupling after primal normalization \triangleright hence, the coupling E -CAPRA is one-sided linear

The E-Capra conjugacy shares properties with the Fenchel conjugacy

Proposition

[\[Chancelier and De Lara, 2021\]](#page-109-0) For any function $f : \mathbb{R}^d \to \overline{\mathbb{R}}$, the ¢-Fenchel-Moreau conjugate is given by

> $f^{\diamondsuit}=\begin{pmatrix} \inf\big[f\mid\textit{n}\big]\end{pmatrix}^{\star}$ where $\inf [f | n](x) = \begin{cases} \inf_{\rho>0} f(\rho x) & \text{if } x \in \mathbb{S}_2^{(0)} \\ \lim_{\rho \to 0} f(\rho x) & \text{if } x \notin \mathbb{S}_2^{(0)} \end{cases}$ 2 $+\infty$ if $x \notin \mathbb{S}_2^{(0)}$ 2

> > **KORKA SERKER YOUR**

The E-Capra-convex functions are 0-homogeneous and coincide, on the unit sphere, with a closed convex function

Proposition

[\[Chancelier and De Lara, 2021\]](#page-109-0)

 ϕ -convexity of the function $h: \mathbb{R}^d \to \overline{\mathbb{R}}$

 $\Longleftrightarrow h = h^{\dot{\zeta}} \dot{\zeta}'$

$$
\iff h = \qquad (h^{\dot{\zeta}})^{\star'} \qquad \circ n
$$

convex lsc function

 \iff hidden convexity in the function $h : \mathbb{R}^d \to \overline{\mathbb{R}}$ there exists a closed convex function $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ such that $h = f \circ n$, that is, $h(x) = f\left(\frac{x}{\|x\|}\right)$ $\left\|x\right\|_2$ \mathcal{E}

KORKAR KERKER SAGA

The ℓ_0 pseudonorm is E-CAPRA-convex

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @
We recall the top- $(2,k)$ norms $\lVert \cdot \rVert_{2,k}^{\text{tn}}$

The top-k norm is also known as the 2-k-symmetric gauge norm, or Ky Fan vector norm

$$
||y||_{2,k}^{\text{tn}} = \sqrt{\sum_{l=1}^{k} |y_{\nu(l)}|^2}, \ |y_{\nu(1)}| \ge |y_{\nu(2)}| \ge \cdots \ge |y_{\nu(d)}|
$$

=
$$
\sup_{|K| \le k} ||y_K||_2
$$

where $y_K \in \mathbb{R}^d$ is the vector which coincides with y, except for the components outside of $\mathcal{K} \subset \big\{1,\ldots,d\big\}$ that vanish

KELK KØLK VELKEN EL 1990

The ℓ_0 pseudonorm and the E-CAPRA-coupling

Theorem

[\[Chancelier and De Lara, 2021\]](#page-109-0) The ℓ_0 pseudonorm, the characteristic functions $\delta_{\ell_0^{\leq k}}$ of its level sets and the top- $(2,k)$ norm norms $\lVert \cdot \rVert_{2,k}^{\text{tn}}$ are related by

$$
\delta_{\ell_0^{< k}}^{-c} = \delta_{\ell_0^{< k}}^{c} = \|\cdot\|_{2,k}^{\text{th}}, \quad k = 0, 1, \dots, d
$$
\n
$$
\ell_0^{c} = \sup_{l=0, 1, \dots, d} \left[\|\cdot\|_{2,l}^{\text{th}} - l \right]
$$
\n
$$
\ell_0^{c}^{c} = \ell_0
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The ℓ_0 pseudonorm displays hidden convexity

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

The ℓ_0 pseudonorm displays a convex factorization property

Theorem

[\[Chancelier and De Lara, 2021\]](#page-109-0)

As the ℓ_0 pseudonorm is E-CAPRA-convex, we get that

$$
\ell_0 = \ell_0^{\dot{C}\dot{C}} = \ell_0^{\dot{C}\kappa'} \circ n = \underbrace{(\ell_0^{\dot{C}})^{\kappa'}}_{\text{convex lsc function } \mathcal{L}_0} \circ n
$$

that is,

 $\ell_0(x) = \mathcal{L}_0(x)$, $\forall x \in \mathbb{S}_2$

KORKARYKERKER POLO

Hidden convexity in the ℓ_0 pseudonorm

Here is graph of the proper convex lsc function \mathcal{L}_0 such that $\ell_0 = \mathcal{L}_0$ on the circle

The ℓ_0 pseudonorm coincides, on the sphere (circle on \mathbb{R}^2), with a proper convex lsc function

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

 299

Best convex lower approximation on the unit ball

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Best convex lower approximation of the ℓ_0 pseudonorm on the unit ball

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Best convex lower approximation of the ℓ_0 pseudonorm on the Euclidean unit ball

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

E-CAPRA subdifferential of the ℓ_0 pseudonorm (thanks to Adrien Le Franc)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Capra-subdifferential of the ℓ_0 pseudonorm on \mathbb{R}^2

Illustration at three points (black dots)

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 \Rightarrow

 2990

Capra-subdifferential of the ℓ_0 pseudonorm on \mathbb{R}^2

イロト 不優 トイ磨 トイ磨 トー 磨っ 299 Lower approximation of the ℓ_0 pseudonorm by a finite number of elementary E-Capra-functions

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) Ğ, 2990 Variational formulas

We recall the $(2,k)$ -support norms $\lVert \cdot \rVert_{2,k}^{\mathrm{sn}}$

The dual norm of the top- $(2,k)$ norm $\lVert \cdot \rVert_{2,k}^{\text{tn}}$

 $\lVert \cdot \rVert_{\binom{k}{k}}^{\star \mathrm{sn}} = \left(\lVert \cdot \rVert_{\binom{k}{k}}^{\mathrm{tn}} \right)_{\star}$

KELK KØLK VELKEN EL 1990

is called the $(2, k)$ -support norm [\[Argyriou, Foygel, and Srebro, 2012\]](#page-109-1)

Proposition

[\[Chancelier and De Lara, 2021\]](#page-109-0)

 \blacktriangleright The proper convex lsc function \mathcal{L}_0 has epigraph

$$
\operatorname{epi}\mathcal{L}_0=\overline{\operatorname{co}}\Bigl(\bigcup_{l=0}^d\mathbb{B}_{(l)}^{\star\operatorname{sn}}\times\left[l,+\infty\right[\Bigr)
$$

 \triangleright \mathcal{L}_0 is the largest proper convex lsc function below

$$
L_0(x) = \begin{cases} 0 & \text{if } x = 0, \\ l & \text{if } x \in \mathbb{B}_{(l)}^{*\mathrm{sn}} \setminus \mathbb{B}_{(l-1)}^{*\mathrm{sn}} \;, & l = 1, \ldots, d \\ +\infty & \text{if } x \not\in \mathbb{B}_{(d)}^{*\mathrm{sn}} = \mathbb{B} \end{cases}
$$

 \triangleright \mathcal{L}_0 has the variational expression

$$
\mathcal{L}_0(x) = \min_{\substack{x^{(1)} \in \mathbb{R}^d, \dots, x^{(d)} \in \mathbb{R}^d \\ \sum_{i=1}^d ||x^{(i)}||_{(i)}^{\text{ss}} \le 1}} \sum_{l=1}^d l ||x^{(l)}||_{(l)}^{\text{ssn}}, \quad \forall x \in \mathbb{R}^d
$$

$$
\sum_{l=1}^d x^{(l)} = x}
$$

Variational formulas for the ℓ_0 pseudonorm

Proposition [\[Chancelier and De Lara, 2021\]](#page-109-0) $\ell_0(x) = \frac{1}{\ln x}$ $\frac{1}{\|x\|_2}$ $\lim_{x^{(1)} \in \mathbb{R}^d, ..., x^{(n)} \neq 0}$ $\mathsf{x}^{(1)}\mathsf{\in}\mathbb{R}^{d},\!...,\! \mathsf{x}^{(d)}\mathsf{\in}\mathbb{R}^{d}$ $\sum_{l=1}^{d} ||x^{(l)}||_{(l)}^{* \text{sn}}$ $\sum_{(l)}^{\infty}$ ≤ $||x||_2$ $\sum_{l=1}^{d} x^{(l)} = x$ \sum d $l=1$ \mathbf{E} $x^{(l)}\Big\|$ \star sn $\begin{array}{c} \lambda \text{sn} \\ (l) \end{array}$, $\forall x \in \mathbb{R}^d$ $\ell_0(\mathsf{x})=\,$ sup y∈R^d $\mathop{\mathsf{inf}}\limits_{l=1,...,d}$ $\langle x, y \rangle$ $\frac{\langle X, Y \rangle}{\|X\|_2} - \left[\|y\|_{2,I}^{\text{tn}} - I \right]_+ \right), \ \ \forall x \in \mathbb{R}^d \setminus \{0\}$

KORKAR KERKER ST VOOR

Difference of convex (DC) formulas with graded sequences of induced norms

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Difference of convex (DC) formulas

Well-known formulas

$$
\ell_0(y) = \min \left\{ k \in [\![1, d]\!] \mid ||y||_{2,k}^{\text{tn}} = ||y||_2 \right\}
$$

$$
\forall y \in \mathbb{R}^d
$$

$$
\ell_0(x) = \min \left\{ k \in [\![1, d]\!] \mid ||x||_{2,k}^{\text{sn}} = ||x||_2 \right\}
$$

$$
\forall x \in \mathbb{R}^d
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Lower bound convex programs for exact sparse optimization

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Concave dual problem for exact sparse optimization

From
$$
\sup_{y \in \mathbb{Y}} \left((-f^{\circ}(y)) + (-\delta_X^{-\circ}(y)) \right) \leq \inf_{x \in \mathbb{X}} \left(f(x) + \delta_X(x) \right)
$$

we deduce that

$$
\sup_{y\in\mathbb{R}^d}\left(-\left(\inf\left[f\mid n\right]\right)^{\star}(y)+\left(-\underbrace{\delta_{\ell_0^{-k}}^{-\zeta}(y)}_{\|y\|_{2,k}^{\mathrm{tn}}}\right)\right)\leq \inf_{\ell_0(x)\leq k}f(x)
$$

Proposition

For any function $f:\mathbb{R}^d\to\overline{\mathbb{R}}$, we have the following lower bound

concave use function
\n
$$
\sup_{y \in \mathbb{R}^d} \overbrace{\left(-\left(\inf \left[f \mid n \right] \right)^*(y) - ||y||_{2,k}^{\text{tn}} \right)}^{\text{concave use function}} \leq \inf_{\ell_0(x) \leq k} f(x)
$$
\n
$$
= \inf_{\ell_0(x) \leq k} \inf \left[f \mid n \right](x)
$$

Convex primal problem for exact sparse optimization

Proposition

Under a mild technical assumption ("à la" Fenchel-Rockafellar), namely if $\left(\inf \left[f \mid n \right]\right)^{\star}$ is a proper function, we have the following lower bound

 $\min_{\|x\|_{2,k}^{\text{sn}} \leq 1}$ $\left(\inf [f | n]\right)^{\star\star'}(x) \leq \inf_{\ell_0(x) \leq k} f(x) = \inf_{\ell_0(x) \leq k} \inf [f | n](x)$

The primal problem is the minimization of a closed convex function on the unit ball of the $(2,k)$ -support norm norm $\lVert \cdot \rVert_{2,k}^{\operatorname{sn}}$ (introduced in [\[Argyriou, Foygel, and Srebro, 2012\]](#page-109-1))

KORKAR KERKER SAGA

Duality

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

Perturbation scheme

▶ Functions $k: \mathbb{R}^d \to \overline{\mathbb{R}}, \varphi: \{0, 1, ..., d\} \to \overline{\mathbb{R}}$ nondecreasing (ex: identity, $\delta_{\{0,1,...,k\}})$ and original minimization problem

$$
\inf_{w \in \mathbb{R}^d} \left\{ k(w) \dotplus \varphi(\ell_0(w)) \right\} = \inf_{w \in \mathbb{R}^d} \left\{ k(w) \dotplus (\varphi \circ \ell_0)^{\dot{\zeta} \star'} (n(w)) \right\}
$$

- because $\varphi \circ \ell_0 = (\varphi \circ \ell_0)^{\dot{\zeta} \dot{\zeta}'} = (\varphi \circ \ell_0)^{\dot{\zeta} \star'} \circ n$ [\[Chancelier and De Lara, 2022c\]](#page-109-2)
- ▶ Embedding/perturbation scheme $H:\mathbb{R}^d \times \mathbb{R}^d \to \overline{\mathbb{R}}$ given by

$$
H(w,x) = k(w) + (\varphi \circ \ell_0)^{\dot{\zeta} \star'} (n(w) + x) , \ \ \forall (w,x) \in \mathbb{R}^d \times \mathbb{R}^d
$$

 \blacktriangleright Value function

$$
\varphi(x)=\inf_{w\in\mathbb{R}^d}\left\{k(w)+(\varphi\circ\ell_0)^{\dot{\zeta}x'}\big(n(w)+x\big)\right\},\ \ \forall x\in\mathbb{R}^d
$$

KORKARYKERKER POLO

Lagrangian and dual problem

▶ Fenchel coupling $\mathbb{R}^d \stackrel{\langle \cdot, \cdot \rangle}{\leftrightarrow} \mathbb{R}^d$, and Lagrangian $\mathcal{L}:\mathbb{R}^d\times\mathbb{R}^d\to\overline{\mathbb{R}}$ given, for any $(w,y)\in\mathbb{R}^d\times\mathbb{R}^d$, by

$$
\mathcal{L}(w, y) = \inf_{x \in \mathbb{R}^d} \left\{ k(w) \dotplus (\varphi \circ \ell_0)^{\dot{\zeta} x'} (n(w) + x) - \langle x, y \rangle \right\}
$$

$$
= k(w) \dotplus (\langle n(w), y \rangle - (\varphi \circ \ell_0)^{\dot{\zeta}}(y))
$$

▶ Dual maximization problem

$$
\varphi^{\star\star'}(0) = \sup_{y \in \mathbb{R}^d} \inf_{w \in \mathbb{R}^d} \mathcal{L}(w, y) = \sup_{y \in \mathbb{R}^d} \left\{ \left(-k^{-\dot{C}}(y) \right) + \left(-(\varphi \circ \ell_0)^{\dot{C}}(y) \right) \right\}
$$

▶ Original minimization problem (case " $+$ = $+$ " when k proper)

$$
\varphi(0) = \inf_{w \in \mathbb{R}^d} \sup_{y \in \mathbb{R}^d} \mathcal{L}(w, y) = \inf_{w \in \mathbb{R}^d} \left\{ k(w) \dotplus \varphi(\ell_0(w)) \right\}
$$

KORKAR KERKER SAGA

Numerics

K ロ K K d K K B K K B K X B K Y Q Q Q

A toy example

$$
\min_{\substack{w \in \mathbb{R}^2 \\ \text{with} \quad b = (0.8, 1.1)}} \frac{k(w)}{(w_1 - b_1)^2 + (w_2 - b_2)^2} + \ell_0(w)
$$

We have that $\{(0,b_2)\}=\{(0,1.1)\}=\mathop{\arg\min}\limits_{\mathsf{w}\in\mathbb{R}^2}$ $\{k(w) + \ell_0(w)\}\$

The toy example as a min-max problem

As
$$
\ell_0(w) = \max_{y \in \mathbb{R}^2} {\{c(w, y) - \ell_0^C(y)\}}
$$
, we obtain that
\n
$$
\min_{w \in \mathbb{R}^2} {\{k(w) + \ell_0(w)\}} = \min_{w \in \mathbb{R}^2} \max_{y \in \mathbb{R}^2} {\{k(w) + c(w, y) - \ell_0^C(y)\}}
$$

with

$$
\ell_0^{\dot{C}}(y) = \sup_{k=1,\dots,d} \left[\|y\|_{2,k}^{\rm tn} - k \right]_+
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Generalized primal-dual proximal splitting

GPDPS Algorithm [\[Clason, Mazurenko, and Valkonen, 2020\]](#page-109-3)

Given a starting point (w_0, y_0) and step lengths $\tau_i, \omega_i, \sigma_i > 0$, iterate

$$
w^{(i+1)} := \text{prox}_{\tau_i k} (w^{(i)} - \dot{c}_w (w^{(i)}, y^{(i)}))
$$

\n
$$
\overline{w}^{(i+1)} := w^{(i+1)} + \omega_i (w^{(i+1)} - w^{(i)})
$$

\n
$$
y^{(i+1)} := \text{prox}_{\sigma_i \ell_0^{\zeta}} (y^{(i)} + \sigma_i \dot{c}_y (\overline{w}^{(i+1)}, y^{(i)}))
$$

The prox of k is analytically computed (quadratic function), whereas the prox of ℓ_0^{ς} is numerically computed with the optimization algorithm newuoa by M.J.D. Powell

GPDPS convergence, varying the starting point

 4 ロ) 4 何) 4 ヨ) 4 ヨ) 290 Þ

Outline of the presentation

[Background on one-sided linear couplings](#page-8-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-9-0) [One-sided linear couplings \(and hidden convexity\)](#page-20-0)

[The Euclidean](#page-30-0) CAPRA conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

CAPRA [conjugacies](#page-68-0) [Best convex approximations of 0-homogeneous functions](#page-75-0) [The case of norms](#page-80-0)

KORKARYKERKER POLO

[Conclusion](#page-101-0)

Outline of the presentation

[Background on one-sided linear couplings](#page-8-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-9-0) [One-sided linear couplings \(and hidden convexity\)](#page-20-0)

[The Euclidean](#page-30-0) Capra conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

CAPRA [conjugacies](#page-68-0)

[Best convex approximations of 0-homogeneous functions](#page-75-0) [The case of norms](#page-80-0)

KORKARYKERKER POLO

[Conclusion](#page-101-0)

Homogeneous functions

Definition

We say that a function $f:\mathbb{R}^d\rightarrow\overline{\mathbb{R}}$ is

- **▶** 0-homogeneous if $f(\rho x) = f(x)$, $\forall \rho \in \mathbb{R} \setminus \{0\}$, $\forall x \in \mathbb{R}^d$ Example: the *pseudonorm* ℓ_0
- ▶ 1-homogeneous if $f(\rho x) = \rho f(x)$, $\forall \rho \in \mathbb{R}$, $\forall x \in \mathbb{R}^d$
- \blacktriangleright absolutely 1-homogeneous if $f(\rho x) = |\rho| f(x) , \ \ \forall \rho \in \mathbb{R} \setminus \{0\} , \ \ \forall x \in \mathbb{R}^d$ Examples: norms

$$
\overline{\mathbb{R}}_+ = \mathbb{R}_+ \cup \{+\infty\} = [0,+\infty]
$$

KORKARYKERKER POLO

For any nonnegative 1-homogeneous function $\nu:\mathbb{R}^d\to\overline{\mathbb{R}}_+,$ one has that $\nu(0) \in \{0, +\infty\}$

Normalization mapping

Definition

For any nonnegative 1-homogeneous function $\nu: \mathbb{R}^d \to \overline{\mathbb{R}}_+,$ the primal normalization mapping $n_\nu:\mathbb{R}^d\rightarrow\mathbb{S}^{(0)}_\nu$ is defined by

$$
n_{\nu}: x \in \mathbb{R}^d \mapsto \begin{cases} \frac{x}{\nu(x)}, & \text{if } 0 < \nu(x) < +\infty \\ 0, & \text{else} \end{cases}
$$

where the unit "sphere" \mathbb{S}_{ν} and the pointed unit "sphere" $\mathbb{S}_{\nu}^{(0)}$ are

$$
\mathbb{S}_{\nu} = \left\{ x \in \mathbb{R}^d \, \middle| \, \nu(x) = 1 \right\}, \ \mathbb{S}_{\nu}^{(0)} = \mathbb{S}_{\nu} \cup \{0\}
$$

and the unit "ball" \mathbb{B}_{ν} is

$$
\mathbb{B}_{\nu} = \left\{ x \in \mathbb{R}^d \mid \nu(x) \le 1 \right\}
$$

KORKARYKERKER POLO

CAPRA-couplings

Definition

Let $\nu : \mathbb{R}^d \to \overline{\mathbb{R}}_+$ be a nonnegative 1-homogeneous function The CAPRA coupling $\varphi_{\nu} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, between \mathbb{R}^d and itself, associated with ν , is the function

$$
\varphi_{\nu} : (x, y) \in \mathbb{R}^d \times \mathbb{R}^d \mapsto \langle n_{\nu}(x), y \rangle = \begin{cases} \frac{\langle x, y \rangle}{\nu(x)}, & \text{if } 0 < \nu(x) < +\infty \\ 0, & \text{else} \end{cases}
$$

KORKARYKERKER POLO

The coupling CAPRA has the property of being Constant Along Primal RAys (Capra)

Special case: $\nu = \|\cdot\|$ (source) norm
The ϕ_{ν} -subdifferential shares properties with the Rockafellar-Moreau subdifferential

Definition

For any function $f:\mathbb{R}^d\to\overline{\mathbb{R}}$ and $x\in\mathbb{R}^d$, the ζ_ν -subdifferential is

$$
\partial_{\dot{C}_{\nu}} f(x) = \{ y \in \mathbb{R}^d \mid \dot{C}_{\nu}(x', y) - f(x') \leq \dot{C}_{\nu}(x, y) - f(x) , \forall x' \in \mathbb{R}^d \}
$$

▶ The ϕ_{ν} -subdifferential $\partial_{\dot{\zeta}_{\nu}} f(x)$ is a closed convex set

$$
\triangleright y \in \partial_{\dot{C}_{\nu}} f(x) \iff f^{\dot{C}_{\nu}}(y) = \dot{C}_{\nu}(x, y) - f(x)
$$

$$
\blacktriangleright x \in \arg\min f \iff 0 \in \partial_{\dot{C}_{\nu}} f(x)
$$

$$
\blacktriangleright \partial_{\dot{\mathcal{C}}_{\nu}} f + \partial_{\dot{\mathcal{C}}_{\nu}} h \subset \partial_{\dot{\mathcal{C}}_{\nu}} (f \dotplus h)
$$

▶ $x \in \text{dom} f$ and $\partial_{\dot{\mathcal{C}}_{\nu}} f(x) \neq \emptyset \Rightarrow f^{\dot{\mathcal{C}}_{\nu} \dot{\mathcal{C}}_{\nu}}(x) = f(x)$

KID KA KERKER E VOOR

The ϕ_{ν} -conjugacy shares properties with the Fenchel conjugacy

Proposition

For any function $f : \mathbb{R}^d \to \overline{\mathbb{R}}$, the ϕ_{ν} -Fenchel-Moreau conjugate is given by

> $f^{\dot{\mathcal{C}}_\nu} = \left(\inf \left[f \mid n_\nu\right]\right)^\star$ where $\inf [f \mid n_{\nu}](x) = \begin{cases} \inf_{\rho>0} f(\rho x) & \text{if } x \in \mathbb{S}_{\nu}^{(0)} \\ \lim_{\rho \to 0} f(\rho x) & \text{if } x \neq \mathbb{S}_{\nu}^{(0)} \end{cases}$ $+\infty$ if $x \notin \mathbb{S}_{\nu}^{(0)}$

> > **KORKA SERKER YOUR**

As a consequence, the ζ_ν -Fenchel-Moreau conjugate f^{ζ_ν} is a closed convex function

The ϕ_{ν} -convex functions are 0-homogeneous and coincide, on the "sphere", with a closed convex function

▶ The ϕ'_ν -Fenchel-Moreau conjugate of $g : \mathbb{R}^d \to \overline{\mathbb{R}}$ is given by $g^{\dot{\mathcal{C}}'_{\nu}}=g^{\star}\circ\textit{n}_{\nu}$ \blacktriangleright The ζ_ν -convex functions are $\big\{g^{\mathcal{C}^\prime_\nu}\,\big\vert\, g:\mathbb{R}^d\to\overline{\mathbb{R}}\big\}$, hence $g^{\dot{\mathcal{C}}'_{\nu}}(x) = g^{\star}(n_{\nu}(x))$

and therefore ϕ_{ν} -convex functions are 0-homogeneous

Proposition

Any c_v -convex function coincides, on the unit "sphere" \mathbb{S}_v , with a closed convex function defined on \mathbb{R}^d

 ϕ_{ν} -convex function = closed convex function $\circ n_{\nu}$

KELK KØLK VELKEN EL 1990

Outline of the presentation

[Background on one-sided linear couplings](#page-8-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-9-0) [One-sided linear couplings \(and hidden convexity\)](#page-20-0)

[The Euclidean](#page-30-0) CAPRA conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

CAPRA [conjugacies](#page-68-0)

[Best convex approximations of 0-homogeneous functions](#page-75-0) [The case of norms](#page-80-0)

KORKARYKERKER POLO

[Conclusion](#page-101-0)

Fenchel conjugates for 0-homogeneous functions

For any 0-homogeneous function $f:\mathbb{R}^d\rightarrow\overline{\mathbb{R}}$,

$$
f^* = \delta_{\{0\}} - \inf_{x \in \mathbb{R}^d} f(x)
$$

$$
f^{**'} = \inf_{x \in \mathbb{R}^d} f(x)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Best convex lower approximations of 0-homogeneous functions (thanks to Thomas Bittar)

Proposition

Let $\nu : \mathbb{R}^d \to \mathbb{R}_+$ be a normalization function, with unit "ball" \mathbb{B}_ν and let $f:\mathbb{R}^d\to\overline{\mathbb{R}}$ be a 0-homogeneous function

The function $f \circ \psi^*$ is the tightest closed convex function below f on the unit "ball" \mathbb{B}_{ν} , where

$$
f^{\dot{\mathcal{C}}_{\nu}} = \left(f \dot{+} \delta_{\mathbb{B}_{\nu}}\right)^{\star} = \left(f \dot{+} \delta_{\mathbb{S}_{\nu}^{(0)}}\right)^{\star}
$$

▶ If $f(0) = 0$, the function $\sigma_{\partial_{\rho} f(0)}$ is the tightest closed convex ¢ν positively 1-homogeneous function below f on the unit "ball" \mathbb{B}_{ν}

KORKAR KERKER SAGA

Best convex lower approximation of the ℓ_0 pseudonorm on the Euclidean unit ball

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Best convex and norm lower approximations of the ℓ_0 pseudonorm on the ℓ_p unit "balls"

Outline of the presentation

[Background on one-sided linear couplings](#page-8-0)

[Background on couplings and Fenchel-Moreau conjugacies](#page-9-0) [One-sided linear couplings \(and hidden convexity\)](#page-20-0)

[The Euclidean](#page-30-0) CAPRA conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

CAPRA [conjugacies](#page-68-0) [Best convex approximations of 0-homogeneous functions](#page-75-0) [The case of norms](#page-80-0)

KORKARYKERKER POLO

[Conclusion](#page-101-0)

Generalized coordinate, top and support norms

K ロ K K 레 K K B K X B K Y A C K H C H D A C K

We reformulate sparsity in terms of coordinate subspaces

▶ For any $x \in \mathbb{R}^d$ and $K \subset \{1, ..., d\}$, we denote by $x_K \in \mathbb{R}^d$ the vector which coincides with x, except for the components outside of K that vanish

$$
x=(1,2,3,4,5,6)\rightarrow x_{\{2,4,5\}}=(0,2,0,4,5,0)
$$

 \triangleright x_K is the orthogonal projection of x onto the (coordinate) subspace

$$
\mathcal{R}_K = \mathbb{R}^K \times \{0\}^{-K} = \left\{ x \in \mathbb{R}^d \, \big| \, x_j = 0 \, , \ \forall j \notin K \right\} \subset \mathbb{R}^d
$$

 \blacktriangleright The connection with the level sets of the ℓ_0 pseudonorm is

$$
\ell_0^{\leq k} = \bigcup_{|K| \leq k} \mathcal{R}_K , \ \ \forall k = 0, 1, \ldots, d
$$

KELK KØLK VELKEN EL 1990

We generate a sequence of coordinate norms from any source norm

For any source norm $|\hspace{-.02in}|\hspace{-.02in}| \cdot |\hspace{-.02in}|\hspace{-.02in}|$ on \mathbb{R}^d , we define **a** sequence $\left\{\|\cdot\|_{(k)}^{\mathcal{R}}\right\}$ of coordinate- k norms
 $k=1,...,d$ characterized by the following dual norms

▶ a sequence $\left\{\|\cdot\|_{(k),\star}^{\mathcal{R}}\right\}_{k=1,...,d}$ of dual coordinate-k norms by

$$
\|\!\!|\cdot|\!\!|\|_{(k),\star}^{\mathcal{R}} = \big(\|\!\!|\cdot|\!\!|\|_{(k)}^{\mathcal{R}}\big)_{\star} = \sup_{|K| \leq k} \sigma_{\mathcal{R}_{K} \cap \mathbb{S}} = \sigma_{\ell_{0}^{\leq k} \cap \mathbb{S}}
$$

.
◆ ロ ▶ → *덴 ▶* → 토 ▶ → 토 ▶ │ 토 │ ◆) 9, 0~

$$
||||y|||_{(k),\star}^{\mathcal{R}} = \sup_{|K| \leq k} ||||y_K||_{K,\star}, \ \ \forall y \in \mathbb{R}^d
$$

Coordinate and dual coordinate norms induced by the ℓ_p -norms $\lVert \cdot \rVert_p$

For $y \in \mathbb{R}^d$, let μ be a permutation of $\{1, \ldots, d\}$ such that

$$
|y_{\mu(1)}| \geq |y_{\mu(2)}| \geq \cdots \geq |y_{\mu(d)}|
$$

Concave dual problem for exact sparse optimization

Proposition

For any function $f:\mathbb{R}^d\to\overline{\mathbb{R}}$, we have the following lower bound

$$
\sup_{y \in \mathbb{R}^d} \left(-\left(\inf \left[f \mid n_{\|\cdot\|} \right] \right)^* (y) - \|\|y\|_{(k),\star}^{\mathcal{R}} \right) \leq \inf_{\ell_0(x) \leq k} f(x)
$$
\n
$$
= \inf_{\ell_0(x) \leq k} \inf \left[f \mid n_{\|\cdot\|} \right] (x)
$$

The dual problem is the maximization of a concave usc function

KORKARYKERKER POLO

Convex primal problem for exact sparse optimization

Proposition

Under a mild technical assumption ("à la" Fenchel-Rockafellar), namely if $\left(\inf \left[f \mid n_{\| \cdot \|} \right]\right)^{\star}$ is a proper function, we have the following lower bound

min $||x||_{(k)}^{\mathcal{R}} \leq 1$ $\left(\inf \left[f \mid n_{\| \cdot \|} \right] \right)^{\star \star'}(x) \leq \inf_{\ell_0(x) \leq k} f(x) = \inf_{\ell_0(x) \leq k} \inf \left[f \mid n_{\| \cdot \|} \right](x)$

The primal problem is the minimization of a closed convex function on the unit ball of the coordinate- k norm $|\!|\!|\cdot|\!|\!|_{(k)}^{\mathcal{R}}$

KORKAR KERKER DRAM

Fenchel versus CAPRA conjugacies for ℓ_0

[\[Chancelier and De Lara, 2022a\]](#page-109-0), [\[Chancelier and De Lara, 2022c\]](#page-109-1)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

We define generalized top- k and k -support dual norms

Definition

For any source norm $|\|\!\!|\cdot|\!\!|\!|$ on \mathbb{R}^d , for any $k\in\big\{1,\ldots,d\big\}$, we call \blacktriangleright generalized top-k dual norm the norm

$$
||||y||_{\star,(k)}^{\text{tn}} = \sup_{|K| \leq k} |||y_K|||_{\star} = \sup_{|K| \leq k} |||y_K|||_{\star,K}, \ \ \forall y \in \mathbb{R}^d
$$

 \triangleright generalized *k*-support dual norm the dual norm

 $|\!|\!|\cdot|\!|\!|\!|_{\star,(k)}^{\star\mathrm{sn}}=\big(\| \!|\!|\cdot |\!|\!|_{\star,(k)}^{\mathrm{tn}}\big)_{\star}$

KORKAR KERKER ST VOOR

In the Euclidean case were the source norm is $\|\cdot\|_2$, we recover the original definition of top- k dual norms,

used to define the k-support dual norms in [\[Argyriou, Foygel, and Srebro, 2012\]](#page-109-2)

Support and top norms induced by the ℓ_p -norms $\lVert \cdot \rVert_p$

For $y \in \mathbb{R}^d$, let μ be a permutation of $\{1, \ldots, d\}$ such that

$$
|y_{\mu(1)}| \geq |y_{\mu(2)}| \geq \cdots \geq |y_{\mu(d)}|
$$

Coordinate norms and dual norms versus generalized top- k and k -support dual norms

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Orthant-strictly monotonic norms and Capra-convexity

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Orthant-strictly monotonic norms

For any $x \in \mathbb{R}^d$, we denote by $|x|$ the vector of \mathbb{R}^d with components $|x_i|, i = 1, \ldots, d$

Definition

A norm $\left\Vert \cdot\right\Vert$ on the space \mathbb{R}^{d} is called

$$
\begin{array}{ll}\n\text{or} & \text{in} \\
\text{for all } x, x' \text{ in } \mathbb{R}^d, \text{ we have} \\
& \left(|x| \leq |x'| \text{ and } x \text{ o } x' \geq 0 \Rightarrow \| |x| \| \leq \| |x'|\| \right), \\
& \text{where } x \text{ o } x' = (x_1 x_1', \dots, x_d x_d') \\
\text{is the Hadamard (entrywise) product}\n\end{array}
$$

▶ orthant-strictly monotonic [\[Chancelier and De Lara, 2022b\]](#page-109-4) if, for all x , x' in \mathbb{R}^d , we have $\Big(|x| < |x'| \text{ and } x \text{ o } x' \geq 0 \Rightarrow \|x\| < \|x'\| \Big| \Big),$ where $|x| < |x'|$ means that there exists $j \in \big\{1,\ldots,d\big\}$ such that $|x_j| < |x'_j|$ j |

Examples of orthant-strictly monotonic norms among the ℓ_p -norms $\lVert \cdot \rVert_p$

- ▶ All the ℓ_p -norms $\left\|\cdot\right\|_p$ on the space \mathbb{R}^d , for $p \in [1,\infty]$, are monotonic, hence orthant-monotonic
- ▶ All the ℓ_p -norms $\lVert \cdot \rVert_p$ on the space \mathbb{R}^d , for $p \in [1, \infty[,$ are orthant-strictly monotonic
- ▶ The ℓ_1 -norm $\lVert \cdot \rVert_1$ is orthant-strictly monotonic, whereas its dual norm, the ℓ_{∞} -norm $\lVert \cdot \rVert_{\infty}$, is orthant-monotonic, but not orthant-strictly monotonic

KORKAR KERKER SAGA

Orthant-monotonic source norms generate coordinate norms and duals that are generalized top- k and k -support dual norms

Proposition

If the source norm is orthant monotonic, we have

$$
\|\!\|\cdot\|\!\|_{\mathcal{K},\star}=\|\!\|\cdot\|\!\|_{\star,\mathcal{K}},\ \ \forall \mathcal{K}\subset\big\{1,\ldots,d\big\}
$$

hence, for all $k \in \{1, \ldots, d\}$,

KELK KØLK VELKEN EL 1990

We define graded sequence of norms

A graded sequence of norms detects the number of nonzero components of a vector in \mathbb{R}^d

when the sequence becomes stationary

Definition

We say that a sequence $\{\|\cdot\|_k\}_{k=1,\dots,d}$ of norms is (increasingly) graded with respect to the ℓ_0 pseudonorm if, for any $y \in \mathbb{R}^d$ and $l = 1, \ldots, d$, we have

 $\ell_0(y) = 1 \iff ||y||_1 < \cdots < ||y||_{l-1} < ||y||_l = \cdots = ||y||_d$

or, equivalently, $k \in \big\{1,\ldots,d\big\} \mapsto \| \hspace{-0.04cm} \|_k$ is nondecreasing and

 $\ell_0(y) \leq l \iff ||y||_l = ||y||_d$

Graded sequences are suitable for so-called "difference of convex" (DC) optimization methods to tackle sparse $\ell_0(y) \leq l$ constraints

Orthant-strictly monotonic dual norms produce graded sequences of norms

Proposition

If the dual norm $\|\cdot\|_{\star}$ of the source norm $\|\cdot\|$ is orthant-strictly monotonic, then the sequence

$$
\underbrace{\left\{\|\hspace{-0.04cm}|\hspace{-0.04cm}|_{\star,(l)}^{\rm tn}\right\}_{l=1,\ldots,d}}
$$

 $\qquad \qquad =\quad \left\{\|\hspace{-0.04cm}|\hspace{-0.04cm}|\hspace{-0.04cm}.\hspace{-0.04cm}\|_{(I),\star}^{\mathcal R}\right\}_{I=1,...,d}$

generalized top-k dual norm

 $dual-k$ coordinate norm

is graded with respect to the ℓ_0 pseudonorm

Thus, we can produce families of graded sequences of norms suitable for "difference of convex" (DC) optimization methods to tackle sparse constraints

We establish ϕ_{min} -convexity of the ℓ_0 pseudonorm

Proposition

 \blacktriangleright The sequence $\left\{\|\cdot\|_{(l)}^{\mathcal{R}}\right\}$ of coordinate-k norms is $l=1,\dots,d$ decreasingly graded with respect to the ℓ_0 pseudonorm iff

$$
\delta_{\ell_{0}^{\leq k}}^{\dot{\mathbf{\zeta}}_{\|\cdot\|}\dot{\mathbf{\zeta}}_{\|\cdot\|}}'=\delta_{\ell_{0}^{\leq k}}
$$

▶ If both the norm $\|\cdot\|$ and the dual norm $\|\cdot\|_{\star}$ are orthant-strictly monotonic, we have

 $\ell_0^{\dot{\mathsf{C}}_{|\!|\!|\!|}.\| \dot{\mathsf{C}}_{|\!|\!|\!|}.\|}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$

Capra-subdifferentiability properties of the ℓ_0 pseudonorm

$$
\triangleright \{\|\|\cdot\|\|_{(j)}^{\mathcal{R}}\}_{j=1,\dots,d} \text{ and } \{\|\|\cdot\|\|_{(j),\star}^{\mathcal{R}}\}_{j=1,\dots,d},
$$

associated coordinate-k and dual coordinate-k norms

$$
\blacktriangleright \{\mathbb{B}_{(j)}^{\mathcal{R}}\}_{j=1,\ldots,d} \text{ and } \{\mathbb{B}_{(j),\star}^{\mathcal{R}}\}_{j=1,\ldots,d}, \text{ corresponding unit balls}
$$

Proposition

[\[Chancelier and De Lara, 2022a\]](#page-109-0) The Capra-subdifferential of the ℓ_0 pseudonorm is given by

$$
\text{if } x = 0, \quad \partial_{\dot{\mathcal{C}}_{\|\cdot\|}} \ell_0(0) = \bigcap_{j=1,\dots,d} j \mathbb{B}_{(j),*}^{\mathcal{R}}
$$
\n
$$
\text{if } x \neq 0 \text{ and } \ell_0(x) = 1, \quad \partial_{\dot{\mathcal{C}}_{\|\cdot\|}} \ell_0(x) = \mathcal{N}_{\mathbb{B}_{(j)}^{\mathcal{R}}} \left(\frac{x}{\|x\|_{(l)}^{\mathcal{R}}} \right) \cap Y_l
$$

where $Y_l = \{ y \in \mathbb{Y} \mid l \in \underset{j=0,...,d}{\arg \max}$ $(||y||_{(j),\star}^{\mathcal{R}} - j)$, $\forall l = 0,\ldots,d$

KORKARYKERKER POLO

Capra-subdifferentiability properties of the ℓ_0 pseudonorm

Proposition

[\[Chancelier and De Lara, 2022c\]](#page-109-1) If both the norm $\|\cdot\|$ and the dual norm $\|\cdot\|_*$ are orthant-strictly monotonic, we have that

$$
\partial_{\dot{C}_{\|\cdot\|}} \ell_0(x) \neq \emptyset , \ \ \forall x \in \mathbb{R}^d ,
$$

KORKARYKERKER POLO

that is, the pseudonorm ℓ_0 is \rm{CAPRA} -subdifferentiable on \mathbb{R}^d

Fenchel versus CAPRA conjugacies for ℓ_0

[\[Chancelier and De Lara, 2022a\]](#page-109-0), [\[Chancelier and De Lara, 2022c\]](#page-109-1) If the source norm is orthant-strictly monotonic, we have that

KORKARYKERKER POLO

Outline of the presentation

[Background on one-sided linear couplings](#page-8-0)

[The Euclidean](#page-30-0) Capra conjugacy

[Extension: constant along primal rays conjugacies](#page-66-0)

[Conclusion](#page-101-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Conclusion (1/2)

 \triangleright Sparsity is, by nature, indifferent to magnitude, which is reflected in the support mapping being 0-homogeneous

KORK ERKER ADAM ADA

 \triangleright But the Fenchel conjugacy is not a suitable tool to analyze 0-homogeneous functions

Conclusion (2/2)

We have proposed the CAPRA coupling $\phi(x, y) = \frac{\langle x, y \rangle}{\nu(x)}$ and, with the CAPRA-conjugacy, we have obtained

- \blacktriangleright CAPRA-convex itv (by displaying nonempty Capra-subdifferential)
- ▶ hidden convexity
- ▶ best convex lower approximation on the unit ball
- ▶ E-Capra-subdifferential (thanks to Adrien Le Franc)

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

- \blacktriangleright variational formulas
- \blacktriangleright difference of convex (DC) formulas with graded sequences of induced norms
- \triangleright concave dual problems in sparse optimization
- \blacktriangleright duality

Perspectives

\blacktriangleright Tackle open theoretical questions

- ▶ duality gap between lower bound convex program and original sparse optimization problem
- **►** Conditions for $\partial_{\dot{C}_\nu} f + \partial_{\dot{C}_\nu} h \supset \partial_{\dot{C}_\nu} (f + h)$ (with ex-PhD student Adrien Le Franc)

▶ Matrix functions and norms

 \triangleright Rank-based norms and suitable matrix norms for Capra-conjugacy of the rank function (with ENPC students Paul Barbier and Valentin Paravy)

KORKAR KERKER SAGA

- ▶ formula "à la Lewis" $(F \circ \sigma)^{\dot{\mathcal{C}}_\nu} = F^{\dot{\mathcal{C}}_\nu} \circ \sigma$ for CAPRA-conjugacy
- \blacktriangleright Algorithms with CAPRA-couplings (with ex-PhD student Adrien Le Franc)
	- ▶ Mirror descent, Bregman divergence
	- \triangleright CAPRA-convex sparse optimization problems

An example where the subdifferential of the sum. . .

$$
\|\hspace{-1.5mm}\| \cdot |\hspace{-1.5mm}\| = \ell_2
$$

$$
\bar{x} \in \argmin_{\mathcal{K}} \ell_0 \implies 0 \in \partial_{\dot{C}} (\ell_0 + \delta_{\mathcal{K}})(\bar{x})
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

(a property of one-sided linear couplings)

...is not the sum of the subdifferentials (Adrien Le Franc)

Let $y' \in \partial_{\dot{\mathcal{C}}} \ell_0(\bar{x})$ and $y'' \in \partial_{\dot{\mathcal{C}}} \delta_{\mathcal{K}}(\bar{x})$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

 \Rightarrow

 2990

...is not the sum of the subdifferentials (Adrien Le Franc)

Let $y' \in \partial_{\dot{\mathcal{C}}} \ell_0(\bar{x})$ and $y'' \in \partial_{\dot{\mathcal{C}}} \delta_{\mathcal{K}}(\bar{x})$

 $0\notin \partial_{\dot{\bm{\zeta}}}\ell_0(\bar{x})+\partial_{\dot{\bm{\zeta}}}\delta_{\mathcal{K}}(\bar{x})$ hence

 $\partial_{\dot{\zeta}}\ell_0(\bar{x}) + \partial_{\dot{\zeta}}\delta_{\mathcal{K}}(\bar{x}) \subsetneq \partial_{\dot{\zeta}}(\ell_0 + \delta_{\mathcal{K}})(\bar{x})$ イロト 不優 トイミト イミト

È

 2990
Thank you :-)

K ロ ト K 御 ト K 君 ト K 君 ト 三君 … 2990

- Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the k-support norm. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, NIPS'12, pages 1457–1465, USA, 2012. Curran Associates Inc.
- Jean-Philippe Chancelier and Michel De Lara. Hidden convexity in the lo pseudonorm. Journal of Convex Analysis, 28(1):203–236, 2021.
- Jean-Philippe Chancelier and Michel De Lara. Constant along primal rays conjugacies and the l_0 pseudonorm. Optimization, 71(2):355–386, 2022a. doi: 10.1080/02331934.2020.1822836.
- Jean-Philippe Chancelier and Michel De Lara. Orthant-strictly monotonic norms, generalized top-k and k-support norms and the l0 pseudonorm. Journal of Convex Analysis (to appear), 2022b.
- Jean-Philippe Chancelier and Michel De Lara. Capra-convexity, convex factorization and variational formulations for the \ln pseudonorm. Set-Valued and Variational Analysis, 30:597–619, 2022c.
- Christian Clason, Stanislav Mazurenko, and Tuomo Valkonen. Primal–dual proximal splitting and generalized conjugation in non-smooth non-convex optimization. Applied Mathematics and Optimization, 84(2): 1239–1284, apr 2020.
- D. Gries. Characterization of certain classes of norms. Numerische Mathematik, 10:30–41, 1967.
- Adrien Le Franc, Jean-Philippe Chancelier, and Michel De Lara. The Capra-subdifferential of the l0 pseudonorm. Preprint hal-03505168, 2022.
- J. E. Mart´ınez-Legaz. Generalized convex duality and its economic applications. In Schaible S. Hadjisavvas N., Komlósi S., editor, Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Its Applications, volume 76, pages 237–292. Springer-Verlag, 2005.

KORKARA REPASA DA VOCA

R. Tyrrell Rockafellar. Conjugate Duality and Optimization. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, 1974.